JP3584734B2 - Clutch hydraulic control circuit - Google Patents

Clutch hydraulic control circuit Download PDF

Info

Publication number
JP3584734B2
JP3584734B2 JP14498498A JP14498498A JP3584734B2 JP 3584734 B2 JP3584734 B2 JP 3584734B2 JP 14498498 A JP14498498 A JP 14498498A JP 14498498 A JP14498498 A JP 14498498A JP 3584734 B2 JP3584734 B2 JP 3584734B2
Authority
JP
Japan
Prior art keywords
pressure
clutch
oil
valve
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14498498A
Other languages
Japanese (ja)
Other versions
JPH11303897A (en
Inventor
裕一郎 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Nico Transmission Co Ltd
Original Assignee
Hitachi Nico Transmission Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Nico Transmission Co Ltd filed Critical Hitachi Nico Transmission Co Ltd
Priority to JP14498498A priority Critical patent/JP3584734B2/en
Publication of JPH11303897A publication Critical patent/JPH11303897A/en
Application granted granted Critical
Publication of JP3584734B2 publication Critical patent/JP3584734B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回転数上昇と共に負荷トルクが急激に上昇するような被動機械、例えば消防ポンプ等を、船舶主機関の前側駆動装置等を介して駆動する場合に使用する、油圧式クラッチのクラッチ油圧制御回路に関するものである。
【0002】
【従来の技術】
舶用減速逆転機や補機駆動用増速機等の油圧クラッチを結合して主機関からプロペラや消防ポンプ等を駆動する場合、油圧クラッチを滑らかに結合するために油圧クラッチの作動油圧を緩やかに上昇させる油圧制御回路が取られ、被動機械を駆動する際のショックを緩和することが行われている。このクラッチ結合時のショックを緩和するために、従来より図4に示すような制御回路が広く用いられている。すなわち、この制御回路では、クラッチ作動油と潤滑油とを単独の油圧ポンプ30で供給し、油圧ポンプからクラッチ嵌脱弁35に至るポンプ出口油路31から分岐した一次油圧回路32に、油圧クラッチ38への供給油圧を調整するクラッチ油圧調整弁33が設けられている。更に、クラッチ嵌脱弁35の出口側の作動油供給回路36を分岐してクラッチ油圧調整弁33の背圧室39に圧油を供給する背圧回路37が設けられ、背圧回路37にはオリフィス40と逆止弁41が並列に設けられている。
【0003】
この制御回路によれば、クラッチ嵌脱弁35をオフ(遮断)にすると作動油供給回路36が閉鎖され、一次油圧回路32の圧力はクラッチ油圧調整弁33のばね43によって設定された中立油圧に調整され、油圧ポンプ30から吐出された圧油は全量潤滑油回路34に流れる。クラッチ嵌脱弁35をオン(連通)にすると、作動油供給回路36に圧油が供給され、油圧クラッチのピストン室42に圧油が供給されると共に、オリフィス40を通過してクラッチ油圧調整弁の背圧室39にも供給される。背圧室39に供給された圧油は、昇圧ピストン44を押してばね43を圧縮するのでばね43の抗力が高まり、ドレンポート45の開口度合いが小さくなるので一次油圧回路32の圧力が高まり、油圧クラッチ38に供給される圧油は中立油圧から定格のクラッチ作動油圧まで上昇する。
【0004】
【発明が解決しようとする課題】
前記制御回路において、クラッチ嵌脱弁35をオンにすると、クラッチ油圧調整弁33の背圧回路37及び作動油供給回路36には中立油圧、すなわち、“潤滑油圧力(装置の末端で3kg/cm程度が必要)+油圧機器を含めた回路の圧力損失分”に相当する油圧が作用する。この種の駆動装置では、油圧ポンプの駆動源を主機関とする場合が殆どであり、その場合、油圧ポンプの吐出量は機関回転速度に比例して増加するので、被動機械を定格回転速度で起動するときにはポンプ吐出量が最大の状態にあり、このときの油圧回路の圧力損失は1.5〜2.0kg/cmに達する。このため、クラッチ油圧調整弁33の中立油圧は、所要の潤滑油圧に2kg/cm程度プラスした値に設定される。かくして、クラッチ嵌脱弁35をオンにすると、作動油供給回路36に供給されるクラッチ作動油圧は、油圧クラッチのピストン室42に圧油が充満し、ピストンが移動してクラッチプレートを押しはじめると、図5に示される如く、作動油圧力はP(この例では約1kg/cm)から中立油圧P(この例では約6kg/cm)まで瞬時に上昇する。
【0005】
このように、ピストン室充満時の圧力(P)と中立油圧(P)との差が大きいと結合時のショック油圧として作用するので、中立油圧をできるだけ低く設定することが望ましいが、消防ポンプのように、慣性は小さいが回転数の上昇とともに負荷トルクが急激に増大する、いわゆる3乗負荷特性の被動機械は、速やかに回転を上昇させるために定格回転速度で油圧クラッチを結合する必要があり、しかも、機関駆動の1個の油圧ポンプでクラッチ作動油と潤滑油を供給することから中立油圧を低く設定することが難しく、クラッチ結合時のショックトルクが大きくなる。その結果、クラッチ結合時に駆動側機関の回転速度が低下してエンジンガバナや過給機が追従しきれなくなり、黒煙の排出量が増加するという問題があった。
【0006】
この発明は、このような欠点を解決するためになされたもので、駆動側機関や駆動装置を結合時のショックから保護するために、結合完了までの時間を延長することなく油圧クラッチを滑らかに結合する、クラッチ油圧制御回路を提供することを目的としている。
【0007】
【課題を解決するための手段】
上記目的を達成するために、この発明は、 クラッチ開放時には低圧に、クラッチ結合時には高圧に調圧するクラッチ油圧調整弁で調整された油圧ポンプからの圧油を、クラッチ嵌脱弁を介して油圧クラッチに供給すると共に、前記クラッチ油圧調整弁の排出油を潤滑油として使用するクラッチ油圧制御回路において、クラッチ嵌脱弁出口側の作動油供給回路に、入口ポートと出口ポートの開口度合いを変化させるスプールの一方端にオリフィスを通過した出口ポートの圧油を作用させる油室を、他方端にばねを介して入口ポートの圧油を作用させる背圧室を備えた減圧弁を設置し、該減圧弁の入口側から分岐した背圧回路に小径のオリフィスを設け、該オリフィス下流側の背圧回路に、前記クラッチ嵌脱弁の開閉と連動して背圧回路とドレンポートとの接続を開閉するドレン開閉弁とボリューム弁とを設け、該ボリューム弁のピストン戻しばね力を、ボリューム弁に圧油が充満したのち前記クラッチ油圧調整弁の背圧側ピストンが移動開始するよう設定すると共に、このオリフィス下流側の背圧回路を分岐して、減圧弁の口ポートを開く方向に付勢するばねに弾性力を付加する減圧弁背圧室に接続し、クラッチ結合時の押圧力をクラッチピストン戻し力相当の低圧からゆるやかに上昇させるようにしたものである。
【0008】
【発明の実施の態様】
以下、この発明の実施例を図1に示されたクラッチ油圧制御回路および図2に示された減圧弁の断面図をもとに説明する。なお、従来のクラッチ油圧制御回路と同様の部分については詳しい説明を省略する。
【0009】
図1において、油圧クラッチ9の圧油は、油圧ポンプ30からクラッチ嵌脱弁5を介して供給される。クラッチ嵌脱弁5の入口から分岐した一次油圧回路2には、油圧クラッチ9への供給油圧を調整するクラッチ油圧調整弁3が設けられ、クラッチ嵌脱弁5をオフにすると、作動油供給回路6が遮断されて一次油圧回路2の圧力はクラッチ油圧調整弁3によって中立油圧に調整され、油圧ポンプ30から吐出された圧油は全量潤滑油回路4に流れる。なお、図示されていないが、この潤滑油回路4の末端には潤滑油圧力調整弁が設けられている。また、クラッチ嵌脱弁5をオンにすると、一次油圧回路2の圧油は作動油供給回路6に供給されると共に、作動油供給回路6から分岐された背圧回路10のオリフィス11を通過してクラッチ油圧調整弁3の背圧室8に供給され、作動油供給回路6の圧力は中立油圧から漸次上昇し、定格のクラッチ作動油圧に達する。なお、これらの制御回路の構成は従来と同様である。
【0010】
クラッチ嵌脱弁5の出口側の作動油供給回路6には背圧機構を備えた減圧弁7が設けら、減圧弁7を通過した圧油は油圧クラッチ9のピストン室15に供給される。また、減圧弁7の入口側から分岐された背圧回路10には、小径のオリフィス11を介してボリューム弁12が設けられている。この背圧回路10はオリフィス11の下流で複数に分岐され、それらはクラッチ油圧調整弁3の背圧室8及び減圧弁7の背圧室58、並びに背圧回路10の圧油をタンクTに排出または遮断するドレン開閉弁13に接続される。このドレン開閉弁13の一方には、パイロット流の流入によってドレンポート14を閉じる方向に作用するパイロット回路17が、背圧回路10のオリフィス入口側から分岐されて接続され、他方にはドレンポート14を連通方向に付勢するばねが設けられている。
【0011】
図2には、このクラッチ油圧制御回路に使用される背圧機構を備えた減圧弁7の具体的な構造が断面図で示されている。減圧弁7のカバー57には、背圧回路10のオリフィス11を通過した圧油が流入する背圧ポート59が設けられ、本体55には背圧ポート59に連通する背圧室58と、クラッチ嵌脱弁5を通過した圧油が流入する入口ポート6と、油圧クラッチ9へ接続される出口ポート6と、出口ポート6及びパイロット室54の圧油をタンクに解放するドレンポート52と、軸方向に摺動して入ロポート6と出口ポート6の開口度合いを変化させるスプール51とが設けられている。さらに、スプール51の一方の端部には、ばね18を介してピストン56が設けられ、他方の端部にはカバー64に支えられたばね受け60とばね62が設けられている。
【0012】
ばね62の周囲には、カバー63,64によってパイロット室54が形成され、本体55には出口ポート6と前記パイロット室54とを連通するパイロット孔50が設けられていて、出口ポート6の圧油をカバー63,64の油路に固定されたオリフィス53,53を介してパイロット室54に導くよう形成されている。前記パイロット室54の圧油は、カバー63に設けられた別のオリフィス53を通過して、本体55のドレンポート52に連通するよう形成されている。なお、オリフィス53,53の孔径はオリフィス53の孔径より大きく設定されているので、油圧クラッチ結合中、すなわち、クラッチ嵌脱弁5をオンしているとき、パイロット室54内には減圧弁の出口ポート6からの圧油が充満している。
【0013】
このように構成されたクラッチ油圧制御回路において、クラッチ嵌脱弁5をオンにすると、クラッチ油圧調整弁3で調圧された中立油圧(この実施例では約6kg/cmに設定)が減圧弁7に供給され、減圧弁7で中立油圧が減圧されて油圧クラッチ9のピストン室15に供給される。一方、減圧弁7の入口側回路から分岐された背圧回路10の圧油がボリューム弁12と減圧弁の背圧室58に供給されるが、クラッチ嵌脱弁5をオンにすると、オリフィス11で流量が絞られるため、オリフィス下流側の背圧回路より先にパイロット回路17に圧油が充満し、ドレン開閉弁13のドレンポート14を速やかに閉じて、小径のオリフィス11を通過した圧油は徐々にボリューム弁12と減圧弁7の背圧室58に流入する。
【0014】
クラッチ嵌脱弁5をオンにした直後は、減圧弁7の出口側回路に圧油が充満していないので、減圧弁7の出口ポート6と連通するパイロット孔50には圧油が供給されず、減圧弁のパイロット室54は空の状態にあるので、図2におけるスプール51の左端面にパイロット圧力は作用していない。また、スプール51の左側に配置されたばね62は、右側に配置されたばね18より弾性力が弱く設定されているので、図の左方向にスプール51が移動して、減圧弁の入口ポート6と出口ポート6とは初期の状態で連通している。この状態から、さらに圧油が供給されて減圧弁の出口側回路に圧油が充満してくると、減圧弁のスプール51の左端面にパイロット圧力が加わり、ばね18の反力に抗してスプール51を、入口ポート6を閉じる方向に押し、開口面積がパイロット圧力の上昇とともに減少するため、減圧弁出口側の圧力は少しづつ上昇する。
【0015】
前記スプール51の右側端面には、ばね18の弾性力に加えて背圧ポート59を通過した背圧回路10の圧油が、ピストン56を介してばね18の弾性力を高める方向に作用する。一方、背圧回路10に設けられたボリューム弁12内のばねの弾性力は、クラッチ油圧調整弁3のばねより弱いものが使用されているので、油圧クラッチ9のピストン室15に圧油が供給されると同時に、背圧回路10のオリフィス11を通過した圧油が徐々にボリューム弁12の油室にも供給される。このボリューム弁12は、油室に圧油が供給されるとピストンを介してばねを圧縮しながら、油室内及びそれに連なる背圧回路10の圧力を徐々に高める。従って、ピストン室15が充満してクラッチピストン16がクラッチ板を押圧しはじめると、背圧回路10の圧力も上昇して減圧弁7のばね18に付加される荷重が少しづつ増加し、減圧弁のポートを開く方向に作用するので、前記パイロット圧力とバランスしながら減圧弁の出口側圧力はゆるやかに上昇して中立油圧に達する。
【0016】
背圧回路10の圧力が所定の油圧に達すると、クラッチ油圧調整弁3の背圧室8にも圧油が流入し、ピストンを介してばねが圧縮されて減圧弁7の入口側圧力が徐々に上昇する。それに伴って前記と同様に減圧弁出口側の圧力も漸次上昇し、定格のクラッチ作動油圧に達する。これにより、クラッチ作動油供給回路6の圧力は、クラッチピストン16の戻し力相当の油圧から定格油圧まで滑らかに上昇する。
【0017】
また、クラッチ嵌脱弁5をオフにすると、減圧弁7の入口側回路及びオリフィス入口側の背圧回路10の圧油は、クラッチ嵌脱弁5を通過して直ちにタンクに排出されるので、パイロット回路17の圧力は瞬時に低下し、ドレン開閉弁のドレンポートがつながってオリフィス下流の背圧回路10の圧油が速やかにタンクTに排出される。すなわち、減圧弁入口ポート6の圧油及び減圧弁の背圧室58に作用する圧油が排出されるので、減圧弁7のパイロット室54の圧油も排出される。これにより、減圧弁7の入口ポート6と出口ポート6は初期の連通状態に復帰し、油圧クラッチのピストン室15の圧油は、減圧弁7とクラッチ嵌脱弁5を通過して速やかにタンクに排出される。
【0018】
なお、前記実施例のドレン開閉弁は、オリフィス入口側の圧油をパイロット流とし、該パイロット流の消失によりドレンポートを連通させるよう形成したが、ドレン開閉弁として電磁切換弁を用い、クラッチ嵌脱弁のオン・オフ信号と連動させて前記電磁切換弁を開閉させてもよく、同様の効果が得られるものである。
【0019】
図3は、図1に示されたこの発明の実施例を示すクラッチ油圧制御回路によって得られた、クラッチ作動油圧力の上昇過程を示す油圧特性図である。クラッチ嵌脱弁5をオンにすると、油圧クラッチ9のピストン室15に圧油が供給され、t秒経過するとピストン室15が充満し、クラッチ作動油圧はクラッチピストン16の戻し力相当の油圧P(この例では約1kg/cm)になる。その後、減圧弁の背圧室及びアキュムレータにつながる背圧回路の圧力が上昇して減圧弁の出口側圧力をゆるやかに上昇させ、t秒経過すると中立油圧P(この例では約6kg/cm)に達する。
【0020】
さらに、クラッチ油圧調整弁の背圧室側ピストンがばねを圧縮し、漸次クラッチ作動油圧上昇してt秒経過すると定格油圧(この例では24kg/cm)に達する。なお、クラッチ脱弁5をオンにした直後は減圧弁の出入口ポートは開口しており、クラッチ脱弁5の出口圧力は従来と同じなので、ピストン室15の充満時間tは従来と変わらず、しかも、クラッチは定格油圧に上昇する前に結合を完了するので、被動機械の起動時間が延びることはない。
【0021】
上記実施例から明らかなように、クラッチ嵌脱弁の出口側に背圧機構付きの減圧弁及びボリューム弁を設け、クラッチ油圧調整弁の中立油圧以下を制御するようにしたので、クラッチピストン戻し力相当の油圧からゆるやかに、かつ、滑らかに上昇させることが可能になった。
【0022】
【発明の効果】
この発明によれば、クラッチピストン戻し力相当の低圧から中立油圧の間のクラッチ作動油圧をゆるやかに上昇させることができるので、消防ポンプのよう回転数の上昇とともに急激に負荷トルクが増大する被動機械を駆動する際に、機関定格回転速度で油圧クラッチを結合しても、結合時のショックが発生せず駆動側機関急激に負荷がかからないと同時に、被動機械の起動時間が延びることも無い。また、クラッチ嵌脱弁を遮断すると背圧回路の圧油が速やかに排出されるので、起動時にクラッチの嵌脱を瞬時に繰り返してもクラッチは滑らかに結合される。従って、動力伝達経路に配置された弾性継手の寿命を延ばすことができるとともに、エンジンガバナや過給機の追随が容易になり、クラッチ結合時の機関回転速度の低下がなくなって黒鉛の排出量が低減されるという効果がある。
【図面の簡単な説明】
【図1】本発明の実施例を示すクラッチ油圧制御回路の説明図である。
【図2】本発明のクラッチ油圧制御回路に使用される減圧弁の断面図である。
【図3】図1のクラッチ油圧制御回路を備えた油圧クラッチの作動油圧特性図である。
【図4】従来のクラッチ油圧制御回路の説明図である。
【図5】図4のクラッチ油圧制御回路を備えた油圧クラッチの作動油圧特性図である。
【符号の説明】
3,33 クラッチ油圧調整弁
5,35 クラッチ嵌脱弁
6,36 作動油供給回路
入口ポート
出口ポート
7 減圧弁
9,38 油圧クラッチ
10,37 背圧回路
11,40 オリフィス
12 ボリューム弁
13 ドレン開閉弁
14 ドレンポート
17 パイロット回路
50 パイロット孔
51 スプール
54 パイロット室
56 ピストン
58 減圧弁の背圧室
59 背圧ポート
18,62 ばね
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydraulic pressure clutch used for driving a driven machine, such as a fire pump, or the like, whose load torque sharply increases with an increase in the rotational speed, via a front drive device of a ship main engine. It relates to a control circuit.
[0002]
[Prior art]
When driving a propeller or fire pump from the main engine by connecting hydraulic clutches such as a marine deceleration reverser or an auxiliary drive gearbox, the operating hydraulic pressure of the hydraulic clutch should be reduced gradually in order to connect the hydraulic clutch smoothly. 2. Description of the Related Art A hydraulic control circuit for raising the pressure is employed to reduce a shock when driving a driven machine. In order to reduce the shock at the time of clutch engagement, a control circuit as shown in FIG. 4 has been widely used. That is, in this control circuit, a clutch hydraulic oil and a lubricating oil are supplied by a single hydraulic pump 30, and a hydraulic clutch is provided to a primary hydraulic circuit 32 branched from a pump outlet oil passage 31 from the hydraulic pump to a clutch engagement / disengagement valve 35. A clutch oil pressure adjusting valve 33 for adjusting the oil pressure supplied to the clutch 38 is provided. Further, a back pressure circuit 37 that branches the hydraulic oil supply circuit 36 on the outlet side of the clutch engagement / disengagement valve 35 and supplies pressure oil to a back pressure chamber 39 of the clutch hydraulic pressure adjustment valve 33 is provided. An orifice 40 and a check valve 41 are provided in parallel.
[0003]
According to this control circuit, when the clutch engagement / disengagement valve 35 is turned off (cut off), the hydraulic oil supply circuit 36 is closed, and the pressure of the primary hydraulic circuit 32 is reduced to the neutral hydraulic pressure set by the spring 43 of the clutch hydraulic adjustment valve 33. The pressure oil adjusted and discharged from the hydraulic pump 30 flows to the lubricating oil circuit 34 in its entirety. When the clutch engagement / disengagement valve 35 is turned on (communicated), the pressure oil is supplied to the hydraulic oil supply circuit 36, the pressure oil is supplied to the piston chamber 42 of the hydraulic clutch, and the clutch oil pressure adjustment valve passes through the orifice 40. Is also supplied to the back pressure chamber 39. The pressure oil supplied to the back pressure chamber 39 presses the pressure increasing piston 44 to compress the spring 43, so that the resistance of the spring 43 increases, and the degree of opening of the drain port 45 decreases, so that the pressure in the primary hydraulic circuit 32 increases, and the hydraulic pressure increases. The pressure oil supplied to the clutch 38 rises from a neutral oil pressure to a rated clutch operating oil pressure.
[0004]
[Problems to be solved by the invention]
In the control circuit, when the clutch engagement / disengagement valve 35 is turned on, the neutral pressure, that is, “lubricating oil pressure (3 kg / cm at the end of the device) is applied to the back pressure circuit 37 and the hydraulic oil supply circuit 36 of the clutch oil pressure adjusting valve 33. 2 is required) + Hydraulic pressure equivalent to “the pressure loss of the circuit including the hydraulic equipment” acts. In this type of drive device, the drive source of the hydraulic pump is mostly the main engine. In this case, the discharge amount of the hydraulic pump increases in proportion to the engine speed. When the pump is started, the pump discharge amount is in the maximum state, and the pressure loss of the hydraulic circuit at this time reaches 1.5 to 2.0 kg / cm 2 . Therefore, the neutral oil pressure of the clutch oil pressure adjusting valve 33 is set to a value obtained by adding about 2 kg / cm 2 to the required lubricating oil pressure. Thus, when the clutch engagement / disengagement valve 35 is turned on, the clutch operating oil pressure supplied to the operating oil supply circuit 36 becomes full when pressure oil fills the piston chamber 42 of the hydraulic clutch and the piston moves to start pushing the clutch plate. As shown in FIG. 5, the hydraulic oil pressure rises instantaneously from P 1 (about 1 kg / cm 2 in this example) to neutral oil pressure P 2 (about 6 kg / cm 2 in this example).
[0005]
As described above, if the difference between the pressure (P 1 ) at the time of filling the piston chamber and the neutral oil pressure (P 2 ) is large, it acts as a shock oil pressure at the time of coupling, so it is desirable to set the neutral oil pressure as low as possible. Like a pump, a driven machine with a small inertia but a sudden increase in load torque with an increase in the number of revolutions, that is, a driven machine with a so-called cubic load characteristic requires the hydraulic clutch to be connected at the rated rotational speed in order to increase the rotation quickly. In addition, since the clutch operating oil and the lubricating oil are supplied by one engine-driven hydraulic pump, it is difficult to set the neutral oil pressure low, and the shock torque at the time of clutch engagement becomes large. As a result, when the clutch is engaged, the rotation speed of the driving-side engine decreases, and the engine governor and the supercharger cannot follow up, and there is a problem that the amount of black smoke emission increases.
[0006]
The present invention has been made in order to solve such a disadvantage, and in order to protect the driving engine and the driving device from shocks at the time of coupling, the hydraulic clutch is smoothly extended without extending the time until the coupling is completed. It is an object to provide a clutch hydraulic control circuit for coupling.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a hydraulic clutch, comprising: a hydraulic pressure control device that adjusts a pressure to a low pressure when a clutch is released and a high pressure when a clutch is engaged; A clutch oil pressure control circuit that uses the oil discharged from the clutch oil pressure adjusting valve as a lubricating oil, wherein the hydraulic oil supply circuit on the outlet side of the clutch engagement / disengagement valve changes the degree of opening between the inlet port and the outlet port. while the oil chamber for applying a pressure oil outlet port passing through the orifice in the end, a pressure reducing valve is installed with the back pressure chamber for applying a pressure oil inlet port through the spring to the other end, the pressure reduction valve A small-diameter orifice is provided in the back pressure circuit branched from the inlet side of the valve, and the back pressure circuit downstream of the orifice is connected to the back pressure circuit and the drain in conjunction with opening and closing of the clutch engagement / disengagement valve. A drain opening / closing valve for opening and closing the connection with the port and a volume valve are provided, and the piston return spring force of the volume valve is adjusted so that the back pressure side piston of the clutch hydraulic pressure adjustment valve starts to move after the volume valve is filled with pressure oil. setting while branches back pressure circuit of the downstream side of an orifice, connected to the pressure reducing valve back pressure chamber for adding an elastic force to the spring which biases the direction of opening the inlet mouth port of the pressure reducing valve, when the clutch coupling The pressing force is gradually increased from a low pressure equivalent to the clutch piston return force .
[0008]
DESCRIPTION OF THE PREFERRED EMBODIMENTS
An embodiment of the present invention will be described below with reference to a clutch hydraulic control circuit shown in FIG. 1 and a cross-sectional view of a pressure reducing valve shown in FIG. The detailed description of the same parts as those of the conventional clutch hydraulic control circuit is omitted.
[0009]
In FIG. 1, pressure oil of a hydraulic clutch 9 is supplied from a hydraulic pump 30 via a clutch engagement / disconnection valve 5. The primary hydraulic circuit 2 branched from the inlet of the clutch engagement / disconnection valve 5 is provided with a clutch hydraulic adjustment valve 3 for adjusting the supply oil pressure to the hydraulic clutch 9. When the clutch engagement / disconnection valve 5 is turned off, the hydraulic oil supply circuit 6 is shut off, the pressure of the primary hydraulic circuit 2 is adjusted to a neutral oil pressure by the clutch oil pressure adjusting valve 3, and the entire pressure oil discharged from the hydraulic pump 30 flows to the lubricating oil circuit 4. Although not shown, a lubricating oil pressure regulating valve is provided at the end of the lubricating oil circuit 4. When the clutch on / off valve 5 is turned on, the hydraulic oil of the primary hydraulic circuit 2 is supplied to the hydraulic oil supply circuit 6 and passes through the orifice 11 of the back pressure circuit 10 branched from the hydraulic oil supply circuit 6. The hydraulic pressure is supplied to the back pressure chamber 8 of the clutch hydraulic pressure adjusting valve 3, and the pressure of the hydraulic oil supply circuit 6 gradually increases from the neutral hydraulic pressure to reach the rated clutch operating hydraulic pressure. Note that the configurations of these control circuits are the same as in the related art.
[0010]
A pressure reducing valve 7 having a back pressure mechanism is provided in the hydraulic oil supply circuit 6 on the outlet side of the clutch engagement / disengagement valve 5, and the pressure oil passing through the pressure reducing valve 7 is supplied to a piston chamber 15 of the hydraulic clutch 9. The back pressure circuit 10 branched from the inlet side of the pressure reducing valve 7 is provided with a volume valve 12 via a small diameter orifice 11. The back pressure circuit 10 is branched into a plurality of parts downstream of the orifice 11. The back pressure chamber 8 of the clutch hydraulic pressure regulating valve 3, the back pressure chamber 58 of the pressure reducing valve 7, and the pressure oil of the back pressure circuit 10 are supplied to the tank T. It is connected to a drain on-off valve 13 that discharges or shuts off. A pilot circuit 17 acting in a direction to close the drain port 14 by the inflow of the pilot flow is branched from the orifice inlet side of the back pressure circuit 10 and connected to one of the drain opening / closing valves 13, and the other is connected to the drain port 14. Is provided in the communication direction.
[0011]
FIG. 2 is a cross-sectional view showing a specific structure of the pressure reducing valve 7 including the back pressure mechanism used in the clutch hydraulic pressure control circuit. The cover 57 of the pressure reducing valve 7 is provided with a back pressure port 59 through which pressure oil that has passed through the orifice 11 of the back pressure circuit 10 flows. an inlet port 6 a pressurized oil passing through the Hamadatsuben 5 flows, and the outlet port 6 b which is connected to the hydraulic clutch 9, a drain port 52 to release the pressure oil outlet port 6 b and the pilot chamber 54 to the tank When the spool 51 is provided for changing the opening degree of the axially slidable input Ropoto 6 a and the outlet port 6 b. Further, a piston 56 is provided at one end of the spool 51 via the spring 18, and a spring receiver 60 and a spring 62 supported by a cover 64 are provided at the other end.
[0012]
Around the spring 62, the pilot chamber 54 is formed by the cover 63, the body 55 has pilot holes 50 is provided which communicates the outlet port 6 b and the pilot chamber 54, the outlet port 6 b The pressure oil is formed to be guided to the pilot chamber 54 through orifices 53 a and 53 b fixed to the oil passages of the covers 63 and 64. The pressure oil in the pilot chamber 54 is formed so as to pass through another orifice 53 c provided in the cover 63 and communicate with the drain port 52 of the main body 55. Since the diameter of the orifice 53 a, 53 b is set to be larger than the diameter of the orifice 53 c, in the hydraulic clutch coupling, i.e., when they are turned on clutch Hamadatsuben 5, the vacuum in the pilot chamber 54 pressure oil from the outlet port 6 b of the valve is filled.
[0013]
In the clutch hydraulic pressure control circuit thus configured, when the clutch on / off valve 5 is turned on, the neutral hydraulic pressure (set to about 6 kg / cm 2 in this embodiment) regulated by the clutch hydraulic pressure regulating valve 3 is reduced by the pressure reducing valve. The neutral oil pressure is reduced by the pressure reducing valve 7 and supplied to the piston chamber 15 of the hydraulic clutch 9. On the other hand, the pressure oil of the back pressure circuit 10 branched from the inlet side circuit of the pressure reducing valve 7 is supplied to the volume valve 12 and the back pressure chamber 58 of the pressure reducing valve, but when the clutch on / off valve 5 is turned on, the orifice 11 , The pilot circuit 17 is filled with pressure oil before the back pressure circuit on the downstream side of the orifice, the drain port 14 of the drain on-off valve 13 is quickly closed, and the pressure oil passing through the small-diameter orifice 11 is closed. Gradually flows into the back pressure chamber 58 of the volume valve 12 and the pressure reducing valve 7.
[0014]
Immediately after turning on the clutch Hamadatsuben 5, pressurized oil on the outlet side circuit of the pressure reducing valve 7 is not filled, the pressure oil is supplied to the pilot hole 50 which communicates with the outlet port 6 b of the pressure reducing valve 7 Since the pilot chamber 54 of the pressure reducing valve is empty, no pilot pressure acts on the left end face of the spool 51 in FIG. The spring 62 arranged on the left side of the spool 51, the elastic force than the spring 18 disposed on the right side is set weakly, to move the spool 51 leftward in the figure, the inlet port 6 a pressure reducing valve It communicates with the outlet port 6b in the initial state. From this state, when the pressure oil is further supplied and the outlet side circuit of the pressure reducing valve is filled with the pressure oil, pilot pressure is applied to the left end surface of the spool 51 of the pressure reducing valve, and the reaction force of the spring 18 is resisted. the spool 51, pushed in the direction of closing the inlet port 6 a, the opening area to decrease with increase of the pilot pressure, the pressure of the pressure reducing valve outlet rises little by little.
[0015]
On the right end surface of the spool 51, in addition to the elastic force of the spring 18, the pressure oil of the back pressure circuit 10 that has passed through the back pressure port 59 acts via the piston 56 in a direction to increase the elastic force of the spring 18. On the other hand, since the elastic force of the spring in the volume valve 12 provided in the back pressure circuit 10 is weaker than the spring of the clutch hydraulic pressure adjusting valve 3, the pressure oil is supplied to the piston chamber 15 of the hydraulic clutch 9. At the same time, the pressure oil that has passed through the orifice 11 of the back pressure circuit 10 is gradually supplied to the oil chamber of the volume valve 12. When pressure oil is supplied to the oil chamber, the volume valve 12 gradually increases the pressure of the oil chamber and the back pressure circuit 10 connected thereto while compressing the spring via the piston. Therefore, when the piston chamber 15 is filled and the clutch piston 16 starts to press the clutch plate, the pressure of the back pressure circuit 10 also increases, and the load applied to the spring 18 of the pressure reducing valve 7 gradually increases. Therefore, the pressure on the outlet side of the pressure reducing valve gradually rises to reach the neutral oil pressure while balancing with the pilot pressure.
[0016]
When the pressure of the back pressure circuit 10 reaches a predetermined oil pressure, the pressure oil also flows into the back pressure chamber 8 of the clutch oil pressure adjusting valve 3, the spring is compressed via the piston, and the pressure on the inlet side of the pressure reducing valve 7 gradually decreases. To rise. Accordingly, the pressure on the outlet side of the pressure reducing valve gradually increases as described above, and reaches the rated clutch operating oil pressure. Thereby, the pressure of the clutch hydraulic oil supply circuit 6 smoothly rises from the hydraulic pressure corresponding to the return force of the clutch piston 16 to the rated hydraulic pressure.
[0017]
Further, when the clutch disengagement valve 5 is turned off, the pressure oil in the inlet side circuit of the pressure reducing valve 7 and the back pressure circuit 10 on the orifice inlet side is discharged to the tank immediately after passing through the clutch disengagement valve 5. The pressure in the pilot circuit 17 instantaneously decreases, and the drain port of the drain on-off valve is connected, so that the pressure oil in the back pressure circuit 10 downstream of the orifice is quickly discharged to the tank T. That is, since the pressure oil acting on the back pressure chamber 58 of the pressure oil and the pressure reducing valve of the pressure reducing valve inlet port 6 a is discharged, the pressure oil in the pilot chamber 54 of the pressure reducing valve 7 also discharged. Thus, the inlet port 6 a and the outlet port 6 b of the pressure reducing valve 7 is returned to the initial state of communication, the pressure oil of the piston chamber 15 of the hydraulic clutch, rapidly passes through the pressure reducing valve 7 and the clutch Hamadatsuben 5 Is discharged into the tank.
[0018]
The drain opening / closing valve of the above-described embodiment is formed so that the pressure oil on the orifice inlet side is used as a pilot flow, and the drain port is communicated by the disappearance of the pilot flow. The electromagnetic switching valve may be opened and closed in conjunction with the on / off signal of the valve release, and the same effect is obtained.
[0019]
FIG. 3 is a hydraulic characteristic diagram showing a process of increasing the clutch operating oil pressure obtained by the clutch hydraulic control circuit according to the embodiment of the present invention shown in FIG. When the clutch engagement / disengagement valve 5 is turned on, pressure oil is supplied to the piston chamber 15 of the hydraulic clutch 9, and after t 1 second elapses, the piston chamber 15 is filled, and the clutch operating oil pressure becomes the oil pressure P corresponding to the return force of the clutch piston 16. 1 (about 1 kg / cm 2 in this example). Thereafter, the pressure of the back pressure chamber connected to the back pressure chamber of the pressure reducing valve and the accumulator rises to gradually increase the pressure on the outlet side of the pressure reducing valve. After t 2 seconds, the neutral oil pressure P 2 (about 6 kg / cm in this example) 2 ) is reached.
[0020]
Furthermore, the clutch oil pressure back pressure chamber side piston of the control valve compresses the spring, reaches (24 kg / cm 2 in this example) rated hydraulic after a lapse t 3 seconds clutch hydraulic pressure is gradually increased. Incidentally, immediately after turning on the clutch fitted Datsuben 5 entrance port of the pressure reducing valve is open, the outlet pressure of the clutch fitting Datsuben 5 are the same as conventional, fill time t 1 of the piston chamber 15 is the same as conventional In addition, since the clutch completes the connection before the hydraulic pressure rises to the rated hydraulic pressure, the startup time of the driven machine is not extended.
[0021]
As is clear from the above embodiment, a pressure reducing valve with a back pressure mechanism and a volume valve are provided on the outlet side of the clutch engagement / disengagement valve to control the clutch oil pressure adjusting valve to a neutral oil pressure or less. It became possible to raise the pressure slowly and smoothly from a considerable oil pressure.
[0022]
【The invention's effect】
According to the present invention, since the clutch operating oil pressure between the low pressure corresponding to the clutch piston return force and the neutral oil pressure can be gradually increased, the load torque rapidly increases as the rotational speed increases, as in a fire pump. When driving the machine, even if the hydraulic clutch is engaged at the rated engine speed, no shock is generated at the time of engagement and no sudden load is applied to the driving engine , and at the same time, the startup time of the driven machine is extended. Not even. Further, when the clutch engagement / disengagement valve is shut off, the pressure oil of the back pressure circuit is quickly discharged, so that the clutch is smoothly connected even if the engagement / disengagement of the clutch is repeated instantaneously at the time of startup. Therefore, the service life of the elastic coupling arranged in the power transmission path can be extended, the follow-up of the engine governor and the supercharger becomes easy, and the reduction of the engine rotation speed at the time of clutch engagement is eliminated, thereby reducing the amount of graphite emission. This has the effect of being reduced.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a clutch hydraulic pressure control circuit showing an embodiment of the present invention.
FIG. 2 is a sectional view of a pressure reducing valve used in the clutch hydraulic pressure control circuit of the present invention.
FIG. 3 is an operating hydraulic characteristic diagram of a hydraulic clutch including the clutch hydraulic control circuit of FIG. 1;
FIG. 4 is an explanatory diagram of a conventional clutch oil pressure control circuit.
5 is an operating hydraulic characteristic diagram of a hydraulic clutch provided with the clutch hydraulic control circuit of FIG.
[Explanation of symbols]
3, 33 Clutch oil pressure adjusting valve 5, 35 Clutch disengagement valve 6, 36 Hydraulic oil supply circuit 6 a Inlet port 6 b Outlet port 7 Pressure reducing valve 9, 38 Hydraulic clutch 10, 37 Back pressure circuit 11, 40 Orifice 12 Volume valve 13 Drain opening / closing valve 14 Drain port 17 Pilot circuit 50 Pilot hole 51 Spool 54 Pilot chamber 56 Piston 58 Back pressure chamber 59 of pressure reducing valve Back pressure ports 18, 62 Spring

Claims (1)

クラッチ開放時には低圧に、クラッチ結合時には高圧に調圧するクラッチ油圧調整弁で調整された油圧ポンプからの圧油を、クラッチ嵌脱弁を介して油圧クラッチに供給すると共に、前記クラッチ油圧調整弁の排出油を潤滑油として使用するクラッチ油圧制御回路において、クラッチ嵌脱弁出口側の作動油供給回路に、入口ポートと出口ポートの開口度合いを変化させるスプールの一方端にオリフィスを通過した出口ポートの圧油を作用させる油室を、他方端にばねを介して入口ポートの圧油を作用させる背圧室を備えた減圧弁を設置し、該減圧弁の入口側から分岐した背圧回路に小径のオリフィスを設け、該オリフィス下流側の背圧回路に、前記クラッチ嵌脱弁の開閉と連動して背圧回路とドレンポートとの接続を開閉するドレン開閉弁とボリューム弁とを設け、該ボリューム弁のピストン戻しばね力を、ボリューム弁に圧油が充満したのち前記クラッチ油圧調整弁の背圧側ピストンが移動開始するよう設定すると共に、このオリフィス下流側の背圧回路を分岐して、減圧弁の口ポートを開く方向に付勢するばねに弾性力を付加する減圧弁背圧室に接続し、クラッチ結合時の押圧力をクラッチピストン戻し力相当の低圧からゆるやかに上昇させるようにしたことを特徴とするクラッチ油圧制御回路。Pressure oil from a hydraulic pump adjusted by a clutch oil pressure adjustment valve that adjusts to a low pressure when the clutch is released and a high pressure when the clutch is engaged is supplied to the hydraulic clutch through a clutch engagement / disengagement valve, and the clutch oil pressure adjustment valve is discharged. In a clutch oil pressure control circuit that uses oil as lubricating oil, the hydraulic oil supply circuit on the outlet side of the clutch engagement / disengagement valve changes the degree of opening between the inlet port and the outlet port. A pressure reducing valve provided with a back pressure chamber for applying pressure oil at an inlet port via a spring at the other end of the oil chamber for applying oil is installed , and a small-diameter back pressure circuit branched from the inlet side of the pressure reducing valve is provided. an orifice is provided, the back pressure circuit of the downstream side of an orifice, a drain-off valve for opening and closing the connection between the back pressure circuit and the drain port in conjunction with the opening and closing of the clutch fitting removal valve It provided the volume valve, a piston return spring force of the volume valve, with back pressure side piston of the clutch hydraulic control valve after the pressure oil is filled to a volume valve is set to start moving, the orifice downstream back pressure branched circuit, connected to the pressure reducing valve back pressure chamber for adding an elastic force to the spring which biases the direction of opening the inlet mouth port of the pressure reducing valve, the pressing force when the clutch coupling from the low pressure of the clutch piston return force corresponding A clutch hydraulic pressure control circuit characterized by slowly rising.
JP14498498A 1998-04-17 1998-04-17 Clutch hydraulic control circuit Expired - Lifetime JP3584734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14498498A JP3584734B2 (en) 1998-04-17 1998-04-17 Clutch hydraulic control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14498498A JP3584734B2 (en) 1998-04-17 1998-04-17 Clutch hydraulic control circuit

Publications (2)

Publication Number Publication Date
JPH11303897A JPH11303897A (en) 1999-11-02
JP3584734B2 true JP3584734B2 (en) 2004-11-04

Family

ID=15374782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14498498A Expired - Lifetime JP3584734B2 (en) 1998-04-17 1998-04-17 Clutch hydraulic control circuit

Country Status (1)

Country Link
JP (1) JP3584734B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6522991B2 (en) * 2015-03-02 2019-05-29 株式会社日立ニコトランスミッション Clutch hydraulic control circuit
CN109058319B (en) * 2018-09-14 2023-12-22 中国船舶重工集团公司第七0三研究所 Ladder oil pressure adjusting device

Also Published As

Publication number Publication date
JPH11303897A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
US4023444A (en) Pressure control circuit for use in automatic transmission of vehicle
JP3820229B2 (en) Electrohydraulic control device for transmission
US8146723B2 (en) Hydraulic control apparatus for marine reversing gear assembly for watercraft
US5937729A (en) Hydraulic emergency control for transmission ratio-dependent variation of the hydraulic oil pressure in the hydraulic conical pulley axial adjustment mechanisms of a continuously variable transmission
US4618036A (en) Hydraulic control system for lock-up clutch of torque converter
EP0502263B1 (en) Continuously variable transmission with an adjustable pump
JP3662968B2 (en) Lubricating oil passage configuration of transmission
JP3584734B2 (en) Clutch hydraulic control circuit
US6682451B1 (en) Hydraulic control for a continuously variable transmission
US4571940A (en) Control device for a hydrostatic gear driven by a drive engine
JPWO2013183162A1 (en) Hydraulic control device
JP6618347B2 (en) Engine-driven compressor start control method and engine-driven compressor
US5117953A (en) Hydraulically controllable transmission
JPS6142117B2 (en)
JPS583936Y2 (en) Actuating devices such as hydraulic clutches
JPS58152961A (en) Oil pressure control unit of automatic speed change gear for car
JP3577407B2 (en) Hydraulic clutch control circuit
JPH03107620A (en) Hydraulic clutch controller
JP2018119618A (en) Speed reduction reverse machine
KR100260169B1 (en) Damper clutch control valve
KR100504419B1 (en) Emergency hydraulic control for adjusting a constant clamping force ratio with regard to a continuously variable tranmission
JPH0481048B2 (en)
JPS5840352Y2 (en) Hydraulic clutch tightening pressure adjustment device
JPS591606B2 (en) Hydrostatic power transmission equipment for hydraulic vehicles, etc.
US4384827A (en) Pneumatic controlling means for, and in combination with, a power transmission, and method of retrofitting transmissions therewith

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term