JP3584760B2 - Overdischarge cell detection device in assembled battery - Google Patents

Overdischarge cell detection device in assembled battery Download PDF

Info

Publication number
JP3584760B2
JP3584760B2 JP31593598A JP31593598A JP3584760B2 JP 3584760 B2 JP3584760 B2 JP 3584760B2 JP 31593598 A JP31593598 A JP 31593598A JP 31593598 A JP31593598 A JP 31593598A JP 3584760 B2 JP3584760 B2 JP 3584760B2
Authority
JP
Japan
Prior art keywords
overdischarge
cell
voltage difference
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31593598A
Other languages
Japanese (ja)
Other versions
JP2000150002A (en
Inventor
義晃 菊池
佳行 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP31593598A priority Critical patent/JP3584760B2/en
Publication of JP2000150002A publication Critical patent/JP2000150002A/en
Application granted granted Critical
Publication of JP3584760B2 publication Critical patent/JP3584760B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、組電池を構成する蓄電池の過放電を検出する装置に関する。
【0002】
【従来の技術】
組電池は、蓄電池セル(以下、セルという)が複数直列に接続された電池モジュール(以下、モジュールという)を複数組むことで構成され、こうした組電池は電気自動車やハイブリッド車などの大きな電気容量を必要とする電力源として使用されている。
【0003】
この組電池を構成するセルは、充電、放電を繰り返して直列の電力を貯蔵し必要に応じて外部に直流を供給することが可能であるが、こうしたセルの電池性能を維持するためには過度な充放電が行なわれないように制御することが必要となっている。特に、組電池の場合には、一つのセルの電池容量のばらつきにより、特定のセルにおいて過放電等が生じやすく、この過放電により転極してセル内の活物質が電気分解され電池性能が劣化することがある。また、水の電気分解によりガスが発生しセル内の気圧が上昇するという問題もある。
【0004】
こうした観点から、組電池においてセルにおける過放電の発生を検出する装置が設けられている。従来の過放電セル検出装置は、モジュールの電圧を測定し、この測定された電圧よりモジュール間の電圧差を検出して所定の電圧差を越える場合に過放電セルが発生したことを検出する。すなわち、過放電セルが存在するモジュールでは、過放電となったセルの分だけ電圧値が低下するため、この電圧値の低下を他のモジュールの電圧値との差により検出し、過放電セルを検出することとしている。
【0005】
【発明が解決しようとする課題】
しかし、従来の過放電セル検出装置は、各モジュール間の電圧差のみにより過放電セルが発生しているか否かを判定するため、電圧差が過放電セルの発生に起因するのか、又はセルの電池温度差により生じた内部抵抗差の発生に起因しているのかを区別することは困難であった。
【0006】
一般にセルにおける内部抵抗は電池温度が低下すると上昇し、この上昇率は低温になればなるほど大きくなる。従って、低温の場合にセル間で温度差が生じると大きな内部抵抗差が形成され、モジュール間に電圧差が生じることになる。従って、従来の過放電セル検出装置では内部抵抗差による電圧差が生じた場合にも、過放電セルの発生として誤判定されることになる。
【0007】
そこで、本発明は上記課題に鑑みてなされたものであり、その目的は、組電池の過放電セル検出において、過放電セルの発生を内部抵抗差の発生と区別して判定することを可能にすることである。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明の過放電セル検出装置は、所定個数のセルが直列に接続されたモジュールを複数直列に組まれた組電池においてセルの過放電を検出する装置であって、各モジュール毎の電圧を検出する電圧検出手段と、各電池モジュール間の電圧差を検出する電圧差検出手段と、組電池の充放電電流を検出する電流検出手段と、前記電圧差と前記充放電電流との関係に基づいて蓄電池セルにおける過放電の発生を判定する過放電判定手段と、を有することを特徴とする。
【0009】
上記発明は、過放電セルの発生により生じる電圧差と、セルの内部抵抗の変化により生じる電圧差とでは、電流に依存して変化するか否かという違いがあることに着目した。すなわち、セルの内部抵抗差によりモジュール間に電圧差が形成されている場合には、この電圧差は電流値に依存して変化し、電流値が上昇すれば電圧差が上昇する。これに対し、過放電セルが存在する場合には、モジュール間の電圧差は組電池の電流値に依存せず所定の値を示す。
【0010】
従って、本発明の過放電セル検出装置は、各モジュール毎の電圧検出手段及びモジュール間の電圧差検出手段に、さらに組電池の充放電電流を検出する電流検出手段を備えて、検出された電圧差の変化を算出し、これと同時に電流値の変化も検出する。そして、電圧差の変化が電流値の変化に非依存的であるかを検出することにより過放電セルの発生をセルの内部抵抗差の発生から区別して検出することが可能となる。
【0011】
このように過放電セルの発生を内部抵抗差の発生と区別して検出可能とすることにより、特に、低温によりセルの内部抵抗が上昇した場合でも内部抵抗差の発生を過放電セルの発生として誤判定することを防止することができ、これにより組電池のセルの充放電の制御をより確実にすることが可能となる。
【0012】
【発明の実施の形態】
以下、本発明の好適な実施形態を図面を用いて説明する。図1には、過放電セル検出装置を備えた組電池の全体構成を示す。
【0013】
図1において、組電池10には、複数の電池モジュールが直列に接続され、これら各電池モジュールは蓄電池からなる複数のセルが直列に接続されて構成されている。この蓄電池の種類は特に限定はなく、例えばニッケル−水素電池、ニッケル−カドミウム電池などいずれであってもよい。また接続形式についても横並び、縦並び、これらを組合せたタイプのいずれであってもよい。また、モジュールの個数についても特に限定はなく、ここではn個のモジュール12、14、16、18を備えた組電池10を示している。
【0014】
こうして構成された組電池では、モジュール内の各セルが充電により直列の電力を貯蔵し、放電により必要に応じて外部に直流を供給して、組電池全体として大きな電力を出力する。しかし、組電池において、充放電を繰り返すと各セルの容量にばらつきが生じる。特にハイブリッド車の組電池では長期間充放電が繰り返されるため、各セル間で容量のばらつきが生じやすい。そして、容量のばらつきが生じると、容量の小さなセルは放電の際に過放電を受けて転極し、内部圧力上昇や充放電性能の劣化の原因となる場合がある。こうした過放電セルを検出するために、本実施形態の組電池では過放電セル検出装置が備えられている。
【0015】
この過放電セル検出装置は、モジュール毎の電圧を検出する電圧検出手段として複数の電圧計が備えられ、これら電圧計により個々のモジュールの電圧が検出される。具体的には、図1に示すように、第一のモジュール12には第一の電圧計20が、第二のモジュール14には第二の電圧計22が、第三のモジュール16には第三の電圧計24が、そして第nの電圧計18には第nの電圧計26がそれぞれ設けられ、各電圧計は個々のモジュールの電圧をモニタする。ここで、いずれかのモジュールで過放電セルが発生した場合には過放電セルを含むモジュールの電圧値が低下してこの電圧値が電圧計により検出される。
【0016】
この電圧値の低下を検出するために、これら電圧計20、22、24、26にはそれぞれの信号線20a、22a、24a、26aを介して電圧差検出部28が接続されている。この電圧差検出部28は、各電圧計から信号線を介して出力される各モジュールの電圧値を差分演算して電圧差を求める。ここで、いずれかのモジュール内のセルにおいて過放電が発生した場合には、そのモジュールの電圧値は過放電が生じたセルの分だけ低下することになる。例えば、ニッケル−水素電池の電圧値が1.2Vとすると、モジュール中の1セルが過放電すると電圧値として1.2V低下し、この低下が電圧差として検出される。
【0017】
但し、後述する過放電判定部において検出する電圧差は、必ずしも1セル分の電圧差とする必要はなく、過放電セルを適切に検出し得る値とすることができる。例えば、ニッケル−水銀電池の場合を例にとると、0.6〜1.0Vの電圧差とすることができ、また好ましくは0.6Vの電圧差とすることができる。
【0018】
しかし、上述したような電圧差はセルの内部抵抗の上昇や劣化によっても生じるため、これら他の要因から過放電セルの発生を区別可能とするために、組電池10の放電側には電流検出手段として電流計30が設けられている。この電流計30では、組電池を流れる電流の値が検出され、この値を後述する過放電判定部32に出力して、過放電判定部32において過放電セルが発生したか否かが判定されることになる。なお、この過放電判定部32の判定については後述する。
【0019】
上記過放電判定部32は、電圧差検出部28及び電流計30と、それぞれ信号線28a、30aを介して接続され、この過放電判定部32では次の原理に基づいて過放電セルが発生したことを判定する。図2に過放電セルが発生した場合及び内部抵抗値が上昇した場合における電流と電圧との関係をそれぞれ示す。
【0020】
図2(A)には、過放電セルが発生した場合の電流と電圧との関係を示す。過放電セルが発生していない正常なモジュール(破線で示す)では、モジュールの電圧は組電池を流れる電流と反比例の関係を有する。一方、過放電セルが発生したモジュール(実線で示す)では、正常なモジュールに比較して、電流値0以上において過放電セルの電圧値分だけ低下したパターンを示す。これらから、正常モジュールと過放電セル入りのモジュールとの間の電圧差と電流との関係を図2(B)に示す。この図2(B)に示されているように、電流0以上ではこの電圧差は電流に無関係に所定の値を示し、過放電セルを含むモジュールと正常なモジュールとの間の電圧差は電流に非依存的に変化する。
【0021】
これとは対照的に、図2(C)に示すように、内部抵抗値が上昇した場合には、正常なモジュールと同様に電圧と電流とは反比例の関係にあるが、正常なモジュールに比してその傾きが大きくなる。また、図2(D)には、内部抵抗値が上昇したセルを含むモジュールと正常モジュールとの間の電圧差を電流との関係で示すが、これらは一定の傾きを有する比例直線を描き、電圧差は電流に依存して変化することになる。
【0022】
すなわち、電圧差の発生が電流に依存していない場合には、過放電セルが発生したと判定することができ、また一方、電圧差の発生が電流に依存していない場合には、内部抵抗値の上昇、その他の要因と判定することができる。従って、過放電判定部32では、電圧差検出部28より入力される電圧差の変化と、電流計30から入力される電流値の変化とに基づいて、電圧差が電流に依存して変化するかを求める。そして、電圧差の変化が電流に依存している場合には内部抵抗値の上昇と判定することができ、一方、依存していない場合には過放電セルが発生したと判定することができる。
【0023】
以下に、この過放電判定部32における動作を図3に示すフローチャートを用いて詳細に説明する。
【0024】
過放電判定部32において、過放電セルの検出が開始されると(S01)、検出カウンタを初期化してカウンタ値を「0」にする(S02)。次に、過放電判定部32は、電圧差検出部28において検出された電圧差を出力するように指令し、電圧差検出部28より電圧差が入力される。また、電流計30にも検出された電流値を出力するように指令し、電流計30より電流値が入力される。過放電判定部32は、これら入力された電圧差及び電流値を検出すると(S03)、電流値が0以上であり、かつ、電圧差は所定の値(α)以上であるか否かを判定する(S04)。ここで、電流値が0以上であり、かつ、電圧差は所定の値(α)以上でない場合には検出カウンタの初期化(S02)から動作を繰り返す。
【0025】
一方、電流値が0以上であり、かつ、電圧差は所定の値(α)以上である場合には、これら電圧値及び電流値を記録し、検出カウンタを「1」加算する(S05)。ここで検出カウンタが所定の回数に達するまで、電流計及び電圧差検出部からそれぞれ電流値、電圧差の値を取得して記録する(S06)。そして、検出カウンタが所定の回数に達した場合には、これまで取得した電流値、電圧差より電圧差が電流依存性であるか否かを判定する(S07)。この判定は、取得した電圧差の最大値と最小値との差分を、電流値の最大値と最小値との差分により除して傾きを求め、この傾きが所定の値(β)よりも大きい場合には、内部抵抗値の変化による電圧差が発生したと判定される(S08)。一方、この傾きが所定の値(β)以上でない場合には過放電セルの発生と判定される(S09)。なお、ここでは電圧と電流との関係を表す直線の傾きを求めることとしているが、この方法以外にも最小二乗法によりこれらの関係を求め、過放電セルの発生を検出することもできる。
【0026】
ここで過放電セルの発生と判定された場合には、この過放電判定部32は、例えば、充放電を制御する制御部に指令を発し、放電を停止させ、充電モードに切換えて充電を行わせることによりセルの性能の劣化等を防止することが可能となる。
【0027】
【発明の効果】
以上の通り、本発明によれば、各モジュール毎の電圧検出手段及びモジュール間の電圧差検出手段に、さらに組電池の充放電電流を検出する電流検出手段を備えて、モジュール間の電圧差を検出するとともに電流値を検出して、電圧差が電流に依存して変化するか否かを検出することにより、過放電セルの発生をセルの内部抵抗差の発生と区別して検出することが可能となる。
【0028】
このように過放電セルの発生を内部抵抗差の発生と区別して検出可能とすることにより、特に、温度が低くセルの内部抵抗が上昇した際でも内部抵抗差の発生を過放電セルの発生として誤判定することを防止することができる。これにより組電池のセルの充放電の制御をより確実にすることが可能となる。
【図面の簡単な説明】
【図1】本実施形態の過放電セル検出装置を備えた組電池の全体構成を示す図である。
【図2】本実施形態における過放電判定部において過放電セルの発生を判定する際の原理を示す図であり、(A)は、過放電セルが発生した場合の電流値と電圧値との関係、(B)は、正常なモジュールと比較した際の電圧差と電流値との関係、(C)及び(D)には、セルの内部抵抗値が上昇した場合のそれぞれの関係を示すグラフ図である。
【図3】本実施形態における過放電判定部における検出動作を示すフローチャートである。
【符号の説明】
10 組電池、12,14,16,18 モジュール、20,22,24,26 電圧計、28 電圧差検出部、30 電流計、32 過放電判定部。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for detecting overdischarge of a storage battery constituting a battery pack.
[0002]
[Prior art]
An assembled battery is configured by assembling a plurality of battery modules (hereinafter, referred to as modules) in which a plurality of storage battery cells (hereinafter, referred to as cells) are connected in series. Such an assembled battery has a large electric capacity such as an electric vehicle or a hybrid vehicle. It is used as a necessary power source.
[0003]
The cells that make up the battery pack can store power in series by repeating charging and discharging and supply DC power to the outside as needed. It is necessary to control so that the charging and discharging are not performed. In particular, in the case of an assembled battery, due to variations in the battery capacity of one cell, overdischarge or the like is likely to occur in a specific cell, and this overdischarge reverses the polarity and electrolyzes the active material in the cell, thereby deteriorating the battery performance. May deteriorate. In addition, there is also a problem that gas is generated by the electrolysis of water and the pressure inside the cell rises.
[0004]
From such a viewpoint, a device for detecting occurrence of overdischarge in a cell in a battery pack is provided. A conventional over-discharge cell detecting device measures the voltage of a module, detects a voltage difference between the modules based on the measured voltage, and detects the occurrence of an over-discharge cell when the voltage exceeds a predetermined voltage difference. That is, in the module in which the over-discharge cell exists, the voltage value decreases by the amount of the over-discharged cell. Therefore, the decrease in the voltage value is detected based on the difference from the voltage value of the other module, and It is going to be detected.
[0005]
[Problems to be solved by the invention]
However, the conventional over-discharge cell detection device determines whether or not over-discharge cells are generated based only on the voltage difference between each module. It was difficult to distinguish whether the difference was caused by the occurrence of the internal resistance difference caused by the battery temperature difference.
[0006]
Generally, the internal resistance of a cell increases as the battery temperature decreases, and the rate of increase increases as the temperature decreases. Therefore, if a temperature difference occurs between cells at a low temperature, a large internal resistance difference is formed, and a voltage difference occurs between modules. Therefore, in the conventional over-discharge cell detection device, even when a voltage difference due to a difference in internal resistance occurs, it is erroneously determined that an over-discharge cell has occurred.
[0007]
Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to make it possible to determine the occurrence of overdischarge cells in the detection of overdischarge cells of an assembled battery by distinguishing the occurrence of overdischarge cells from the occurrence of an internal resistance difference. That is.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, an overdischarge cell detection device of the present invention is a device for detecting overdischarge of cells in an assembled battery in which a predetermined number of cells are connected in series and a plurality of modules are assembled in series. Voltage detecting means for detecting a voltage of each module; voltage difference detecting means for detecting a voltage difference between each battery module; current detecting means for detecting a charging / discharging current of the battery pack; Overdischarge determining means for determining the occurrence of overdischarge in the storage battery cell based on the relationship with the discharge current.
[0009]
The present invention has focused on the fact that the voltage difference caused by the occurrence of overdischarge cells and the voltage difference caused by changes in the internal resistance of the cells have a difference depending on whether or not the current changes. That is, when a voltage difference is formed between the modules due to the internal resistance difference of the cell, the voltage difference changes depending on the current value, and the voltage difference increases as the current value increases. On the other hand, when the overdischarge cell exists, the voltage difference between the modules shows a predetermined value without depending on the current value of the battery pack.
[0010]
Therefore, the over-discharge cell detecting device of the present invention further comprises a current detecting means for detecting a charging / discharging current of the assembled battery in the voltage detecting means for each module and the voltage difference detecting means between the modules. The change in the difference is calculated, and at the same time, the change in the current value is detected. Then, by detecting whether the change in the voltage difference is independent of the change in the current value, it is possible to detect the occurrence of the overdischarge cell separately from the occurrence of the internal resistance difference of the cell.
[0011]
In this way, the occurrence of an overdischarge cell can be detected separately from the occurrence of an internal resistance difference, so that even when the internal resistance of the cell increases due to a low temperature, the occurrence of the internal resistance difference is mistaken as the occurrence of an overdischarge cell. This makes it possible to prevent the determination, thereby making it possible to more reliably control the charging and discharging of the cells of the battery pack.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an overall configuration of an assembled battery including an overdischarge cell detection device.
[0013]
In FIG. 1, a plurality of battery modules are connected in series to an assembled battery 10, and each of these battery modules is configured by connecting a plurality of cells including storage batteries in series. The type of the storage battery is not particularly limited, and may be, for example, any of a nickel-hydrogen battery and a nickel-cadmium battery. Further, the connection form may be any of a horizontal arrangement, a vertical arrangement, and a combination of these arrangements. Also, the number of modules is not particularly limited, and here, an assembled battery 10 including n modules 12, 14, 16, and 18 is shown.
[0014]
In the battery pack configured as described above, each cell in the module stores serial power by charging, supplies direct current to the outside as needed by discharging, and outputs large power as a whole battery pack. However, when charging and discharging are repeated in a battery pack, the capacity of each cell varies. In particular, in a battery pack of a hybrid vehicle, charge and discharge are repeated for a long period of time, so that the capacity tends to vary between cells. Then, when the capacity varies, the cell having a small capacity undergoes overdischarge at the time of discharge and turns over, which may cause an increase in internal pressure or deterioration of charge / discharge performance. In order to detect such overdischarge cells, the assembled battery of the present embodiment is provided with an overdischarge cell detection device.
[0015]
The overdischarge cell detection device includes a plurality of voltmeters as voltage detection means for detecting a voltage of each module, and the voltmeter detects the voltage of each module. Specifically, as shown in FIG. 1, the first module 12 has a first voltmeter 20, the second module 14 has a second voltmeter 22, and the third module 16 has a first voltmeter 22. Three voltmeters 24 are provided, and the nth voltmeter 18 is provided with an nth voltmeter 26, each voltmeter monitoring the voltage of an individual module. Here, when an overdischarge cell occurs in any of the modules, the voltage value of the module including the overdischarge cell decreases, and this voltage value is detected by the voltmeter.
[0016]
In order to detect the decrease in the voltage value, a voltage difference detection unit 28 is connected to the voltmeters 20, 22, 24, 26 via respective signal lines 20a, 22a, 24a, 26a. The voltage difference detection unit 28 calculates the difference between the voltage values of the respective modules output from the respective voltmeters via the signal lines to obtain a voltage difference. Here, if an overdischarge occurs in a cell in one of the modules, the voltage value of that module is reduced by the amount of the cell in which the overdischarge has occurred. For example, assuming that the voltage of a nickel-hydrogen battery is 1.2 V, when one cell in the module is over-discharged, the voltage drops by 1.2 V, and this drop is detected as a voltage difference.
[0017]
However, the voltage difference detected by the overdischarge determination unit described later does not necessarily need to be a voltage difference for one cell, and may be a value that can appropriately detect an overdischarge cell. For example, taking the case of a nickel-mercury battery as an example, the voltage difference can be 0.6 to 1.0 V, and more preferably the voltage difference can be 0.6 V.
[0018]
However, since the above-mentioned voltage difference is also caused by an increase or deterioration of the internal resistance of the cell, in order to make it possible to distinguish the occurrence of the overdischarged cell from these other factors, the discharge side of the battery pack 10 has a current detection. An ammeter 30 is provided as a means. In the ammeter 30, the value of the current flowing through the battery pack is detected, and this value is output to an overdischarge determination unit 32 described later, and the overdischarge determination unit 32 determines whether or not an overdischarge cell has occurred. Will be. The determination by the overdischarge determination unit 32 will be described later.
[0019]
The overdischarge determining section 32 is connected to the voltage difference detecting section 28 and the ammeter 30 via signal lines 28a and 30a, respectively. The overdischarge determining section 32 generates an overdischarge cell based on the following principle. Is determined. FIG. 2 shows the relationship between current and voltage when an overdischarge cell occurs and when the internal resistance increases.
[0020]
FIG. 2A shows the relationship between current and voltage when an overdischarge cell occurs. In a normal module in which no overdischarge cell occurs (shown by a broken line), the voltage of the module has an inverse relationship with the current flowing through the battery pack. On the other hand, a module in which an overdischarge cell has occurred (shown by a solid line) shows a pattern in which the current value is 0 or more and the voltage value of the overdischarge cell is lower than that of a normal module. From these, the relationship between the voltage difference and the current between the normal module and the module containing the overdischarged cell is shown in FIG. As shown in FIG. 2B, when the current is 0 or more, this voltage difference shows a predetermined value regardless of the current, and the voltage difference between the module including the overdischarge cell and the normal module is the current. Changes independently.
[0021]
In contrast, as shown in FIG. 2 (C), when the internal resistance increases, the voltage and the current are in inverse proportion to each other as in the normal module, but are lower than those in the normal module. Then, the inclination increases. FIG. 2D shows the voltage difference between the module including the cell having the increased internal resistance value and the normal module in relation to the current, and these draw a proportional straight line having a constant slope, The voltage difference will change depending on the current.
[0022]
That is, when the occurrence of the voltage difference does not depend on the current, it can be determined that an overdischarge cell has occurred. On the other hand, when the occurrence of the voltage difference does not depend on the current, the internal resistance can be determined. The increase can be determined to be another factor. Therefore, in the overdischarge determination unit 32, the voltage difference changes depending on the current based on the change in the voltage difference input from the voltage difference detection unit 28 and the change in the current value input from the ammeter 30. Or ask. When the change in the voltage difference depends on the current, it can be determined that the internal resistance value has increased. On the other hand, when the change does not depend on the current, it can be determined that an overdischarge cell has occurred.
[0023]
Hereinafter, the operation of the over-discharge determining unit 32 will be described in detail with reference to the flowchart shown in FIG.
[0024]
When the overdischarge determination unit 32 starts detecting overdischarged cells (S01), the detection counter is initialized and the counter value is set to "0" (S02). Next, the overdischarge determination unit 32 instructs to output the voltage difference detected by the voltage difference detection unit 28, and the voltage difference is input from the voltage difference detection unit 28. Further, a command is issued to also output the detected current value to the ammeter 30, and the current value is input from the ammeter 30. When detecting the input voltage difference and current value (S03), the overdischarge determination unit 32 determines whether the current value is equal to or greater than 0 and the voltage difference is equal to or greater than a predetermined value (α). (S04). Here, when the current value is 0 or more and the voltage difference is not more than the predetermined value (α), the operation is repeated from the initialization of the detection counter (S02).
[0025]
On the other hand, if the current value is equal to or greater than 0 and the voltage difference is equal to or greater than the predetermined value (α), the voltage value and the current value are recorded, and “1” is added to the detection counter (S05). Here, until the detection counter reaches a predetermined number, the current value and the voltage difference value are obtained and recorded from the ammeter and the voltage difference detection unit, respectively (S06). When the detection counter has reached the predetermined number of times, it is determined whether or not the voltage difference is current-dependent based on the current value and voltage difference obtained so far (S07). In this determination, the difference between the acquired maximum value and the minimum value of the voltage difference is divided by the difference between the maximum value and the minimum value of the current value to obtain a gradient, and the gradient is larger than a predetermined value (β). In this case, it is determined that a voltage difference has occurred due to a change in the internal resistance value (S08). On the other hand, when the inclination is not equal to or more than the predetermined value (β), it is determined that an overdischarge cell has occurred (S09). Here, the slope of the straight line representing the relationship between the voltage and the current is determined. However, other than this method, the relationship can be determined by the least squares method, and the occurrence of overdischarge cells can be detected.
[0026]
When it is determined that an overdischarge cell is generated, the overdischarge determination unit 32 issues, for example, a command to a control unit that controls charging and discharging, stops discharging, switches to a charging mode, and performs charging. This makes it possible to prevent the performance of the cell from deteriorating.
[0027]
【The invention's effect】
As described above, according to the present invention, the voltage detecting means for each module and the voltage difference detecting means between modules are further provided with current detecting means for detecting the charging / discharging current of the assembled battery, and the voltage difference between the modules is detected. By detecting the current value as well as detecting whether the voltage difference changes depending on the current, the occurrence of overdischarge cells can be detected separately from the occurrence of the internal resistance difference of the cells It becomes.
[0028]
In this way, the occurrence of the overdischarge cell can be detected separately from the occurrence of the internal resistance difference, so that even when the temperature is low and the internal resistance of the cell increases, the occurrence of the internal resistance difference is regarded as the occurrence of the overdischarge cell. Erroneous determination can be prevented. This makes it possible to more reliably control the charging and discharging of the cells of the assembled battery.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an overall configuration of an assembled battery including an overdischarge cell detection device according to an embodiment.
FIG. 2 is a diagram illustrating a principle of determining the occurrence of an over-discharge cell in an over-discharge determination unit according to the embodiment. FIG. 2A is a diagram illustrating a relationship between a current value and a voltage value when an over-discharge cell occurs. (B) is a graph showing a relationship between a voltage difference and a current value when compared with a normal module, and (C) and (D) are graphs showing respective relationships when an internal resistance value of a cell is increased. FIG.
FIG. 3 is a flowchart illustrating a detection operation in an overdischarge determination unit according to the embodiment.
[Explanation of symbols]
10 assembled battery, 12, 14, 16, 18 module, 20, 22, 24, 26 voltmeter, 28 voltage difference detection unit, 30 ammeter, 32 overdischarge determination unit.

Claims (1)

所定個数の蓄電池セルが直列に接続された電池モジュールを複数直列に接続し構成された組電池において蓄電池セルの過放電を検出する装置であって、
各電池モジュール毎の電圧を検出する電圧検出手段と、
各電池モジュール間の電圧差を検出する電圧差検出手段と、
組電池を流れる充放電電流を検出する電流検出手段と、
前記電圧差と前記充放電電流との関係に基づいて蓄電池セルにおける過放電の発生を判定する過放電判定手段と、を有する過放電セル検出装置。
A device for detecting overdischarge of a storage battery cell in a battery pack configured by connecting a plurality of battery modules in which a predetermined number of storage battery cells are connected in series,
Voltage detection means for detecting a voltage of each battery module;
Voltage difference detecting means for detecting a voltage difference between each battery module,
Current detection means for detecting a charge / discharge current flowing through the battery pack;
An overdischarge cell detection device comprising: overdischarge determination means for determining occurrence of overdischarge in the storage battery cell based on a relationship between the voltage difference and the charge / discharge current.
JP31593598A 1998-11-06 1998-11-06 Overdischarge cell detection device in assembled battery Expired - Lifetime JP3584760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31593598A JP3584760B2 (en) 1998-11-06 1998-11-06 Overdischarge cell detection device in assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31593598A JP3584760B2 (en) 1998-11-06 1998-11-06 Overdischarge cell detection device in assembled battery

Publications (2)

Publication Number Publication Date
JP2000150002A JP2000150002A (en) 2000-05-30
JP3584760B2 true JP3584760B2 (en) 2004-11-04

Family

ID=18071382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31593598A Expired - Lifetime JP3584760B2 (en) 1998-11-06 1998-11-06 Overdischarge cell detection device in assembled battery

Country Status (1)

Country Link
JP (1) JP3584760B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4092904B2 (en) 2001-11-09 2008-05-28 トヨタ自動車株式会社 Battery status judgment device
DE102005000139A1 (en) * 2005-10-13 2007-04-19 Hilti Ag Method for total discharge protection for battery packs comprises testing the temporary change of voltage difference between two identical cell groups for exceeding a differential threshold value
CN101622547B (en) * 2007-02-08 2014-07-30 松下电动车辆能源股份有限公司 Device and method for detecting abnormality of electric storage device
JP4835808B2 (en) 2010-03-04 2011-12-14 三菱電機株式会社 Power storage system
FR2961351B1 (en) 2010-06-15 2012-07-20 Saft Groupe Sa SYSTEM FOR MONITORING THE STATUS OF A BATTERY
US20120249052A1 (en) 2010-10-29 2012-10-04 Sendyne Corporation Charge redistribution method for cell arrays
JP5668672B2 (en) * 2011-08-02 2015-02-12 トヨタ自動車株式会社 Battery system and overdischarge detection method for battery system
CN103105588B (en) * 2013-03-07 2015-07-08 上海电气钠硫储能技术有限公司 Method for judging position of failure cell in energy storage type sodium-sulfur cell module
KR20210031172A (en) * 2019-09-11 2021-03-19 삼성전자주식회사 Method for diagnosing status of battery, the electronic device and storage medium therefor

Also Published As

Publication number Publication date
JP2000150002A (en) 2000-05-30

Similar Documents

Publication Publication Date Title
EP1798100B1 (en) Battery management system
JP3879494B2 (en) Battery pack
EP3958006B1 (en) Battery diagnosis apparatus and method
US11391780B2 (en) Battery diagnostic device and method
JP2000092732A (en) Method for judging scattering of battery pack and battery device
JP2010098866A (en) Imbalance determination circuit, imbalance reduction circuit, battery power supply, and imbalance evaluation method
JP2001025173A5 (en)
JP2003282156A (en) Abnormality detection device of battery pack and abnormality detection method therefor
JP3855497B2 (en) Charged / discharged state determination method and apparatus for assembled battery
JP3584760B2 (en) Overdischarge cell detection device in assembled battery
WO2007089047A1 (en) Secondary cell monitoring device
JP2003257501A (en) Secondary battery residual capacity meter
US6828758B2 (en) Charge/discharge control method for battery pack and charge/discharge control apparatus for battery pack
US20020000787A1 (en) Method for charging a battery pack including a plurality of battery units
EP4099034A1 (en) Relay diagnosis device, relay diagnosis method, battery system, and electric vehicle
US20220196752A1 (en) Battery diagnosis apparatus, battery diagnosis method and energy storage system
US11296366B2 (en) Apparatus, method and battery pack for detecting fault of electrical conductor
JP2003092840A (en) Battery pack controller
US11415637B2 (en) System and method for estimating battery state of health
JPH09113588A (en) Method for detecting pack battery condition
US20230369660A1 (en) Battery management system, battery pack, electric vehicle and battery management method
US20230333170A1 (en) Battery Management System, Battery Pack, Electric Vehicle and Battery Management Method
EP4002638A1 (en) Battery management system, battery pack, electric vehicle, and battery management method
KR20200058998A (en) Apparatus and method for diagnosing battery abnormality, and battery pack including the apparatus
JP2001186682A (en) Method of controlling discharge of battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

EXPY Cancellation because of completion of term