JP3583266B2 - Accumulator for cooling and heating cycle - Google Patents

Accumulator for cooling and heating cycle Download PDF

Info

Publication number
JP3583266B2
JP3583266B2 JP26997997A JP26997997A JP3583266B2 JP 3583266 B2 JP3583266 B2 JP 3583266B2 JP 26997997 A JP26997997 A JP 26997997A JP 26997997 A JP26997997 A JP 26997997A JP 3583266 B2 JP3583266 B2 JP 3583266B2
Authority
JP
Japan
Prior art keywords
accumulator
refrigerant
compressors
liquid
inflow pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26997997A
Other languages
Japanese (ja)
Other versions
JPH11108506A (en
Inventor
明弘 藤城
洋一 久森
秀一 谷
智彦 河西
圭介 外囿
嘉夫 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP26997997A priority Critical patent/JP3583266B2/en
Publication of JPH11108506A publication Critical patent/JPH11108506A/en
Application granted granted Critical
Publication of JP3583266B2 publication Critical patent/JP3583266B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Landscapes

  • Air-Conditioning For Vehicles (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば複数の圧縮機を備えたビル用パッケージ・エアコン(PAC)の室外機などの冷熱サイクル用のアキュムレータに関するものである。
【0002】
【従来の技術】
複数の圧縮機を備えた冷熱サイクル用で用いられるアキュムレータについて説明する。図は例えば実公昭53−39896号公報に示された複数の圧縮機を備えたビル用パッケージエアコン(PAC)の室外機の冷媒回路を示すブロック図であり、圧縮機を2台使用した場合の例示図である。図において、1aは第1の圧縮機、1bは第2の圧縮機、2は油分離器、3は凝縮器、4は絞り装置、5は蒸発器、6はアキュムレータ、7は蒸発器5よりアキュムレータ6内へ流入する冷媒流入管、8a、8bは圧縮機1a、1bとアキュムレータ6内とを接続するU字形状の冷媒流出管、9a、9bはアキュムレータ6内に溜まった油及び液冷媒を圧縮機1a、1bに戻す油戻し穴、10は油分離器2とアキュムレータ6を接続する油流入管、11は前記油流入管10の配管途中に設けられた返油装置である。
【0003】
次に冷媒と油の流れについて説明する。圧縮機1a、1bより吐出された高温高圧のガス冷媒は油分離器2に流入し、ここでガス冷媒と油を分離し、ガス冷媒は凝縮器3に流入する。ここでガス冷媒は空気や水等と熱交換して凝縮、液化し、絞り装置4にて、低圧の気液二相状態となり蒸発器5に流入する。ここで冷媒は空気や水等と熱交換して、ガスまたは乾き度の大きな気液二相状態になってアキュムレータ6へ流入し、気液分離されてアキュムレータ6内に溜まる。ガス冷媒の大半はU字形状の冷媒流出管8a、8bを経て圧縮機1へ戻る。油分離器2で分離された油は油流入管10と返油装置11を経て、アキュムレータ6内に流入し、油戻し穴9a、9bを経て圧縮機1へ戻り、油分離器2で分離できなかった油は、液冷媒と共に凝縮器3、絞り装置4、蒸発器5と流れ、アキュムレータ6に、液冷媒とともに油が混在した状態で溜まる。
【0004】
アキュムレータ6内に溜まった油及び液冷媒14は、冷媒流出管8a、8bを流れるガス冷媒の摩擦損失による差圧及びアキュムレータ6内の液冷媒の液面高さと油戻し穴9の間に生じる液ヘッドを合計した圧力差が油戻し穴9a、9bの前後に発生することによって冷媒流出管8a、8bへと流れる。
【0005】
また、圧縮機1a、1bが長時間停止して圧縮機1a、1bのシェル内に液冷媒が(低温で)停滞した状態から起動する場合において、圧縮機1a、1bのシェル内の液冷媒と油が大量に吐出されるが、油分離器2で液冷媒及び油は捕獲され、油が大量に凝縮器3などへ流出することは抑制される。
【0006】
さらに、冷凍サイクル装置の熱負荷が減少した時、熱負荷の減少に対応させて第1の圧縮機1a、第2の圧縮機2bを漸次停止させる。冷媒流出管8a、8bを複数の圧縮機1a、1bに対しそれぞれ独立して設けることによって、圧縮機1a、1bの運転台数が減じられた場合でも冷媒流出管8a、8b内を流れるガス冷媒の流速を一定に保ち、圧縮機1a、1bへの油戻しを偏りなく、適正に行うことができる。
【0007】
次に従来のアキュムレータの構造を図に示す。アキュムレータ6は圧力容器であり、この例ではアキュムレータ本体はプレス加工などにより深絞り加工が施されたアキュムレータシェル12、13の2ピース構造になっており、それぞれMIG溶接などで外周側から接合され、気密が保たれている。7はガスまたは乾き度の大きな気相二相状態の冷媒が流れ込む冷媒流入管、8a、8bはU字形状の冷媒流出管であり、9a、9bはU字形状の冷媒流出管8a、8bの途中に設けられた油戻し穴、14はアキュムレータ6容器に溜められた液冷媒である。
【0008】
ここで、アキュムレータ内の冷媒と潤滑油の動作を説明する。流入管7よりガスまたは乾き度の大きな気液二相状態の冷媒と潤滑油が流れ込む。この冷媒はアキュムレータのシェルの上部ピース12に当たり、気相冷媒はアキュムレータの上部に、潤滑油と液冷媒はアキュムレータの容器の底部に溜まる。そして気相冷媒はU字形状の冷媒流出管8a、8bより吸い込まれ各圧縮機1a、1bに流出する。また、前述のように潤滑油の濃度が高い液冷媒はU字形状の冷媒流出管8a、8bの屈曲部に設けられた油戻し穴9a、9bより少量吸い込まれ、冷媒流出管8a、8b内部を流れる気相冷媒と共に各圧縮機1a、1bに流出される。
【0009】
【発明が解決しようとする課題】
従来の冷凍サイクル用アキュムレータは以上のように構成されるので、例えば3台以上の圧縮機を有する冷凍サイクル機器においては、各圧縮機に対してU字形状の冷媒流出管を各々個別に設ける必要がある。このためアキュムレータ6全体が大形となる問題があった。
【0010】
また冷媒流出管8a、8bがU字形状であるため配管長が長くなり、冷媒流出管を気相冷媒が通過する際の圧力損失が大きくなるため、冷凍能力を十分に発揮することが出来ず、性能の低下を招いていた。
なお、暖房用として使用する場合にも同様の問題があった。
【0011】
本発明は上記のような問題点を解決するためになされたもので、小型でしかも圧力損失が小さく、冷凍または暖房能力が十分に発揮できる冷熱サイクル用のアキュムレータを得ることを目的とする。
【0012】
【課題を解決するための手段】
本発明の第1の構成による冷熱サイクル用アキュムレータは、複数の圧縮機を備えた冷熱サイクルに用いられかつ複数の圧縮機に対して1つだけ設けられるアキュムレータであって、上下にシェルを有する垂直円筒型のアキュムレータと、前記複数の圧縮機毎に設けられ、前記アキュムレータから前記各圧縮機へ冷媒を送出する複数の冷媒流出管と、前記各圧縮機から前記アキュムレータへ冷媒を流入させる少なくとも1つの冷媒流入管とを備え、前記複数の冷媒流出管は、前記アキュムレータの上部シェルに下向きに接続され、前記少なくとも1つの冷媒流入管は、前記アキュムレータの下部シェルに上向きに接続され、アキュムレータ内部に突出してアキュムレータ下部に液冷媒収容スペースを形成し、前記複数の冷媒流出管と少なくとも1つの冷媒流入管とは、鉛直方向に重なり合わないように配置されたものである。
【0013】
本発明の第2の構成による冷熱サイクル用アキュムレータは、前記第1の構成において、複数の冷媒流出管は、その開口の先端をアキュムレータ内部にそれぞれ突出させたものである。
【0014】
本発明の第3の構成による冷熱サイクル用アキュムレータは、前記第1または第2の構成において、複数の冷媒流出管と少なくとも1つの冷媒流入管との間の見通しを遮る邪魔板を設けたものである。
【0015】
本発明の第4の構成による冷熱サイクル用アキュムレータは、複数の圧縮機を備えた冷熱サイクルに用いられかつ複数の圧縮機に対して1つだけ設けられるアキュムレータであって、上下にシェルを有する垂直円筒型のアキュムレータと、前記複数の圧縮機毎に設けられ、前記アキュムレータから前記各圧縮機へ冷媒を送出する複数の冷媒流出管と、前記各圧縮機から前記アキュムレータへ冷媒を流入させる少なくとも1つの冷媒流入管とを備え、前記複数の冷媒流出管は、前記アキュムレータ胴部に側方から接続され、その開口の先端がアキュムレータ内部に突出し、前記少なくとも1つの冷媒流入管は、前記アキュムレータの下部シェルに上向きに接続され、その開口の先端をアキュムレータ内部に突出させてアキュムレータ下部に液冷媒収容スペースを形成したものである。
【0016】
本発明の第5の構成による冷熱サイクル用アキュムレータは、前記第4の構成において、アキュムレータ胴部の内側に、前記複数の冷媒流出管の開口部以下であって前記少なくとも1つの冷媒流入管の開口部以下の位置に、前記アキュムレータ内部空間を上下に分割する仕切板を設け、該仕切板と前記少なくとも1つの冷媒流入管との間に液冷媒を流通させる連通穴を設けたものである。
【0017】
本発明の第6の構成による冷熱サイクル用アキュムレータは、前記第4の構成において、アキュムレータ内に突出した少なくとも1つの冷媒流入管開口近傍にアキュムレータ内空間を上下に分割する仕切板を設け、該仕切板と前記アキュムレータ胴部の内周部との間に液冷媒を流通させる連通穴を設けたものである。
【0018】
【発明の実施の形態】
実施の形態1.
図1は本発明の実施の形態1による冷凍サイクル用アキュムレータの構成を示す断面側面図である。図において、15は縦置きの円筒形状に形成され、上下にシェルを有する圧力容器であるアキュムレータ本体、16a、16bは複数の圧縮機の各々に接続された直管状の冷媒流出管である。7は冷媒流入管である。14はアキュムレータ容器下部に溜められた液冷媒である。17a、17bはアキュムレータ容器15下部に設けられ、直管状の冷媒流出管16a、16bに接続された油戻し管である。本実施の形態では、冷媒流入管7はアキュムレータ本体容器15の下部シェルに上向きに接続され、アキュムレータ本体容器15内部に突出してアキュムレータ本体容器15下部に液冷媒収容スペースを形成している。冷媒流出管16a、16bはアキュムレータ本体容器15の上部シェルに下向きに接続され、アキュムレータ容器15の上部シェル中央天井部からガス冷媒がなだらかに流れる位置に設けられている。
また冷媒流出管16a、16bの開口部は、アキュムレータ本体15下部に設けられた冷媒流入管7の開口部と鉛直方向に互いに重ならないように設置している。
【0019】
次に本実施の形態によるアキュムレータを使用した場合の冷媒と油の流れについて説明する。ただし、冷媒回路のうちアキュムレータ以外は図で示した従来の冷媒回路と同じものを用いることとし、説明を省略する。
蒸発器5から流出したガスまたは乾き度の大きな気液二相状態の冷媒は、冷媒流入管7を経てアキュムレータ本体容器15内に流入し、アキュムレータ容器15上部に衝突する。これにより冷媒の速度を減速させることができ、気液分離が効率良く行われる。気液分離された液冷媒14はアキュムレータ容器15の壁面を伝って滴下され、アキュムレータ容器15の下部に溜まる。このようにアキュムレータ容器15で効率良く気液分離され、気液分離された液冷媒14はアキュムレータ容器15下部に溜まるので、冷媒流出管16a、16bから流出されるのは殆どガス冷媒だけである。よって圧縮機1a、1bに直接液冷媒14が戻って液圧縮を起こし、圧縮機1a、1bを破損するという不具合を防止することができる。
さらに気液分離され、アキュムレータ本体容器15下部に溜まった液冷媒14は、冷媒流出管16a、16bの配管内部を流れるガス冷媒の摩擦損失により生じる差圧により、アキュムレータ容器15下部に設けた油戻し管17a、17bへ流れ、圧縮機1a、1bに返油される。
さらに従来のアキュムレータ6の冷媒流出管8a、8bのように、長い配管内をガス冷媒と液冷媒・潤滑油の混合液が通過しないため、アキュムレータ部での圧力損失を小さくすることができる。
以上のように、本実施の形態による冷凍サイクル用アキュムレータは、本来の返油機能を確保できるとともに、アキュムレータ部での圧力損失が小さいことにより冷凍能力を十分に発揮でき、小型化できるものである。
【0020】
また本実施の形態では、冷媒流入管7をアキュムレータ容器15下部に突出して設けることにより、配管のろう付時に発生する酸化スケールや配管接続時に侵入する砂、ゴミ等の異物をアキュムレータ容器15下部に溜めることができる。これにより、酸化スケールや砂、ゴミ等の異物が冷媒流出管16a、16bを経て圧縮機1a、1bに戻って、圧縮機1a、1bを破損するのを防止することができる。
【0021】
実施の形態2.
図2は本発明の実施の形態2による冷凍サイクル用アキュムレータの構成を示す断面側面図である。本実施の形態では、直管状の冷媒流出管16a、16bの開口の先端をアキュムレータ容器15内部に突出させたものである。
このように、冷媒流出管16a、16bの開口の先端をアキュムレータ容器15内部に突出して設けることにより、アキュムレータ容器15上部で衝突し、気液分離された液冷媒14が冷媒流出管16a、16bの背面から回り込んで流入するのをなくすことができる。これにより圧縮機1a、1bに直接液冷媒14が戻って液圧縮を起こし、圧縮機1a、1bを破損するという不具合を防止することができる。
【0022】
実施の形態3.
図3(a)は本発明の実施の形態3による冷凍サイクル用アキュムレータの構成を示す断面側面図、(b)は(a)の水平断面図である。図において、18は冷媒流出管16a、16bの開口部を遮るようにアキュムレータ容器15の内面に形成された邪魔板である。なお、図では明確のため邪魔板18にハッチングを施して示している。本実施の形態では、邪魔板18はアキュムレータ容器15の内面に溶接等で接合され、冷媒流入管7と冷媒流出管16a、16bのそれぞれの開口の見通しを遮っている。なお、邪魔板18は板金、プレス加工等により製作されている。
【0023】
次に本実施の形態によるアキュムレータを使用した場合の作用について説明する。冷媒流入管7より吐出される気液二相状態の冷媒は、アキュムレータ容器15上部に衝突し、急激に流速が低下することによって気液分離される。しかし冷媒流入管7より吐出される気液二相状態の冷媒が、ほとんど液冷媒である場合、冷媒流出管16a、16bに液冷媒が直接流入する場合がある。
【0024】
本実施の形態では、邪魔板18を冷媒流入管7と冷媒流出管16a、16bのそれぞれの開口の見通しを遮るように設けたことにより、冷媒流入管7より流入した液冷媒が直接、冷媒流出管16a、16bに流入しなくなるので、液バックによる圧縮機の破損を防止することができる。
【0025】
また、邪魔板18により冷媒流入管7と冷媒流出管16a、16bの鉛直方向の重なりが許容できるようになるので、冷媒流出管16a、16bの取付間隔をさらに小さくすることができる。従って、アキュムレータの外径を小さくすることができ、アキュムレータ容器15本体を小型化することができる。
【0026】
実施の形態4.
図4は本発明の実施の形態4による冷凍サイクル用アキュムレータの構成を示す断面側面図である。本実施の形態では、冷媒流出管16a、16bはアキュムレータ容器15胴部の側方から接続され、その開口の先端がアキュムレータ容器15内部に突出して設けられている。冷媒流入管7は、アキュムレータ容器15の下部シェルに上向きに接続され、その開口の先端をアキュムレータ15内部に突出させてアキュムレータ15下部に液冷媒収容スペースを形成している。
このように、冷媒流出管16a、16bをアキュムレータ容器15胴部に側方から内部に突出して設けることにより、アキュムレータ容器15上部で衝突し、気液分離された液冷媒14が冷媒流出管16a、16bの背面から回り込んで流入するのをなくすことができる。これにより圧縮機1a、1bに直接液冷媒14が戻って液圧縮を起こし、圧縮機1a、1bを破損するという不具合を防止することができる。また冷媒流出管16a、16bを容器15胴部に設けることにより、冷媒流出管16a、16bの取付間隔を小さくすることができるので、アキュムレータ15をさらに小型にすることができる。
【0027】
実施の形態5.
図5(a)は本発明の実施の形態5による冷凍サイクル用アキュムレータの構成を示す断面側面図、(b)は(a)の水平断面図である。図において、19はアキュムレータ容器15の内部空間を上下に分割するためアキュムレータ容器15胴部の内側に形成された仕切板であり、冷媒流出管16a、16bの開口部以下であって冷媒流入管7の開口部以下の位置に設けられている。20は仕切板19により仕切られたアキュムレータ容器15内の上の部屋、21は仕切板19により仕切られたアキュムレータ容器15内の下の部屋、22は仕切板19と冷媒流入管7との間に冷媒流入管7を囲むように設けられ、上の部屋20と下の部屋21を連通する連通穴であり、上の部屋20で気液分離された液冷媒がこの連通穴22を通って下の部屋21に溜まる。なお、図では明確のため仕切板19にハッチングを施して示している。
容器15内に、容器15を垂直方向に分割する仕切板19を設けて上の部屋20と下の部屋21に分割し、上の部屋20には冷媒流出管16a、16bを、下の部屋21には冷媒流入管7及び油戻し管17a、17bを備えている。本実施の形態では、仕切板19はアキュムレータ容器15の内面に溶接等で接合されている。なお、仕切板19は板金、プレス加工等により製作されている。
【0028】
次に、作用について説明する。上記各実施の形態では、アキュムレータ容器15内に溜まった液冷媒14が冷媒流入管7より流入した冷媒の流れにより激しく攪拌され、吹き上がった飛沫が冷媒流出管16a、16bに侵入するおそれがある。本実施の形態では、連通穴22を有する仕切板19によりアキュムレータ容器15内部を、冷媒流出管16a、16bを備えガス冷媒が溜まる上の部屋20と、冷媒流入管7及び油戻し管17a、17bを備え、液冷媒14が溜まる下の部屋21に分割し、冷媒流入管7の開口を上の部屋20の内部に設けたので、流入した冷媒によって下の部屋21に溜まった液冷媒14が激しく攪拌されることがなくなり、上の部屋20へ液冷媒が侵入するのをなくすことができる。これにより直接液冷媒が圧縮機(図示せず)に戻って圧縮機(図示せず)を破損するのを防止することができる。
また、本実施の形態はアキュムレータ15上部胴と下部胴と仕切板19とを同一位置で接合することができるので、製造工程を簡略化できる。
【0029】
実施の形態6.
図6(a)は本発明の実施の形態6による冷凍サイクル用アキュムレータの構成を示す断面側面図、(b)は(a)の水平断面図である。図において、23は冷媒流入管7より流出した気液二相状態の冷媒が、アキュムレータ容器15の上部で衝突して気液分離され、アキュムレータ容器15の内面を伝って流れ落ちる滴状の液冷媒である。本実施の形態では、上の部屋20と下の部屋21を上下に分割する仕切板19を冷媒流入管7の開口近傍に設け、液冷媒の連通穴22を、アキュムレータ容器15胴部の内周部と仕切板19外側端面の間に設けている。なお、図では明確のため仕切板19にハッチングを施して示している。
【0030】
次に、作用について説明する。本実施の形態の仕切板19は、上記実施の形態の仕切板19と同様の働きをし、アキュムレータ容器15下部の下の部屋21に溜まった液冷媒14の吹き上げ、及び液冷媒が液面より跳ね上がるのを防止することができる。
またアキュムレータ容器15上部で衝突し、気液分離された液冷媒23が、アキュムレータ容器15胴部の内面を伝って流れ落ちる。上記実施の形態では、容器内面を伝って流れ落ちる液冷媒23は仕切板19の上面を伝って流れ、連通穴22より下の部屋21に滴下され、下の部屋21に溜まる。しかし、蒸発器(図示せず)から流入する気液2相冷媒の流量が増加した場合、上の部屋20内で十分に気液2相状態の冷媒の速度を減速することができないことがある。その場合は仕切板19の上面を伝って流れる液冷媒23が吹き上げられ、冷媒流出管16a、16bに直接液冷媒が侵入し、さらに下の部屋21に液冷媒が溜まらないおそれがある。
本実施の形態では、仕切板19に設けた連通穴22を、アキュムレータ容器15胴部の内周部と仕切板19外側端面の間に設けたので、アキュムレータ容器15内面を伝って流れ落ちる液冷媒23が、上の部屋20で気液分離されたガス冷媒の流れの影響を受けず、アキュムレータ容器15内面をスムーズに伝って流れ、下の部屋21に溜まる。これにより液冷媒23が仕切板19の上面から吹き上がるの防止することができる。
【0031】
なお、上記各実施の形態では冷凍サイクルを例にあげて説明したが、本発明のアキュムレータは暖房用としても使用できる。
【0032】
【発明の効果】
本発明の第1の発明によれば、複数の圧縮機を備えた冷熱サイクルに用いられかつ複数の圧縮機に対して1つだけ設けられるアキュムレータであって、上下にシェルを有する垂直円筒型のアキュムレータと、前記複数の圧縮機毎に設けられ、前記アキュムレータから前記各圧縮機へ冷媒を送出する複数の冷媒流出管と、前記各圧縮機から前記アキュムレータへ冷媒を流入させる少なくとも1つの冷媒流入管とを備え、前記複数の冷媒流出管は、前記アキュムレータの上部シェルに下向きに接続され、前記少なくとも1つの冷媒流入管は、前記アキュムレータの下部シェルに上向きに接続され、アキュムレータ内部に突出してアキュムレータ下部に液冷媒収容スペースを形成し、前記複数の冷媒流出管と少なくとも1つの冷媒流入管とは、鉛直方向に重なり合わないように配置されたので、本来の返油機能を確保できるとともに、アキュムレータ部での圧力損失が小さいことにより冷凍または暖房能力を十分に発揮でき、小型化できるものである。また冷媒流入管をアキュムレータ下部に複数の冷媒流出管を上部に設けることにより、アキュムレータ下部に溜まった液冷媒が跳ね上がって冷媒流出管に直接侵入するのを低減でき、液バックによる圧縮機の破損を防止することができる。また配管接続時等に発生したり侵入したりする酸化スケール、砂、ゴミ等の異物を容器下部に溜めることができ、冷媒流出管を経て圧縮機に戻るのを防止できる。
【0033】
本発明の第2の構成によれば、前記第1の構成において、複数の冷媒流出管は、その開口の先端をアキュムレータ内部にそれぞれ突出させたので、アキュムレータ上部で衝突し、気液分離された液冷媒が冷媒流出管の背面から回り込んで流入するのをなくすことができ、液バックによる圧縮機の破損を防止することができる。
【0034】
本発明の第3の構成によれば、前記第1または第2の構成において、複数の冷媒流出管と少なくとも1つの冷媒流入管との間の見通しを遮る邪魔板を設けたので、冷媒流入管より流入した液冷媒が直接、冷媒流出管に流入しなくなるので、液バックによる圧縮機の破損を防止することができる。また、邪魔板により冷媒流入管と冷媒流出管の鉛直方向の重なりが許容できるようになるので冷媒流出管の取付間隔をさらに小さくすることができる。従って、アキュムレータの外径を小さくすることができ、アキュムレータ容器本体を小型化することができる。
【0035】
本発明の第4の構成によれば、複数の圧縮機を備えた冷熱サイクルに用いられかつ複数の圧縮機に対して1つだけ設けられるアキュムレータであって、上下にシェルを有する垂直円筒型のアキュムレータと、前記複数の圧縮機毎に設けられ、前記アキュムレータから前記各圧縮機へ冷媒を送出する複数の冷媒流出管と、前記各圧縮機から前記アキュムレータへ冷媒を流入させる少なくとも1つの冷媒流入管とを備え、前記複数の冷媒流出管は、前記アキュムレータ胴部に側方から接続され、その開口の先端がアキュムレータ内部に突出し、前記少なくとも1つの冷媒流入管は、前記アキュムレータの下部シェルに上向きに接続され、その開口の先端をアキュムレータ内部に突出させてアキュムレータ下部に液冷媒収容スペースを形成したので、アキュムレータ容器上部で衝突し、気液分離された液冷媒が冷媒流出管の背面から回り込んで流入するのをなくすことができ液バックによる圧縮機の破損を防止することができる。また冷媒流出管を容器胴部に設けることにより、冷媒流出管の取付間隔を小さくすることができるので、アキュムレータをさらに小型にすることができる。
【0036】
本発明の第5の構成によれば、前記第4の構成において、アキュムレータ胴部の内側に、前記複数の冷媒流出管の開口部以下であって前記少なくとも1つの冷媒流入管の開口部以下の位置に、前記アキュムレータ内部空間を上下に分割する仕切板を設け、該仕切板と前記少なくとも1つの冷媒流入管との間に液冷媒を流通させる連通穴を設けたので、冷媒流入管より流入した冷媒によって下の部屋に溜まった液冷媒が激しく攪拌されることがなくなり、下の部屋に溜まった液冷媒が上の部屋へ侵入して冷媒流出管へ流入するのをなくすことができる。これにより液バックによる圧縮機の破損を防止することができる。
【0037】
本発明の第6の構成によれば、前記第4の構成において、アキュムレータ内に突出した少なくとも1つの冷媒流入管開口近傍にアキュムレータ内空間を上下に分割する仕切板を設け、該仕切板と前記アキュムレータ胴部の内周部との間に液冷媒を流通させる連通穴を設けたので、上の部屋で気液分離されアキュムレータ容器内面を伝って流れ落ちる液冷媒が、上の部屋のガス冷媒の流れの影響を受けず、アキュムレータ容器内面をスムーズに伝って流れ、下の部屋に溜まる。これにより液冷媒が仕切板の上面から吹き上がるの防止することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1による冷凍サイクル用アキュムレータの構成を示す断面側面図である。
【図2】本発明の実施の形態2による冷凍サイクル用アキュムレータの構成を示す断面側面図である。
【図3】本発明の実施の形態3による冷凍サイクル用アキュムレータの構成を示し、(a)は断面側面図、(b)は水平断面図である。
【図4】本発明の実施の形態4による冷凍サイクル用アキュムレータの構成を示す断面側面図である。
【図5】本発明の実施の形態5による冷凍サイクル用アキュムレータの構成を示し、(a)は断面側面図、(b)は水平断面図である。
【図6】本発明の実施の形態6による冷凍サイクル用アキュムレータの構成を示し、(a)は断面側面図、(b)は水平断面図である。
【図】従来の複数の圧縮機を備えた冷凍サイクル用室外機の冷媒回路構成を示すブロック図である。
【図】従来の冷凍サイクル用アキュムレータの構成を示す断面側面図である。
【符号の説明】
1a、1b 圧縮機、 2 油分離機、 3 凝縮、 4 絞り装置、 5 蒸発器、 6 アキュムレータ、 7 冷媒流入管、 8a、8b U字形状の冷媒流出管、9a、9b 油戻し穴、 10 油流入管、 11 返油装置、 12 アキュムレータシェル上部ピース、 13 アキュムレータシェル下部ピース、 14 液冷媒、 15 アキュムレータ本体、 16a、16b 直管状の冷媒流出管、 17a、17b 油戻し管、 18 邪魔板、 19 仕切板、 20 上の部屋、 21 下の部屋、 22
連通穴、 23 滴状液冷媒。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an accumulator for a cooling and heating cycle such as an outdoor unit of a building package air conditioner (PAC) having a plurality of compressors.
[0002]
[Prior art]
An accumulator used for a cooling / heating cycle having a plurality of compressors will be described. Figure 7 FIG. 1 is a block diagram showing a refrigerant circuit of an outdoor unit of a package air conditioner (PAC) having a plurality of compressors disclosed in, for example, Japanese Utility Model Publication No. 53-39896, in which two compressors are used. FIG. In the figure, 1a is a first compressor, 1b is a second compressor, 2 is an oil separator, 3 is a condenser, 4 is a throttle device, 5 is an evaporator, 6 is an accumulator, 7 is an evaporator 5, The refrigerant inflow pipes flowing into the accumulator 6, 8a and 8b are U-shaped refrigerant outflow pipes connecting the compressors 1a and 1b and the inside of the accumulator 6, and 9a and 9b are oil and liquid refrigerant accumulated in the accumulator 6. An oil return hole for returning to the compressors 1a and 1b is an oil inflow pipe connecting the oil separator 2 and the accumulator 6, and 11 is an oil return device provided in the oil inflow pipe 10 in the middle of the pipe.
[0003]
Next, the flow of the refrigerant and the oil will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressors 1a and 1b flows into the oil separator 2, where the gas refrigerant and the oil are separated, and the gas refrigerant flows into the condenser 3. Here, the gas refrigerant condenses and liquefies by exchanging heat with air, water, or the like, and enters a low-pressure gas-liquid two-phase state in the expansion device 4 and flows into the evaporator 5. Here, the refrigerant exchanges heat with air, water, or the like, enters a gas or liquid-gas two-phase state with a high degree of dryness, flows into the accumulator 6, is separated into gas and liquid, and accumulates in the accumulator 6. Most of the gas refrigerant returns to the compressor 1 via the U-shaped refrigerant outflow pipes 8a and 8b. The oil separated by the oil separator 2 flows into the accumulator 6 through the oil inlet pipe 10 and the oil return device 11, returns to the compressor 1 through the oil return holes 9a and 9b, and can be separated by the oil separator 2. The remaining oil flows together with the liquid refrigerant through the condenser 3, the throttle device 4, and the evaporator 5, and accumulates in the accumulator 6 in a state where the oil is mixed with the liquid refrigerant.
[0004]
The oil and the liquid refrigerant 14 accumulated in the accumulator 6 are subjected to a differential pressure due to friction loss of the gas refrigerant flowing through the refrigerant outlet pipes 8a and 8b and a liquid generated between the liquid level of the liquid refrigerant in the accumulator 6 and the oil return hole 9. The total pressure difference of the heads is generated before and after the oil return holes 9a, 9b, and flows to the refrigerant outflow pipes 8a, 8b.
[0005]
In the case where the compressors 1a and 1b are stopped for a long time and are started from a state where the liquid refrigerant is stagnated (at a low temperature) in the shells of the compressors 1a and 1b, the liquid refrigerant in the shells of the compressors 1a and 1b Although a large amount of oil is discharged, the liquid refrigerant and the oil are captured by the oil separator 2 and a large amount of oil is prevented from flowing out to the condenser 3 and the like.
[0006]
Further, when the heat load of the refrigeration cycle device decreases, the first compressor 1a and the second compressor 2b are gradually stopped in accordance with the decrease in the heat load. By providing the refrigerant outflow pipes 8a and 8b independently for the plurality of compressors 1a and 1b, even when the number of operating compressors 1a and 1b is reduced, the gas refrigerant flowing through the refrigerant outflow pipes 8a and 8b is reduced. The flow rate is kept constant, and the oil can be properly returned to the compressors 1a and 1b without bias.
[0007]
Next, the structure of a conventional accumulator is shown. 8 Shown in The accumulator 6 is a pressure vessel. In this example, the accumulator body has a two-piece structure of accumulator shells 12 and 13 that have been subjected to deep drawing by press working or the like, and each is joined from the outer peripheral side by MIG welding or the like, Hermeticity is maintained. Reference numeral 7 denotes a refrigerant inflow pipe into which a gas or a refrigerant in a gas-phase two-phase state having a large dryness flows, 8a and 8b are U-shaped refrigerant outflow pipes, and 9a and 9b are U-shaped refrigerant outflow pipes 8a and 8b. An oil return hole 14 provided on the way is a liquid refrigerant stored in the accumulator 6 container.
[0008]
Here, the operation of the refrigerant and the lubricating oil in the accumulator will be described. Gas or a gas-liquid two-phase refrigerant and a lubricating oil with a high degree of dryness flow from the inflow pipe 7. This refrigerant hits the upper piece 12 of the accumulator shell, the gas phase refrigerant accumulates at the top of the accumulator, and the lubricating oil and liquid refrigerant accumulate at the bottom of the accumulator container. The gas-phase refrigerant is sucked from the U-shaped refrigerant outflow pipes 8a and 8b and flows out to the compressors 1a and 1b. Further, as described above, a small amount of the liquid refrigerant having a high concentration of the lubricating oil is sucked through the oil return holes 9a, 9b provided at the bent portions of the U-shaped refrigerant outflow pipes 8a, 8b. Flows out to each compressor 1a, 1b together with the gas-phase refrigerant flowing through the compressor.
[0009]
[Problems to be solved by the invention]
Since the conventional refrigeration cycle accumulator is configured as described above, for example, in a refrigeration cycle device having three or more compressors, it is necessary to individually provide a U-shaped refrigerant outflow pipe for each compressor. There is. Therefore, there is a problem that the entire accumulator 6 becomes large.
[0010]
Further, since the refrigerant outflow pipes 8a and 8b are U-shaped, the pipe length becomes long, and the pressure loss when the gas-phase refrigerant passes through the refrigerant outflow pipe becomes large, so that the refrigeration capacity cannot be sufficiently exhibited. , Resulting in reduced performance.
Note that there is a similar problem when used for heating.
[0011]
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide an accumulator for a cooling and heating cycle which is small in size, has small pressure loss, and can sufficiently exhibit refrigeration or heating capacity.
[0012]
[Means for Solving the Problems]
The accumulator for a cooling / heating cycle according to the first configuration of the present invention is an accumulator that is used for a cooling / heating cycle including a plurality of compressors and is provided for only one of the plurality of compressors. A cylindrical accumulator, provided for each of the plurality of compressors, a plurality of refrigerant outlet pipes for sending refrigerant from the accumulator to each of the compressors, and at least one refrigerant flowing from each of the compressors to the accumulator. A refrigerant inflow pipe, wherein the plurality of refrigerant outflow pipes are downwardly connected to an upper shell of the accumulator, and the at least one refrigerant inflow pipe is upwardly connected to a lower shell of the accumulator, and protrudes into the accumulator. Forming a liquid refrigerant accommodating space in the lower part of the accumulator, and The one refrigerant inlet pipe, in which are arranged so as not to overlap in the vertical direction.
[0013]
In the accumulator for a cooling and heating cycle according to the second configuration of the present invention, in the first configuration, the plurality of refrigerant outflow pipes each have a tip end of an opening protruding into the accumulator.
[0014]
The accumulator for a cooling and heating cycle according to the third configuration of the present invention is the accumulator for a cooling and heating cycle according to the first or second configuration, wherein a baffle plate that blocks a line of sight between a plurality of refrigerant outflow pipes and at least one refrigerant inflow pipe is provided. is there.
[0015]
The accumulator for a cooling and heating cycle according to the fourth configuration of the present invention is an accumulator used for a cooling and heating cycle including a plurality of compressors and provided for only one of the plurality of compressors, and having a vertical shell. A cylindrical accumulator, provided for each of the plurality of compressors, a plurality of refrigerant outlet pipes for sending refrigerant from the accumulator to each of the compressors, and at least one refrigerant flowing from each of the compressors to the accumulator. A refrigerant inflow pipe, wherein the plurality of refrigerant outflow pipes are connected to the accumulator body from the side, and a tip of an opening thereof protrudes into the accumulator, and the at least one refrigerant inflow pipe is a lower shell of the accumulator. The top of the opening protrudes into the accumulator and the liquid cools down the accumulator. Storage space is obtained by the formation.
[0016]
According to a fifth aspect of the present invention, in the accumulator for a cooling / heating cycle according to the fourth aspect, an opening of the at least one refrigerant inflow pipe is provided below an opening of the plurality of refrigerant outflow pipes inside an accumulator body. A partition plate for dividing the internal space of the accumulator into upper and lower parts is provided at a position below the unit, and a communication hole for flowing a liquid refrigerant is provided between the partition plate and the at least one refrigerant inflow pipe.
[0017]
The accumulator for a cooling and heating cycle according to a sixth configuration of the present invention, in the fourth configuration, further includes a partition plate that vertically divides an internal space of the accumulator near at least one refrigerant inlet pipe opening that protrudes into the accumulator. A communication hole through which a liquid refrigerant flows is provided between the plate and the inner peripheral portion of the accumulator body.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a sectional side view showing a configuration of an accumulator for a refrigeration cycle according to Embodiment 1 of the present invention. In the figure, 15 is an accumulator body which is a pressure vessel having a vertically arranged cylindrical shape and has shells above and below, and 16a and 16b are straight tubular refrigerant outflow pipes connected to each of a plurality of compressors. 7 is a refrigerant inflow pipe. Reference numeral 14 denotes a liquid refrigerant stored in the lower part of the accumulator container. Reference numerals 17a and 17b denote oil return pipes provided below the accumulator container 15 and connected to straight tubular refrigerant outflow pipes 16a and 16b. In the present embodiment, the refrigerant inflow pipe 7 is connected upward to the lower shell of the accumulator main body container 15, protrudes into the accumulator main body container 15, and forms a liquid refrigerant accommodating space below the accumulator main body container 15. The refrigerant outflow pipes 16a and 16b are downwardly connected to the upper shell of the accumulator main body container 15, and are provided at positions where the gas refrigerant flows smoothly from the central ceiling of the upper shell of the accumulator container 15.
The openings of the refrigerant outflow pipes 16a and 16b are provided so as not to overlap with the opening of the refrigerant inflow pipe 7 provided in the lower part of the accumulator body 15 in the vertical direction.
[0019]
Next, the flow of the refrigerant and the oil when the accumulator according to the present embodiment is used will be described. However, except for the accumulator in the refrigerant circuit, 7 It is assumed that the same refrigerant circuit as that shown in FIG.
The gas flowing out of the evaporator 5 or the refrigerant in a gas-liquid two-phase state having a high degree of dryness flows into the accumulator main body container 15 through the refrigerant inflow pipe 7 and collides with the upper part of the accumulator container 15. As a result, the speed of the refrigerant can be reduced, and gas-liquid separation is performed efficiently. The gas-liquid separated liquid refrigerant 14 is dropped along the wall surface of the accumulator container 15 and accumulates in the lower part of the accumulator container 15. As described above, the gas refrigerant is efficiently separated in the accumulator container 15 and the liquid refrigerant 14 thus separated is stored in the lower part of the accumulator container 15, so that almost only the gas refrigerant flows out from the refrigerant outlet pipes 16a and 16b. Therefore, it is possible to prevent a problem that the liquid refrigerant 14 returns directly to the compressors 1a and 1b to cause liquid compression and damage the compressors 1a and 1b.
Further, the liquid refrigerant 14 which has been gas-liquid separated and accumulated in the lower part of the accumulator main body container 15 returns to the oil return provided in the lower part of the accumulator container 15 due to a differential pressure generated by friction loss of gas refrigerant flowing inside the piping of the refrigerant outflow pipes 16a and 16b. It flows to pipes 17a and 17b and is returned to the compressors 1a and 1b.
Further, unlike the conventional refrigerant outlet pipes 8a and 8b of the accumulator 6, the mixed liquid of the gas refrigerant, the liquid refrigerant, and the lubricating oil does not pass through a long pipe, so that the pressure loss in the accumulator can be reduced.
As described above, the accumulator for a refrigeration cycle according to the present embodiment can secure the original oil return function, and can sufficiently exhibit the refrigeration capacity due to the small pressure loss in the accumulator section, and can be downsized. .
[0020]
Further, in the present embodiment, by providing the refrigerant inflow pipe 7 protruding below the accumulator container 15, foreign matter such as oxidized scale generated at the time of brazing the pipe and sand or dust entering at the time of connecting the pipe to the lower part of the accumulator vessel 15. Can be stored. Thus, it is possible to prevent foreign matters such as oxide scale, sand, dust and the like from returning to the compressors 1a and 1b via the refrigerant outflow pipes 16a and 16b and damaging the compressors 1a and 1b.
[0021]
Embodiment 2 FIG.
FIG. 2 is a sectional side view showing a configuration of an accumulator for a refrigeration cycle according to Embodiment 2 of the present invention. In the present embodiment, the distal ends of the openings of the straight tubular refrigerant outflow pipes 16a and 16b are projected into the accumulator container 15.
As described above, by providing the distal ends of the openings of the refrigerant outflow pipes 16a and 16b so as to protrude into the accumulator container 15, the liquid refrigerant 14 which collides at the upper part of the accumulator container 15 and is separated into gas and liquid by the refrigerant outflow pipes 16a and 16b. It is possible to eliminate inflow from the back side. As a result, it is possible to prevent a problem that the liquid refrigerant 14 returns directly to the compressors 1a and 1b to cause liquid compression and damage the compressors 1a and 1b.
[0022]
Embodiment 3 FIG.
FIG. 3A is a sectional side view showing a configuration of an accumulator for a refrigeration cycle according to Embodiment 3 of the present invention, and FIG. 3B is a horizontal sectional view of FIG. In the drawing, reference numeral 18 denotes a baffle formed on the inner surface of the accumulator container 15 so as to block the openings of the refrigerant outflow pipes 16a and 16b. In the drawing, the baffle plate 18 is hatched for clarity. In the present embodiment, the baffle plate 18 is joined to the inner surface of the accumulator container 15 by welding or the like, and blocks the prospect of the openings of the refrigerant inflow pipe 7 and the refrigerant outflow pipes 16a and 16b. The baffle plate 18 is manufactured by sheet metal, press working, or the like.
[0023]
Next, the operation when the accumulator according to the present embodiment is used will be described. The refrigerant in a gas-liquid two-phase state discharged from the refrigerant inflow pipe 7 collides with the upper part of the accumulator container 15 and is separated into gas and liquid by a rapid decrease in flow velocity. However, when the refrigerant in the gas-liquid two-phase state discharged from the refrigerant inflow pipe 7 is almost liquid refrigerant, the liquid refrigerant may directly flow into the refrigerant outflow pipes 16a and 16b.
[0024]
In the present embodiment, the baffle plate 18 is provided so as to block the view of the respective openings of the refrigerant inflow pipe 7 and the refrigerant outflow pipes 16a and 16b, so that the liquid refrigerant flowing from the refrigerant inflow pipe 7 directly flows out of the refrigerant. Since it does not flow into the pipes 16a and 16b, damage to the compressor due to liquid back can be prevented.
[0025]
In addition, since the baffle plate 18 allows the refrigerant inflow pipe 7 and the refrigerant outflow pipes 16a and 16b to vertically overlap each other, the mounting interval between the refrigerant outflow pipes 16a and 16b can be further reduced. Therefore, the outer diameter of the accumulator can be reduced, and the main body of the accumulator container 15 can be reduced in size.
[0026]
Embodiment 4 FIG.
FIG. 4 is a sectional side view showing a configuration of an accumulator for a refrigeration cycle according to Embodiment 4 of the present invention. In the present embodiment, the refrigerant outlet pipes 16a and 16b are connected from the side of the body of the accumulator container 15, and the leading end of the opening protrudes into the accumulator container 15. The refrigerant inflow pipe 7 is upwardly connected to a lower shell of the accumulator container 15, and a tip of an opening thereof projects into the accumulator 15 to form a liquid refrigerant accommodating space below the accumulator 15.
Thus, by providing the refrigerant outflow pipes 16a and 16b in the body of the accumulator container 15 so as to protrude inward from the side, the liquid refrigerant 14 which collides at the upper part of the accumulator container 15 and is separated into gas and liquid is cooled by the refrigerant outflow pipe 16a, It is possible to eliminate the inflow from the back of 16b. As a result, it is possible to prevent a problem that the liquid refrigerant 14 returns directly to the compressors 1a and 1b to cause liquid compression and damage the compressors 1a and 1b. By providing the refrigerant outflow pipes 16a, 16b in the body of the container 15, the mounting interval between the refrigerant outflow pipes 16a, 16b can be reduced, so that the accumulator 15 can be further downsized.
[0027]
Embodiment 5 FIG.
FIG. 5A is a cross-sectional side view showing a configuration of an accumulator for a refrigeration cycle according to Embodiment 5 of the present invention, and FIG. 5B is a horizontal cross-sectional view of FIG. In the drawing, reference numeral 19 denotes a partition plate formed inside the body of the accumulator container 15 to divide the internal space of the accumulator container 15 into upper and lower portions. Is provided at a position below the opening. 20 is an upper room in the accumulator container 15 partitioned by the partition plate 19, 21 is a lower room in the accumulator container 15 partitioned by the partition plate 19, and 22 is between the partition plate 19 and the refrigerant inflow pipe 7. It is a communication hole provided so as to surround the refrigerant inflow pipe 7 and communicates the upper room 20 and the lower room 21, and the liquid refrigerant gas-liquid separated in the upper room 20 passes through the communication hole 22 to the lower side. Collect in room 21. In the drawing, the partition plate 19 is hatched for clarity.
A partition plate 19 for vertically dividing the container 15 is provided in the container 15 to divide the container 15 into an upper room 20 and a lower room 21, and the upper room 20 is provided with refrigerant outflow pipes 16a and 16b and the lower room 21 Is provided with a refrigerant inflow pipe 7 and oil return pipes 17a and 17b. In the present embodiment, the partition plate 19 is joined to the inner surface of the accumulator container 15 by welding or the like. Note that the partition plate 19 is manufactured by sheet metal, press working, or the like.
[0028]
Next, the operation will be described. In each of the above embodiments, the liquid refrigerant 14 accumulated in the accumulator container 15 is violently agitated by the flow of the refrigerant flowing from the refrigerant inflow pipe 7, and the blown-up droplets may enter the refrigerant outflow pipes 16 a and 16 b. . In the present embodiment, the interior of the accumulator container 15 is divided by the partition plate 19 having the communication hole 22 into the upper chamber 20 having the refrigerant outflow pipes 16a and 16b and storing the gas refrigerant, the refrigerant inflow pipe 7 and the oil return pipes 17a and 17b. The liquid refrigerant 14 is divided into a lower room 21 where the liquid refrigerant 14 is stored, and the opening of the refrigerant inflow pipe 7 is provided inside the upper room 20. This prevents the liquid refrigerant from entering the upper room 20 due to no stirring. This can prevent the liquid refrigerant from directly returning to the compressor (not shown) and damaging the compressor (not shown).
Further, in the present embodiment, the upper body, the lower body, and the partition plate 19 of the accumulator 15 can be joined at the same position, so that the manufacturing process can be simplified.
[0029]
Embodiment 6 FIG.
FIG. 6A is a sectional side view showing a configuration of an accumulator for a refrigeration cycle according to Embodiment 6 of the present invention, and FIG. 6B is a horizontal sectional view of FIG. In the drawing, reference numeral 23 denotes a droplet-like liquid refrigerant in which a gas-liquid two-phase refrigerant flowing out of the refrigerant inflow pipe 7 collides at the upper part of the accumulator container 15 to be separated into gas and liquid, and flows down along the inner surface of the accumulator container 15. is there. In the present embodiment, a partition plate 19 for vertically dividing the upper chamber 20 and the lower chamber 21 is provided near the opening of the refrigerant inflow pipe 7, and the communication hole 22 for the liquid refrigerant is formed in the inner periphery of the body of the accumulator container 15. It is provided between the section and the outer end face of the partition plate 19. In the drawing, the partition plate 19 is hatched for clarity.
[0030]
Next, the operation will be described. The partition plate 19 of the present embodiment is the same as that of the above embodiment. 5 The same function as that of the partition plate 19 can be performed, and it is possible to prevent the liquid refrigerant 14 accumulated in the room 21 below the lower part of the accumulator container 15 from being blown up and the liquid refrigerant from jumping from the liquid surface.
Further, the liquid refrigerant 23 colliding at the upper part of the accumulator container 15 and separated into gas and liquid flows down along the inner surface of the body of the accumulator container 15. The above embodiment 5 Then, the liquid refrigerant 23 flowing down along the inner surface of the container flows along the upper surface of the partition plate 19, drops into the room 21 below the communication hole 22, and accumulates in the room 21 below. However, when the flow rate of the gas-liquid two-phase refrigerant flowing from the evaporator (not shown) increases, the speed of the gas-liquid two-phase refrigerant in the upper room 20 may not be sufficiently reduced. . In this case, the liquid refrigerant 23 flowing along the upper surface of the partition plate 19 is blown up, so that the liquid refrigerant directly enters the refrigerant outflow pipes 16a and 16b, and the liquid refrigerant may not accumulate in the lower room 21.
In the present embodiment, since the communication holes 22 provided in the partition plate 19 are provided between the inner peripheral portion of the body of the accumulator container 15 and the outer end surface of the partition plate 19, the liquid refrigerant 23 flowing down the inner surface of the accumulator container 15 The gas flows smoothly along the inner surface of the accumulator container 15 without being affected by the flow of the gas refrigerant which has been gas-liquid separated in the upper room 20, and accumulates in the lower room 21. This can prevent the liquid refrigerant 23 from blowing up from the upper surface of the partition plate 19.
[0031]
Although the refrigerating cycle has been described as an example in each of the above embodiments, the accumulator of the present invention can be used for heating.
[0032]
【The invention's effect】
According to the first aspect of the present invention, there is provided an accumulator which is used for a cooling / heating cycle including a plurality of compressors and is provided for only one of the plurality of compressors. An accumulator, a plurality of refrigerant outlet pipes provided for each of the plurality of compressors, for sending refrigerant from the accumulator to each of the compressors, and at least one refrigerant inflow pipe for flowing refrigerant from each of the compressors to the accumulator Wherein the plurality of refrigerant outflow tubes are downwardly connected to an upper shell of the accumulator, and the at least one refrigerant inflow tube is upwardly connected to a lower shell of the accumulator, and protrude into the accumulator to accumulator lower portion. A plurality of refrigerant outflow pipes and at least one refrigerant inflow pipe are vertically connected to each other. Since arranged so as not to overlap in direction, it is possible to ensure the original oil return function, can sufficiently exhibit the refrigeration or heating capacity by pressure loss in the accumulator portion is small, in which can be miniaturized. In addition, by providing a plurality of refrigerant outflow pipes at the lower part of the accumulator with the refrigerant inflow pipe at the upper part, the liquid refrigerant accumulated at the lower part of the accumulator can be prevented from jumping up and directly entering the refrigerant outflow pipe, and damage to the compressor due to liquid back can be prevented. Can be prevented. In addition, foreign substances such as oxide scale, sand, dust, etc., which are generated or penetrate at the time of pipe connection or the like can be stored in the lower portion of the container, and can be prevented from returning to the compressor via the refrigerant outflow pipe.
[0033]
According to the second configuration of the present invention, in the first configuration, the plurality of refrigerant outflow pipes each have a tip end of the opening protruding into the accumulator, so that they collide at the upper part of the accumulator and are separated into gas and liquid. The liquid refrigerant can be prevented from sneaking around and flowing in from the back of the refrigerant outflow pipe, and damage to the compressor due to liquid back can be prevented.
[0034]
According to the third configuration of the present invention, in the first or second configuration, a baffle plate that blocks a line of sight between the plurality of refrigerant outflow pipes and the at least one refrigerant inflow pipe is provided. Since the more inflowing liquid refrigerant does not directly flow into the refrigerant outflow pipe, damage to the compressor due to liquid back can be prevented. Further, the vertical overlap between the refrigerant inflow pipe and the refrigerant outflow pipe can be allowed by the baffle plate, so that the mounting interval between the refrigerant outflow pipes can be further reduced. Therefore, the outer diameter of the accumulator can be reduced, and the accumulator container body can be reduced in size.
[0035]
According to the fourth configuration of the present invention, there is provided an accumulator which is used for a cooling / heating cycle including a plurality of compressors and is provided only once for the plurality of compressors, and is a vertical cylindrical type having upper and lower shells. An accumulator, a plurality of refrigerant outlet pipes provided for each of the plurality of compressors, for sending refrigerant from the accumulator to each of the compressors, and at least one refrigerant inflow pipe for flowing refrigerant from each of the compressors to the accumulator The plurality of refrigerant outflow pipes are connected to the accumulator body from the side, the ends of the openings protrude into the accumulator, and the at least one refrigerant inflow pipe faces upward to the lower shell of the accumulator. Connected, the tip of the opening protruded into the accumulator to form a liquid refrigerant storage space under the accumulator. Collide with accumulator vessel top, can be gas-liquid separated liquid refrigerant to prevent damage to the compressor due can be liquid back be eliminated from flowing goes around from the back of the refrigerant outflow pipe. Further, by providing the refrigerant outflow pipe in the body of the container, the mounting interval between the refrigerant outflow pipes can be reduced, so that the accumulator can be further downsized.
[0036]
According to a fifth configuration of the present invention, in the fourth configuration, the inner side of the accumulator body is not more than the opening of the plurality of refrigerant outflow pipes and not more than the opening of the at least one refrigerant inflow pipe. In the position, a partition plate for vertically dividing the internal space of the accumulator was provided, and a communication hole for flowing a liquid refrigerant was provided between the partition plate and the at least one refrigerant inflow tube, so that the inflow from the refrigerant inflow tube was performed. The liquid refrigerant accumulated in the lower room is not violently stirred by the refrigerant, and the liquid refrigerant accumulated in the lower room can be prevented from entering the upper room and flowing into the refrigerant outflow pipe. This can prevent the compressor from being damaged by the liquid bag.
[0037]
According to a sixth configuration of the present invention, in the fourth configuration, a partition plate that vertically divides an accumulator internal space is provided near at least one refrigerant inflow pipe opening protruding into the accumulator, and the partition plate and the partition plate are provided. Since a communication hole for flowing the liquid refrigerant is provided between the inner periphery of the accumulator body and the liquid refrigerant, which is separated into gas and liquid in the upper room and flows down along the inner surface of the accumulator container, the flow of the gas refrigerant in the upper room is reduced. It flows smoothly along the inner surface of the accumulator container without being affected by the water, and accumulates in the lower room. This prevents the liquid refrigerant from blowing up from the upper surface of the partition plate.
[Brief description of the drawings]
FIG. 1 is a sectional side view showing a configuration of an accumulator for a refrigeration cycle according to Embodiment 1 of the present invention.
FIG. 2 is a sectional side view showing a configuration of an accumulator for a refrigeration cycle according to a second embodiment of the present invention.
3A and 3B show a configuration of an accumulator for a refrigeration cycle according to Embodiment 3 of the present invention, wherein FIG. 3A is a sectional side view and FIG. 3B is a horizontal sectional view.
FIG. 4 is a sectional side view showing a configuration of an accumulator for a refrigeration cycle according to Embodiment 4 of the present invention.
FIG. 5 shows a configuration of an accumulator for a refrigeration cycle according to Embodiment 5 of the present invention, where (a) is a cross-sectional side view and (b) is a horizontal cross-sectional view.
FIG. 6 shows a configuration of an accumulator for a refrigeration cycle according to a sixth embodiment of the present invention, where (a) is a cross-sectional side view and (b) is a horizontal cross-sectional view.
[Figure] 7 FIG. 11 is a block diagram showing a refrigerant circuit configuration of a conventional refrigeration cycle outdoor unit having a plurality of compressors.
[Figure] 8 FIG. 9 is a cross-sectional side view showing the structure of a conventional refrigeration cycle accumulator.
[Explanation of symbols]
1a, 1b compressor, 2 oil separator, 3 condensation vessel , 4 throttle device, 5 evaporator, 6 accumulator, 7 refrigerant inflow pipe, 8a, 8b U-shaped refrigerant outflow pipe, 9a, 9b oil return hole, 10 oil inflow pipe, 11 oil return device, 12 accumulator shell upper piece , 13 accumulator shell lower piece, 14 liquid refrigerant, 15 accumulator main body, 16a, 16b straight tubular refrigerant outflow pipe, 17a, 17b oil return pipe, 18 baffle plate, 19 partition plate, 20 upper room, 21 lower room, 22
Communication hole, 23 droplet liquid refrigerant.

Claims (6)

複数の圧縮機を備えた冷熱サイクルに用いられかつ複数の圧縮機に対して1つだけ設けられるアキュムレータであって、上下にシェルを有する垂直円筒型のアキュムレータと、前記複数の圧縮機毎に設けられ、前記アキュムレータから前記各圧縮機へ冷媒を送出する複数の冷媒流出管と、前記各圧縮機から前記アキュムレータへ冷媒を流入させる少なくとも1つの冷媒流入管とを備え、前記複数の冷媒流出管は、前記アキュムレータの上部シェルに下向きに接続され、前記少なくとも1つの冷媒流入管は、前記アキュムレータの下部シェルに上向きに接続され、アキュムレータ内部に突出してアキュムレータ下部に液冷媒収容スペースを形成し、前記複数の冷媒流出管と少なくとも1つの冷媒流入管とは、鉛直方向に重なり合わないように配置された冷熱サイクル用アキュムレータ。An accumulator used for a cooling / heating cycle including a plurality of compressors and provided for only one of the plurality of compressors, the accumulator having a vertical cylindrical shape having upper and lower shells, and provided for each of the plurality of compressors. A plurality of refrigerant outflow pipes for sending refrigerant from the accumulator to each of the compressors, and at least one refrigerant inflow pipe for flowing refrigerant from each of the compressors to the accumulator, wherein the plurality of refrigerant outflow pipes The at least one refrigerant inflow pipe is connected downwardly to an upper shell of the accumulator, is upwardly connected to a lower shell of the accumulator, protrudes into the accumulator to form a liquid refrigerant accommodating space in a lower part of the accumulator, The refrigerant outlet pipe and the at least one refrigerant inlet pipe are arranged so as not to overlap in the vertical direction. Thermal cycle for the accumulator that is. 前記複数の冷媒流出管は、その開口の先端をアキュムレータ内部にそれぞれ突出させた請求項1記載の冷熱サイクル用アキュムレータ。2. The accumulator for a cooling and heating cycle according to claim 1, wherein each of the plurality of refrigerant outlet pipes has a tip end of an opening projecting into the accumulator. 前記複数の冷媒流出管と少なくとも1つの冷媒流入管との間の見通しを遮る邪魔板を設けた請求項1または2記載の冷熱サイクル用アキュムレータ。The accumulator for a cooling and heating cycle according to claim 1 or 2, further comprising a baffle plate that blocks a line of sight between the plurality of refrigerant outflow pipes and the at least one refrigerant inflow pipe. 複数の圧縮機を備えた冷熱サイクルに用いられかつ複数の圧縮機に対して1つだけ設けられるアキュムレータであって、上下にシェルを有する垂直円筒型のアキュムレータと、前記複数の圧縮機毎に設けられ、前記アキュムレータから前記各圧縮機へ冷媒を送出する複数の冷媒流出管と、前記各圧縮機から前記アキュムレータへ冷媒を流入させる少なくとも1つの冷媒流入管とを備え、前記複数の冷媒流出管は、前記アキュムレータ胴部に側方から接続され、その開口の先端がアキュムレータ内部に突出し、前記少なくとも1つの冷媒流入管は、前記アキュムレータの下部シェルに上向きに接続され、その開口の先端をアキュムレータ内部に突出させてアキュムレータ下部に液冷媒収容スペースを形成した冷熱サイクル用アキュムレータ。An accumulator used for a cooling / heating cycle including a plurality of compressors and provided for only one of the plurality of compressors, the accumulator having a vertical cylindrical shape having upper and lower shells, and provided for each of the plurality of compressors. A plurality of refrigerant outflow pipes for sending refrigerant from the accumulator to each of the compressors, and at least one refrigerant inflow pipe for flowing refrigerant from each of the compressors to the accumulator, wherein the plurality of refrigerant outflow pipes The accumulator body is connected from the side, the tip of the opening protrudes into the accumulator, the at least one refrigerant inflow pipe is connected upward to the lower shell of the accumulator, and the tip of the opening is inside the accumulator. An accumulator for a cooling and heating cycle that protrudes to form a liquid refrigerant storage space below the accumulator. 前記アキュムレータ胴部の内側に、前記複数の冷媒流出管の開口部以下であって前記少なくとも1つの冷媒流入管の開口部以下の位置に、前記アキュムレータ内部空間を上下に分割する仕切板を設け、該仕切板と前記少なくとも1つの冷媒流入管との間に液冷媒を流通させる連通穴を設けた請求項4記載の冷熱サイクル用アキュムレータ。Inside the accumulator body, a partition plate that divides the accumulator internal space up and down is provided below the openings of the plurality of refrigerant outflow tubes and at positions below the openings of the at least one refrigerant inflow tube, 5. The accumulator according to claim 4, wherein a communication hole is provided between the partition plate and the at least one refrigerant inflow pipe to allow a liquid refrigerant to flow. 前記アキュムレータ内に突出した少なくとも1つの冷媒流入管開口近傍にアキュムレータ内空間を上下に分割する仕切板を設け、該仕切板と前記アキュムレータ胴部の内周部との間に液冷媒を流通させる連通穴を設けた請求項4記載の冷熱サイクル用アキュムレータ。A partition plate is provided near the opening of at least one refrigerant inflow pipe protruding into the accumulator to divide the internal space of the accumulator into upper and lower portions, and communication is performed between the partition plate and the inner peripheral portion of the accumulator body to flow the liquid refrigerant. The accumulator for a thermal cycle according to claim 4, wherein the accumulator is provided with a hole.
JP26997997A 1997-10-02 1997-10-02 Accumulator for cooling and heating cycle Expired - Fee Related JP3583266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26997997A JP3583266B2 (en) 1997-10-02 1997-10-02 Accumulator for cooling and heating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26997997A JP3583266B2 (en) 1997-10-02 1997-10-02 Accumulator for cooling and heating cycle

Publications (2)

Publication Number Publication Date
JPH11108506A JPH11108506A (en) 1999-04-23
JP3583266B2 true JP3583266B2 (en) 2004-11-04

Family

ID=17479891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26997997A Expired - Fee Related JP3583266B2 (en) 1997-10-02 1997-10-02 Accumulator for cooling and heating cycle

Country Status (1)

Country Link
JP (1) JP3583266B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100499485B1 (en) * 2002-11-23 2005-07-07 엘지전자 주식회사 accumulator of heat pump system with at least two compressors
JP4726600B2 (en) * 2005-10-06 2011-07-20 三菱電機株式会社 Refrigeration air conditioner
JP5001730B2 (en) * 2007-06-29 2012-08-15 三菱重工業株式会社 Refrigeration equipment
WO2015129047A1 (en) * 2014-02-28 2015-09-03 三菱電機株式会社 Accumulator, and refrigeration device with said accumulator
JP2015224830A (en) * 2014-05-28 2015-12-14 ダイキン工業株式会社 Refrigeration device
WO2018079182A1 (en) * 2016-10-25 2018-05-03 株式会社不二工機 Accumulator
JP6600654B2 (en) 2016-10-25 2019-10-30 株式会社不二工機 accumulator
CN114370726A (en) * 2022-01-21 2022-04-19 天津双昊车用空调有限公司 Gas-liquid separator with liquid accumulator function

Also Published As

Publication number Publication date
JPH11108506A (en) 1999-04-23

Similar Documents

Publication Publication Date Title
JP3561957B2 (en) Recipient integrated refrigerant condenser
JP5143040B2 (en) Gas-liquid separator and refrigeration cycle apparatus equipped with the gas-liquid separator
JP2007532853A (en) Flash tank for use in an economizer circuit
JPH11304293A (en) Refrigerant condenser
JP2003139438A (en) Refrigerant condenser
JP3617083B2 (en) Receiver integrated refrigerant condenser
JP3583266B2 (en) Accumulator for cooling and heating cycle
JP2004211921A (en) Receiver tank for refrigerating cycle, heat exchanger with receiver tank, and condenser for refrigerating cycle
EP1373809B1 (en) Apparatus and method for discharging vapour and liquid
JP3557628B2 (en) Recipient integrated refrigerant condenser
JP6351875B1 (en) Heat exchanger and refrigeration cycle apparatus
CN113819684B (en) Economizer and refrigerating system comprising same
KR20040086241A (en) Refrigeration system and its condensing apparatus
JP2001174103A (en) Refrigerant condenser
WO2001001051A1 (en) Refrigerant condenser
KR101908301B1 (en) Condenser having oil separator and Refrigerating cycle apparatus having the same
JPH09250848A (en) Transversely long accumulator for freezer
KR200259605Y1 (en) Integral Condenser
JPH10267472A (en) Accumulator for refrigerating cycle
US6564575B1 (en) Accumulator with inlet port comprising a deflector
JP4238434B2 (en) Refrigeration cycle equipment
JP3780834B2 (en) Air conditioner
JP2000074527A (en) Liquid receiver integrated refrigerant condenser
JP2002130871A (en) Accumulator
JP3855385B2 (en) Refrigerating cycle receiver

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees