JP3582180B2 - Frequency division multiplex signal generator - Google Patents

Frequency division multiplex signal generator Download PDF

Info

Publication number
JP3582180B2
JP3582180B2 JP25221595A JP25221595A JP3582180B2 JP 3582180 B2 JP3582180 B2 JP 3582180B2 JP 25221595 A JP25221595 A JP 25221595A JP 25221595 A JP25221595 A JP 25221595A JP 3582180 B2 JP3582180 B2 JP 3582180B2
Authority
JP
Japan
Prior art keywords
signal
frequency
input
units
frequency division
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25221595A
Other languages
Japanese (ja)
Other versions
JPH0998147A (en
Inventor
敬一 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP25221595A priority Critical patent/JP3582180B2/en
Publication of JPH0998147A publication Critical patent/JPH0998147A/en
Application granted granted Critical
Publication of JP3582180B2 publication Critical patent/JP3582180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は周波数分割多重信号生成装置に係り、特に符号化されたディジタル映像信号などを限られた周波数帯域の直交周波数分割多重(OFDM:Orthogonal Frequency Division Multiplex)信号に変換して送受信する周波数分割多重信号の生成装置に関する。
【0002】
【従来の技術】
符号化されたディジタル映像信号などを限られた周波数帯域で伝送する方式の一つとして、256直交振幅変調(QAM:Quadrature Amplitude Modulation)などの多値変調されたディジタル情報を多数の搬送波を用いてOFDM信号として伝送するOFDM方式が、マルチパスに強い、妨害を受けにくい、周波数利用効率が比較的良いなど特長から従来より知られている。このOFDM方式は多数の搬送波を直交して配置し、各々の搬送波で独立したディジタル情報を伝送する方式である。なお、「搬送波が直交している」とは、隣接する搬送波のスペクトラムが当該搬送波の周波数位置で零になることを意味する。
【0003】
このOFDM方式によれば、ガードバンド期間(ガードインターバル)を設定し、その期間の情報を重複して伝送するようにしているため、電波のマルチパスにより生ずる伝送歪みを軽減できる。すなわち、このOFDM信号の受信は、シンボル期間内に伝送される信号の振幅、位相変調成分を検出し、これらのレベルにより情報の値を復号するものであるから、最初のガードインターバル期間の信号を除いて復号することにより、同一シンボル区間のマルチパス信号と、受信すべき信号の周波数成分は同一であるため、比較的狭い周波数帯域で、伝送歪みの少ない復号ディジタルデータを伝送できる。
【0004】
【発明が解決しようとする課題】
しかるに、上記のOFDM信号を生成する従来の周波数分割多重信号生成装置では、多数の情報搬送波を合成してできるOFDM信号に対し、特に瞬間的に生じるピーク電力に対する対策を施していないため、まれに大電力が発生されることがある。例えば、256個の情報搬送波を用いるOFDM信号の電力は、1情報搬送波電力の256倍の合成した平均電力であるため、仮に全情報搬送波の最大振幅電圧値が一致して発生させられた場合は、一本の搬送波の256倍の伝送電力(又は、D/A変換器、A/D変換器のダイナミックレンジ、アナログ系のリニアリティ等)が要求される。逆に言うと、その分搬送波一本あたりの信号対雑音比(S/N)が低下してしまう。
【0005】
上記の全搬送波の位相が一致する確率は非常に小さく、実際には殆ど発生しないが、平均電力値は余裕をもった低い値に設定し、送信電力装置も平均電力10〜20倍程度の余裕をもった大きな出力信号を発生させられるものを用い、まれに生じる大電力信号に対しても飽和させないで送信できるように考慮していた。このため、従来の周波数分割多重信号発生装置は装置全体が高価で大型化するという問題がある。
【0006】
本発明は上記の点に鑑みてなされたもので、発生する周波数分割多重信号のピーク電力を小さくすることにより、送信装置の小型・軽量化を送信装置の電源装置も含めて実現し得る周波数分割多重信号生成装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するため、本発明の周波数分割多重信号生成装置は、それぞれの複数の入力端子に並列に入力された伝送情報信号とそれぞれの特定の入力端子に並列に入力された伝送モード信号に対し、逆離散的フーリエ変換演算して入力信号に対する互いに周波数割当が異なる同相信号と直交信号とを生成して自己の周波数割当情報と共に出力すると共に、生成した同相信号及び直交信号のシンボル毎のピーク値を検出する機能を有する複数の演算部と、複数の演算部のうち選択された一の演算部からの出力演算結果を一時蓄積して周波数分割多重信号を連続して読み出す出力バッファとを有する周波数分割多重信号生成装置であって、複数の演算部のうちの所定の一の演算部は、自身を含め複数の演算部のすべてからそれぞれの各シンボル毎の演算結果のピーク値が入力され、そのうち所定値以下のピーク値の演算結果を通知した、いずれか一の演算部からその演算結果とその演算部に固有の周波数割当情報を出力バッファへ選択出力させる構成としたものである。
【0008】
また、本発明の周波数分割多重信号生成装置は、出力バッファを、1シンボル以上の蓄積量を有し、蓄積量が所定値以上のときに”真”の出力停止信号を発生して複数の演算部のうちの所定の一の演算部に供給する機能を有する構成とし、所定の一の演算部は、すべての複数の演算部から通知されたピーク値をそれぞれ比較して最小のピーク値を通知した一の演算部に対して、出力停止信号が”偽”であれば直ちに、”真”であれば”偽”になるまで待った後、最小のピーク値を通知した一の演算部へ演算結果送出信号を供給して、その演算結果を送出させる機能を有することを特徴とする。
【0009】
ここで、上記の複数の演算部の周波数割当は、入力伝送情報信号を複数の演算部相互間で互いに所定量ずらせたり、入力伝送情報信号の実数部及び虚数部の一方を所定量互いにずらせたり、入力伝送情報信号の実数部及び虚数部をそれぞれ互いに反対方向に所定量ずらせたりすることにより行う。
【0010】
本発明では、上記のように、複数の演算部のそれぞれが入力伝送情報に対して互いに異なる周波数割当で並列に逆離散的フーリエ変換演算し、それらの演算結果の中からピーク値が所定量以下の任意の演算結果、あるいは最もピーク値が小さい演算結果を出力するようにしているため、各搬送波の位相が揃ってしまうことによる最大ピーク値の発生を大幅に低減できる。
【0011】
上記の演算時間と伝送速度の関係は、例えば1シンボルの伝送時間が2.5msであったとすると、伝送速度としては2.5msで1シンボルを伝送し、これは一定値で変らない。一方、演算部の演算時間は2.5msよりも多少速い時間で演算を終了し、前のシンボルの伝送の終了を待つようにする。ここで、演算部を仮に単一として演算結果のピーク値が所定値以上となった場合、周波数割当を変更して再度同じ演算を行ってもよいが、その場合は、演算速度が高速な演算部を必要とし、高価となる。本発明のように、低速な演算部を複数備えた方がコスト的に有利である。
【0012】
【発明の実施の形態】
次に、本発明の実施の形態について図面と共に説明する。まず、本発明の周波数分割多重信号生成装置について説明する前に、本発明の周波数分割多重信号生成装置が適用されるOFDM信号の送信装置の概要について説明する。ここでは、256本の搬送波で伝送情報をOFDM信号として送信する。また、後段のアナログ信号系の設計を容易にするために、2倍オーバーサンプリングを使用し、512ポイントの逆離散フーリエ変換(IDFT)演算を実行し、OFDM信号を発生させるものとする。
【0013】
この送信装置では、例えばカラー動画像符号化表示方式であるMPEG方式などの符号化方式で圧縮されたディジタル映像信号や音声信号などの伝送すべきディジタルデータを演算部に供給する。この演算部は入力ディジタルデータを逆離散フーリエ変換(IDFT)演算して同相信号(I信号)及び直交信号(Q信号)を生成する。この演算部は所定の周波数帯域幅よりも高いサンプルクロック周波数で動作を行う。256本の搬送波で伝送情報を伝送する場合、2倍オーバーサンプリングを使用し、512ポイントのIDFT演算をして信号を発生させる。このときのIDFT演算部への入力割り当ては、入力周波数整列型で順番に番号をふると、次のようになる。
【0014】
n=0〜128 搬送波を変調する情報信号が与えられる。
【0015】
n=129〜383 搬送波レベルを0とし、信号を発生させない。
【0016】
n=384〜511 搬送波を変調する情報信号が与えられる。
【0017】
すなわち、IDFT演算部の入力端子数は実数部(R)信号用と虚数部(I)信号用とにそれぞれ512ずつあり、そのうち1番目(n=1)から127番目(n=127)までの計127個ずつと、385番目(n=385)から511番目(n=511)の計127個ずつの入力端子に情報信号が入力され、また、0番目(n=0)の入力端子には直流電圧(一定)が入力されて伝送する搬送波の中心周波数で伝送され、128番目(n=M/4)と384番目(n=3M/4)の入力端子には例えば、パイロット信号のための固定電圧が入力され、ナイキスト周波数の1/2倍の周波数である両端の周波数の搬送波で伝送される。
【0018】
ここで、1番目から128番目までの計128個の入力端子の入力情報は中心搬送波周波数F0の上側(高域側)の情報伝送用搬送波で伝送され、384番目から511番目までの計128個の入力端子の入力情報は中心搬送波周波数の下側(低域側)の情報伝送用搬送波で伝送される。また、残りの129番目から383番目の入力端子には0が入力され(グランド電位とされ)、その部分の搬送波が発生しないようにされる(データ伝送には用いない)。
【0019】
次に、本発明の実施の形態について説明するに、図1は本発明の一実施の形態のブロック図を示す。同図において、前記演算部に相当する演算部が1〜1で示すようにn回路並列に設けられている。これら演算部1〜1はディジタルシグナルプロセッサ(DSP)により具現化され、図示しない外部システムから伝送情報信号(前記ディジタルデータなど)が複数の入力端子に供給され、また伝送モード信号が特定の入力端子に供給され、前記したIDFT演算をそれぞれ予め割り当てられた異なる周波数割当で別々に同時に行う。
【0020】
すなわち、演算部1〜1は外部システムからの伝送情報が8ビットずつ、”AB”、”CD”、”EF”、”GH”、...(各文字は4ビットの固まりを表す)の順に到来する場合、1番目から128番目の入力端子と384番目から511番目の実数部入力端子と虚数部入力端子にそれぞれ4ビットの信号が入力される。この場合の搬送波番号と実数部入力端子、虚数部入力端子のデータの割り当ては次のように所定量ずつずらした配置とする。
【0021】
【表1】

Figure 0003582180
更に、特定搬送波(キャリア)で受信側での振幅・位相補正のための基準データや同期用データ等(伝送モードもこれらに含まれる)を挿入するので、これらに該当するところのデータは、後に他の搬送波に転送される。このとき、演算部1〜1は伝送情報の前記周波数割当を示す周波数割当情報を、伝送モード信号を設定する特定の搬送波(この搬送波は、すべての演算部1〜1において同一)に”x1”,”x2”,”x3”,...,”xn”を挿入する(xは他のモードで使用)。すなわち、表1に示した周波数配置では、8ビットの伝送モード信号中の下位4ビットに固有の周波数割当情報を設定して、共通の特定搬送波で伝送する。
【0022】
上記の演算部1〜1のIDFT演算結果(I信号及びQ信号)は、1回のIDFT演算において256個の入力情報が512点の時間軸信号(I信号及びQ信号)として、バースト的に発生されるのに対し、後段の回路では一定で連続的に信号処理を行う必要から、両者の時間的違いを調整するために、IDFT演算結果は出力バッファ2に一時蓄積される。
【0023】
演算部1〜1のIDFT演算結果は、出力バッファ2よりの出力停止信号と演算部1よりの演算結果送出信号の制御の下に出力バッファ2へ出力される。ここで、出力バッファ2の蓄積量と出力停止信号との関係について図2と共に説明する。出力バッファ2のバッファ蓄積量を図2(A)に示すように、空状態(エンプティ)、準空状態(オールモースト・エンプティ)、半蓄積状態(ハーフ)、準満杯状態(オールモースト・フル)、満杯状態(フル)に分けた場合、出力停止信号は図2(B)に示すように、オールモースト・フル及びフルの状態にのみハイレベル(真)で、それ以外の状態ではローレベル(偽)である。例えば、出力バッファ2はバッファ蓄積量をOFDM信号の約10シンボル分用意し、バッファ蓄積量が約9シンボル分以上になると、出力停止信号を真(オールモースト・フルの境界)とする。
【0024】
この出力停止信号は、出力バッファ2への書き込みクロックでカウントアップ、読み出しクロックでカウントダウンする、アップダウンカウンタで発生してもよく、また、それらの機能を有するFIFO−RAM(例えば、インテグレーテッド・デバイス・テクノロジー社製のIDT72245LB)等で発生してもよい。装置全体の伝送速度は、出力バッファ2の読み出しクロックで制御されており、よって、この信号により伝送データの生成が制御される。
【0025】
また、演算部1〜1のうち演算部1〜1は自身のIDFT演算結果であるI信号とQ信号のシンボル毎のピーク値を、演算部1へ図1に3〜3で示すように出力する機能を有し、演算部1も自身のシンボル毎のピーク値を検出する機能を有する。更に、演算部1はすべての演算部1〜1のシンボル毎のピーク値の中から最小のものを選択し、出力バッファ2より入力される出力停止信号が”偽”(非アクティブ)であるときには、直ちに最小のピーク値を通知した演算部1に対して(1自身であれば1に対して)演算結果送出信号4を供給し、その演算結果を出力バッファ2へ出力させる。
【0026】
すると、出力バッファ2のバッファ蓄積量が増加していく。これにより、バッファ蓄積量が約9シンボル分以上になると、出力停止信号が真(オールモースト・フルの境界)とされる。また出力停止信号が”真”(アクティブ)になると、すべての演算部1〜1の演算結果出力が停止されるのに対し、出力バッファ2の蓄積情報は連続的に読み出されているので、バッファ蓄積量が減少していく。その結果、出力バッファ2はバッファ蓄積量が所定値以下となった時点で出力停止信号を”偽”とする
従って、演算部1は、すべての演算部1〜1のシンボル毎のピーク値の中から最小のものを選択し、出力バッファ2より入力される出力停止信号が”真”であるときには、”偽”になるまで待った後、最小のピーク値を通知した演算部1に対して(1自身であれば1に対して)演算結果送出信号4を供給し、演算部1の演算結果を出力バッファ2へ出力させる。以下、上記と同様の状態を繰り返す。
【0027】
出力バッファ2から連続的に読み出されたI信号及びQ信号は、直交変調手段により直交変調されて互いに周波数の異なる257波(正負128組の搬送波と中心搬送波一つ)の情報搬送波のそれぞれが256QAM変調されたOFDM信号に変換された後、周波数変換器により送信周波数帯に周波数変換され、更に送信部で電力増幅等されてアンテナより放射される。
【0028】
周波数分割多重信号受信装置においては、直交復調及びDFT演算後、特定キャリアの伝送モード信号から識別して周波数割当情報に従い、予め設定してある周波数割当を補正し、DFT演算結果の復号を行う。
【0029】
なお、本発明は上記の実施の形態に限定されるものではなく、他の実施の形態も可能である。例えば、外部システムから演算部1〜1に入力される8ビット伝送情報が”AB”、”CD”、”EF”、”GH”、...、”YZ”の順で入力されるとき、伝送情報のIDFT演算に対する周波数割当を次のように、虚数部のみ所定量(例えば一つずつ)ずらすようにしてもよい。
【0030】
【表2】
Figure 0003582180
また、外部システムから演算部1〜1に入力される8ビット伝送情報が”AB”、”CD”、”EF”、”GH”、...、”YZ”の順で入力されるとき、伝送情報のIDFT演算に対する周波数割当を次のように、実数部を正の方向に例えば一つずつ、虚数部を負の方向に例えば一つずつずらすようにしてもよい。
【0031】
【表3】
Figure 0003582180
更に、外部システムから演算部1〜1に入力される8ビット伝送情報が”AB”、”CD”、”EF”、”GH”、...、”YZ”の順で入力されるとき、伝送情報のIDFT演算に対する周波数割当を次のように所定量(例えば二つずつ)ずらすようにしてもよい。これはIDFT演算の第一ステージをハードウェア化している場合都合がよい。
【0032】
【表4】
Figure 0003582180
ところで、出力バッファ2はサンプリングデータパルス512個、ガードインターバル期間12パルスの計524個のパルスを計数した時点で、1シンボル周期の読み出し完了信号を発生する。そこで、以上の実施の形態では、演算部1 は、ピーク値が最小の演算部1 の演算結果を出力停止信号が”偽”のときに出力するように説明したが、出力停止信号の代わりに、1シンボル分のデータを読み出す毎に出力バッファ2が発生する、上記の読み出し完了信号をもとに演算部が演算結果を出力バッファ2へ送出するようにしてもよい。また、ピーク値が最小の演算部1の演算結果でなく、ピーク値が所定値以下の演算部の中から任意の一の演算部の演算結果を出力するようにしてもよい。
【0033】
【発明の効果】
以上説明したように、本発明によれば、複数の演算部のそれぞれが入力伝送情報に対して互いに異なる周波数割当で並列に逆離散的フーリエ変換演算し、それらの演算結果の中からピーク値が所定量以下の任意の演算結果、あるいは最も1ピーク値が小さい演算結果を出力することで、各搬送波の位相が揃ってしまうことによる最大ピーク値の発生を大幅に低減でき、よって、演算速度が低速な安価な演算部を複数使用して、非常に低い確率で演算部より出力される周波数分割多重信号のピーク値を減少させることができる。
【0034】
従って、本発明によれば、安価な演算部や安価な電気系(D/A変換器、A/D変換器のダイナミックレンジの適正化、増幅器等のリニアリティの適正化)で装置全体を構成できると共に、送信装置の小型・軽量化を送信装置の電源装置も含めて実現し得、また周波数分割多重信号のS/N向上(信頼性向上)が図れる。
【図面の簡単な説明】
【図1】本発明の一実施の形態のブロック図である。
【図2】図1の出力バッファの出力信号の説明図である。
【符号の説明】
演算部(所定の一の演算部)
〜1n、 演算部
2 出力バッファ
〜3 ピーク値通知信号
〜4 演算結果送出信号[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a frequency division multiplex signal generating apparatus, and more particularly to a frequency division multiplexing apparatus that converts an encoded digital video signal or the like into an orthogonal frequency division multiplex (OFDM) signal of a limited frequency band and transmits / receives the signal. The present invention relates to a signal generation device.
[0002]
[Prior art]
As one of methods for transmitting an encoded digital video signal or the like in a limited frequency band, multi-level modulated digital information such as 256 quadrature amplitude modulation (QAM) is transmitted using a large number of carriers. An OFDM method of transmitting as an OFDM signal has been conventionally known because of its features such as being resistant to multipath, resistant to interference, and having relatively good frequency use efficiency. The OFDM system is a system in which a large number of carriers are arranged orthogonally and independent digital information is transmitted on each carrier. Note that “carriers are orthogonal” means that the spectrum of an adjacent carrier becomes zero at the frequency position of the carrier.
[0003]
According to the OFDM method, a guard band period (guard interval) is set, and information of the period is transmitted in an overlapping manner, so that transmission distortion caused by multipath of radio waves can be reduced. That is, the reception of the OFDM signal detects the amplitude and phase modulation components of the signal transmitted within the symbol period, and decodes the value of the information based on these levels. By removing and decoding, the multipath signal of the same symbol section and the signal to be received have the same frequency component, so that decoded digital data with little transmission distortion can be transmitted in a relatively narrow frequency band.
[0004]
[Problems to be solved by the invention]
However, in the conventional frequency division multiplex signal generating apparatus for generating the above-mentioned OFDM signal, the OFDM signal formed by synthesizing a large number of information carriers is not provided with a measure against the peak power which occurs instantaneously. High power may be generated. For example, since the power of an OFDM signal using 256 information carriers is a combined average power of 256 times the power of one information carrier, if the maximum amplitude voltage values of all information carriers are generated coincidently, , 256 times the transmission power of one carrier (or D / A converter, dynamic range of A / D converter, analog linearity, etc.). Conversely, the signal-to-noise ratio (S / N) per carrier decreases accordingly.
[0005]
The probability that the phases of all the carrier waves coincide with each other is very small and hardly occurs in practice, but the average power value is set to a low value with a margin, and the transmission power device also has a margin of about 10 to 20 times the average power. A device capable of generating a large output signal having a high power signal is considered so that even a rarely generated high power signal can be transmitted without being saturated. For this reason, the conventional frequency division multiplex signal generator has a problem that the entire device is expensive and large.
[0006]
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and is intended to reduce the peak power of a generated frequency division multiplexed signal, thereby realizing a small and lightweight transmission apparatus including a power supply apparatus of the transmission apparatus. It is an object to provide a multiplex signal generation device.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a frequency division multiplexed signal generation device according to the present invention includes a transmission information signal input in parallel to a plurality of input terminals and a transmission mode signal input in parallel to a specific input terminal. On the other hand, an inverse discrete Fourier transform operation is performed to generate an in-phase signal and a quadrature signal having mutually different frequency allocations with respect to the input signal, and to output them together with their own frequency allocation information. A plurality of operation units having a function of detecting a peak value for each, and an output buffer for temporarily storing output operation results from one of the plurality of operation units and continuously reading out frequency division multiplexed signals Wherein the predetermined one of the plurality of arithmetic units includes a respective synth from all of the plurality of arithmetic units including itself. The peak value of the calculation result for each file is input, and the calculation result of the peak value that is equal to or less than the predetermined value is notified, and the calculation result and the frequency allocation information unique to the calculation unit are output from any one of the calculation units to the output buffer. This is a configuration for selectively outputting.
[0008]
Further, the frequency division multiplexed signal generating apparatus of the present invention has an output buffer having an accumulation amount of one symbol or more, and when the accumulation amount is equal to or more than a predetermined value, generating an output stop signal of “true” and performing a plurality of arithmetic operations. And a function of supplying the signal to a predetermined one of the calculation units, and the predetermined one of the calculation units compares the peak values notified from all of the plurality of calculation units, and notifies the minimum peak value. If the output stop signal is “false” for the one operation unit, and immediately waits until the output stop signal becomes “false” for “true”, the operation result is notified to the one operation unit that notified the minimum peak value. It has a function of supplying a transmission signal and transmitting the calculation result.
[0009]
Here, the frequency allocation of the plurality of operation units may be such that the input transmission information signal is shifted by a predetermined amount among the plurality of operation units, or one of the real part and the imaginary part of the input transmission information signal is shifted by a predetermined amount. By shifting the real part and the imaginary part of the input transmission information signal by predetermined amounts in opposite directions.
[0010]
In the present invention, as described above, each of the plurality of calculation units performs the inverse discrete Fourier transform calculation on the input transmission information in parallel with different frequency allocations, and the peak value is less than a predetermined amount from the calculation results. Since an arbitrary calculation result or a calculation result having the smallest peak value is output, it is possible to greatly reduce the occurrence of the maximum peak value due to the fact that the phases of the carrier waves are aligned.
[0011]
As for the relationship between the calculation time and the transmission speed, for example, if the transmission time of one symbol is 2.5 ms, one symbol is transmitted at a transmission speed of 2.5 ms, and this does not change at a constant value. On the other hand, the operation time of the operation unit is finished in a time slightly shorter than 2.5 ms, and the end of the transmission of the previous symbol is waited. Here, if the peak value of the calculation result becomes a predetermined value or more assuming that the calculation unit is single, the frequency allocation may be changed and the same calculation may be performed again. In that case, however, the calculation speed is high. Parts and is expensive. As in the present invention, the provision of a plurality of low-speed operation units is advantageous in terms of cost.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings. First, before describing the frequency division multiplex signal generation apparatus of the present invention, an outline of an OFDM signal transmission apparatus to which the frequency division multiplex signal generation apparatus of the present invention is applied will be described. Here, transmission information is transmitted as an OFDM signal using 256 carriers. In addition, in order to facilitate the design of the analog signal system at the subsequent stage, it is assumed that the OFDM signal is generated by using a double oversampling and performing a 512-point inverse discrete Fourier transform (IDFT) operation.
[0013]
In this transmission device, digital data to be transmitted, such as a digital video signal or an audio signal, which is compressed by an encoding method such as the MPEG method, which is a color moving image encoding and displaying method, is supplied to an arithmetic unit. This operation unit performs an inverse discrete Fourier transform (IDFT) operation on the input digital data to generate an in-phase signal (I signal) and a quadrature signal (Q signal). This operation unit operates at a sample clock frequency higher than a predetermined frequency bandwidth. When transmitting transmission information using 256 carriers, a signal is generated by performing IDFT calculation of 512 points using double oversampling. At this time, the input allocation to the IDFT operation unit is as follows when the numbers are sequentially assigned in the input frequency alignment type.
[0014]
n = 0 to 128 An information signal for modulating the carrier is provided.
[0015]
n = 129 to 383 The carrier level is set to 0, and no signal is generated.
[0016]
n = 384-511 An information signal for modulating the carrier is provided.
[0017]
That is, the number of input terminals of the IDFT operation unit is 512 for the real part (R) signal and 512 for the imaginary part (I) signal, of which the first (n = 1) to the 127th (n = 127) are used. An information signal is input to a total of 127 input terminals of a total of 127 and a total of 127 input terminals of a 385th (n = 385) to a 511th (n = 511), and a 0th (n = 0) input terminal DC voltage (constant) is input and transmitted at the center frequency of the carrier wave to be transmitted. The 128th (n = M / 4) and 384th (n = 3M / 4) input terminals are, for example, for pilot signals. A fixed voltage is input, and is transmitted on a carrier having a frequency at both ends which is half the Nyquist frequency.
[0018]
Here, the input information of a total of 128 input terminals from the 1st to the 128th is transmitted by a carrier for information transmission on the upper side (higher frequency side) of the center carrier frequency F0, and a total of 128 input information from the 384th to the 511th is provided. The input information of the input terminal is transmitted by an information transmission carrier below (lower side of) the center carrier frequency. In addition, 0 is input to the remaining 129th to 383th input terminals (the ground potential), so that a carrier wave of that portion is not generated (not used for data transmission).
[0019]
Next, an embodiment of the present invention will be described. FIG. 1 shows a block diagram of an embodiment of the present invention. In the figure, the arithmetic unit corresponding to the operation portion is provided on the n circuits parallel as shown by 1 1 to 1 n. These arithmetic unit 1 1 to 1 n is embodied by a digital signal processor (DSP), (such as the digital data) transmission information signal from an external system (not shown) is supplied to a plurality of input terminals, also the transmission mode signal is given The IDFT operation is supplied to an input terminal, and the above-described IDFT operation is separately and simultaneously performed using different frequency allocations that are allocated in advance.
[0020]
That is, the arithmetic unit 1 1 to 1 n is 8 bits transmitted information from external systems, "AB", "CD" , "EF", "GH" ,. . . When each character arrives in the order of 4 bits, a 4-bit signal is input to each of the first to 128th input terminals, the 384th to 511th real part input terminals, and the imaginary part input terminals. You. In this case, the assignment of the carrier wave number and the data of the real part input terminal and the imaginary part input terminal is shifted by a predetermined amount as follows.
[0021]
[Table 1]
Figure 0003582180
Furthermore, reference data for synchronization and amplitude correction on the receiving side at the specific carrier (carrier) and data for synchronization (including the transmission mode) are inserted. Transfer to another carrier. In this case, particular carrier arithmetic unit 1 1 to 1 n is the frequency allocation information indicating the frequency allocation of the transmission information, to set the transmission mode signal (identical in this carrier, all of the arithmetic unit 1 1 to 1 n) , "X1", "x2", "x3",. . . , “Xn” (x is used in another mode). That is, in the frequency arrangement shown in Table 1, unique frequency allocation information is set in the lower 4 bits of the 8-bit transmission mode signal, and transmission is performed on a common specific carrier.
[0022]
The above arithmetic unit 1 1 to 1 n IDFT calculation result of (I signal and Q signal) as a single IDFT time domain signal 256 input information 512 points in operation (I signal and Q signal), burst On the other hand, since the subsequent circuits need to perform constant and continuous signal processing, the IDFT calculation result is temporarily stored in the output buffer 2 in order to adjust the time difference between the two.
[0023]
Arithmetic unit 1 1 to 1 n IDFT operation result of is output to the output buffer 2 under the control of the output stop signal from the output buffer 2 and the arithmetic unit 1 operation result transmission signal from the 1. Here, the relationship between the accumulation amount of the output buffer 2 and the output stop signal will be described with reference to FIG. As shown in FIG. 2A, the buffer accumulation amount of the output buffer 2 is empty (empty), semi-empty (all-most empty), semi-accumulated (half), semi-full (all-most full). 2B, the output stop signal is at a high level (true) only in the all-most-full and full states as shown in FIG. 2B, and is at a low level (true) in other states. False). For example, the output buffer 2 prepares a buffer storage amount for about 10 symbols of the OFDM signal, and when the buffer storage amount becomes about 9 symbols or more, sets the output stop signal to true (a boundary between all-most and full).
[0024]
This output stop signal may be generated by an up-down counter that counts up by a write clock to the output buffer 2 and counts down by a read clock, and may be generated by a FIFO-RAM (for example, an integrated device) having these functions. -IDT72245LB manufactured by Technology Co., Ltd.) or the like. The transmission speed of the entire apparatus is controlled by the read clock of the output buffer 2, and therefore, generation of transmission data is controlled by this signal.
[0025]
The arithmetic unit 1 2 to 1 n of the arithmetic unit 1 1 to 1 n is the peak value of each symbol of I and Q signals are IDFT computation result of its own, Fig. 1 to 3 2 to the arithmetic unit 1 1 and outputting as indicated by 3 n, also it has a function of detecting a peak value of each own symbol calculating unit 1 1. Further, the arithmetic unit 1 1 selects the smallest among all of the arithmetic unit 1 1 to 1 n peak values of each symbol of the output stop signal is "false" input from the output buffer 2 (non-active) when it is immediately fed smallest relative arithmetic unit 1 m which notifies the peak value (1 1 if itself to 1 1) the operation result transmitted signal 4 m, the calculation result to the output buffer 2 Output.
[0026]
Then, the buffer accumulation amount of the output buffer 2 increases. As a result, when the buffer storage amount becomes equal to or more than about 9 symbols, the output stop signal is set to true (the boundary between all-most and full). Also becomes the output stop signal is "true" (active), whereas the operation result output from all of the arithmetic unit 1 1 to 1 n is stopped, the storage information of the output buffer 2 is read out continuously Therefore, the buffer accumulation amount decreases. As a result, the output buffer 2 sets the output stop signal to “false” when the buffer accumulation amount becomes equal to or less than the predetermined value. Therefore, the arithmetic unit 11 sets the peak value for each symbol of all the arithmetic units 11 to 1 n. select the smallest among the values, when the output stop signal is input from the output buffer 2 is "true", after waiting until the "false", the minimum of the arithmetic unit 1 m which notifies the peak value (if 1 1 itself 1 1 relative) for supplying an operation result transmission signal 4 m, and outputs the operation result of the arithmetic unit 1 m to the output buffer 2. Hereinafter, the same state as described above is repeated.
[0027]
The I signal and Q signal continuously read from the output buffer 2 are orthogonally modulated by the orthogonal modulation means, and each of 257 information carrier waves (128 positive and negative carrier waves and one central carrier wave) having different frequencies from each other. After being converted into a 256QAM-modulated OFDM signal, the signal is frequency-converted by a frequency converter into a transmission frequency band, further power-amplified in a transmission unit, and radiated from an antenna.
[0028]
In the frequency division multiplexed signal receiving apparatus, after orthogonal demodulation and DFT operation, the frequency division multiplexed signal is identified from the transmission mode signal of the specific carrier, and according to the frequency allocation information, the preset frequency allocation is corrected and the DFT operation result is decoded.
[0029]
The present invention is not limited to the above embodiment, and other embodiments are possible. For example, 8-bit transmission information "AB" is inputted from the external system to the arithmetic unit 1 1 ~1 n, "CD" , "EF", "GH" ,. . . , “YZ”, the frequency allocation for the IDFT operation of the transmission information may be shifted by a predetermined amount (for example, one by one) only in the imaginary part as follows.
[0030]
[Table 2]
Figure 0003582180
Also, 8-bit transmission information "AB" is inputted from the external system to the arithmetic unit 1 1 ~1 n, "CD" , "EF", "GH" ,. . . , "YZ", the frequency allocation for the IDFT operation of the transmission information is shifted, for example, one by one in the positive direction and one by one in the negative direction, for example, as follows. You may do so.
[0031]
[Table 3]
Figure 0003582180
Furthermore, 8-bit transmission information "AB" is inputted from the external system to the arithmetic unit 1 1 ~1 n, "CD" , "EF", "GH" ,. . . , "YZ", the frequency allocation for the IDFT operation of the transmission information may be shifted by a predetermined amount (for example, two by two) as follows. This is convenient when the first stage of the IDFT operation is implemented by hardware.
[0032]
[Table 4]
Figure 0003582180
When the output buffer 2 counts a total of 524 pulses of 512 sampling data pulses and 12 pulses of a guard interval period, it generates a read completion signal of one symbol period. Therefore, in the above embodiment, the arithmetic unit 1 1, the peak value is output stop signal the calculation result of the minimum operation unit 1 m has been described so as to output when the "false", the output stop signal Alternatively, the output buffer 2 may be generated every time data of one symbol is read. The calculation unit may send the calculation result to the output buffer 2 based on the above read completion signal. Further, instead of the operation result of the peak value is the minimum of the arithmetic unit 1 m, the peak value may output the calculation result of any one of the arithmetic unit from the operation unit of the predetermined value or less.
[0033]
【The invention's effect】
As described above, according to the present invention, each of the plurality of operation units performs the inverse discrete Fourier transform operation on the input transmission information in parallel with different frequency allocations, and a peak value is obtained from the operation results. By outputting an arbitrary calculation result equal to or less than a predetermined amount or a calculation result having the smallest one peak value, it is possible to greatly reduce the occurrence of the maximum peak value due to the alignment of the phases of the respective carrier waves. By using a plurality of low-speed and inexpensive arithmetic units, the peak value of the frequency division multiplexed signal output from the arithmetic unit can be reduced with a very low probability.
[0034]
Therefore, according to the present invention, the entire apparatus can be configured with an inexpensive operation unit and an inexpensive electric system (optimizing the dynamic range of the D / A converter and the A / D converter and optimizing the linearity of the amplifier and the like). At the same time, the size and weight of the transmission device can be reduced, including the power supply device of the transmission device, and the S / N of the frequency division multiplexed signal can be improved (the reliability can be improved).
[Brief description of the drawings]
FIG. 1 is a block diagram of one embodiment of the present invention.
FIG. 2 is an explanatory diagram of an output signal of an output buffer of FIG.
[Explanation of symbols]
11 1 arithmetic unit (predetermined one arithmetic unit)
1 2 ~1 n, 1 m arithmetic unit 2 the output buffer 3 1 to 3 n peak value notification signal 4 1 to 4 n calculation result transmission signal

Claims (6)

それぞれの複数の入力端子に並列に入力された伝送情報信号とそれぞれの特定の入力端子に並列に入力された伝送モード信号に対し、逆離散的フーリエ変換演算して入力信号に対する互いに周波数割当が異なる同相信号と直交信号とを生成して自己の周波数割当情報と共に出力すると共に、生成した前記同相信号及び直交信号のシンボル毎のピーク値を検出する機能を有する複数の演算部と、
前記複数の演算部のうち選択された一の演算部からの出力演算結果を一時蓄積して周波数分割多重信号を連続して読み出す出力バッファとを有する周波数分割多重信号生成装置であって、
前記複数の演算部のうちの所定の一の演算部は、自身を含め前記複数の演算部のすべてからそれぞれの各シンボル毎の演算結果のピーク値が入力され、そのうち所定値以下のピーク値の演算結果を通知した、いずれか一の演算部からその演算結果とその演算部に固有の周波数割当情報を前記出力バッファへ選択出力させ、前記出力バッファは、1シンボル以上の蓄積量を有し、蓄積量が所定値以上のときに”真”の出力停止信号を発生して前記複数の演算部のうちの所定の一の演算部に供給する機能を有し、前記所定の一の演算部は、すべての前記複数の演算部から通知されたピーク値をそれぞれ比較して最小のピーク値を通知した一の演算部に対して、前記出力停止信号が”偽”であれば直ちに、”真”であれば”偽”になるまで待った後、前記最小のピーク値を通知した一の演算部へ演算結果送出信号を供給して、その演算結果を送出させる機能を有することを特徴とする周波数分割多重信号生成装置。
An inverse discrete Fourier transform operation is performed on the transmission information signal input in parallel to each of the plurality of input terminals and the transmission mode signal input in parallel to each of the specific input terminals, and the frequency assignments of the input signals are different from each other. A plurality of calculation units having a function of generating an in-phase signal and a quadrature signal and outputting the same together with its own frequency allocation information, and detecting a peak value for each symbol of the generated in-phase signal and the quadrature signal,
A frequency division multiplexed signal generation device, comprising: an output buffer for temporarily storing output operation results from a selected one of the plurality of operation units and continuously reading out frequency division multiplexed signals,
A predetermined one of the plurality of calculation units receives a peak value of a calculation result for each symbol from all of the plurality of calculation units including itself, and includes a peak value of a predetermined value or less. Notify the calculation result, select and output the calculation result and the frequency allocation information unique to the calculation unit from any one of the calculation units to the output buffer, the output buffer has a storage amount of one symbol or more, A function of generating a “true” output stop signal when the accumulated amount is equal to or more than a predetermined value and supplying the signal to a predetermined one of the plurality of processing units; If the output stop signal is “false”, the value of “true” is immediately output to one of the arithmetic units that has notified the minimum peak value by comparing the peak values notified from all of the plurality of arithmetic units. Then wait until it becomes "false" And supplies a calculation result transmission signal to said minimum of one computation unit which notifies the peak value, frequency division multiplexed signal generating apparatus characterized by having a function of sending the result of the operation.
前記複数の演算部のそれぞれは、前記自己に固有の周波数割当情報を前記伝送モード信号に挿入して特定の搬送波で伝送するように逆離散的フーリエ変換することを特徴とする請求項記載の周波数分割多重信号生成装置。Wherein each of the plurality of operation portions, according to claim 1, wherein the inverse discrete Fourier transform to transmit a unique frequency assignment information to said self in certain carrier is inserted into the transmission mode signal Frequency division multiplex signal generator. 前記複数の演算部のうち1番目の演算部は入力伝送情報信号をそのまま周波数割り当てし、k番目(kは2以上で演算部の総数以下の自然数)の演算部は入力伝送情報信号を、(k−1)番目の演算部に入力される同じ入力伝送情報信号よりも所定量ずらして周波数割り当てすることを特徴とする請求項1又は2記載の周波数分割多重信号生成装置。The first arithmetic unit among the plurality of arithmetic units assigns the frequency of the input transmission information signal as it is, and the k-th (k is a natural number equal to or greater than 2 and equal to or less than the total number of arithmetic units) the input transmission information signal, 3. The frequency division multiplexed signal generation apparatus according to claim 1, wherein the frequency is allocated with a predetermined amount shifted from the same input transmission information signal input to the (k-1) th arithmetic unit. 前記複数の演算部のうち1番目の演算部は入力伝送情報信号をそのまま周波数割り当てし、k番目(kは2以上で演算部の総数以下の自然数)の演算部は入力伝送情報信号の実数部及び虚数部の一方を、(k−1)番目の演算部に入力される同じ入力伝送情報信号の実数部及び虚数部の一方よりも所定量ずらして周波数割り当てすることを特徴とする請求項記載の周波数分割多重信号生成装置。The first operation unit among the plurality of operation units assigns the frequency of the input transmission information signal as it is, and the k-th operation unit (k is a natural number not less than 2 and not more than the total number of operation units) is a real part of the input transmission information signal. and one of the imaginary part, claim 1, characterized in that the frequency allocation by shifting a predetermined amount than the one of the real and imaginary parts of the same input transmission information signal input to the (k-1) th arithmetic unit A frequency division multiplexed signal generation device as described in the above. 前記複数の演算部のうち1番目の演算部は入力伝送情報信号をそのまま周波数割り当てし、k番目(kは2以上で演算部の総数以下の自然数)の演算部は入力伝送情報信号の実数部及び虚数部のそれぞれを、(k−1)番目の演算部に入力される同じ入力伝送情報信号の実数部及び虚数部のそれぞれよりも相対的に反対方向に所定量ずらして周波数割り当てすることを特徴とする請求項記載の周波数分割多重信号生成装置。The first operation unit among the plurality of operation units assigns the frequency of the input transmission information signal as it is, and the k-th operation unit (k is a natural number not less than 2 and not more than the total number of operation units) is a real part of the input transmission information signal. And allocating the frequency by shifting each of the imaginary part and the real part and the imaginary part of the same input transmission information signal input to the (k-1) th arithmetic unit by a predetermined amount in a direction relatively opposite to each other. The frequency division multiplexed signal generation device according to claim 1, wherein: 前記所定の一の演算部は、前記出力停止信号に代えて出力バッファが1シンボル分のデータを読み出す毎に発生する読み出し完了信号に基づいて、前記最小のピーク値を通知した一の演算部の演算結果を送出させる機能を有することを特徴とする請求項記載の周波数分割多重信号生成装置。The predetermined one arithmetic unit is configured to notify the minimum peak value based on a read completion signal generated each time the output buffer reads one symbol of data in place of the output stop signal. frequency division multiplex signal generating apparatus according to claim 1, characterized in that it has a function of sending the operation result.
JP25221595A 1995-09-29 1995-09-29 Frequency division multiplex signal generator Expired - Fee Related JP3582180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25221595A JP3582180B2 (en) 1995-09-29 1995-09-29 Frequency division multiplex signal generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25221595A JP3582180B2 (en) 1995-09-29 1995-09-29 Frequency division multiplex signal generator

Publications (2)

Publication Number Publication Date
JPH0998147A JPH0998147A (en) 1997-04-08
JP3582180B2 true JP3582180B2 (en) 2004-10-27

Family

ID=17234116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25221595A Expired - Fee Related JP3582180B2 (en) 1995-09-29 1995-09-29 Frequency division multiplex signal generator

Country Status (1)

Country Link
JP (1) JP3582180B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068543A1 (en) * 2004-12-21 2006-06-29 Telefonaktiebolaget Lm Ericsson (Publ) Transmitter apparatus and method for transmitting packet data units in a communication system
WO2006082675A1 (en) * 2005-02-03 2006-08-10 National University Corporation NARA Institute of Science and Technology Transmission device, transmission aiding device, reception device, reception aiding device, transmission/reception system, and communication method

Also Published As

Publication number Publication date
JPH0998147A (en) 1997-04-08

Similar Documents

Publication Publication Date Title
JP3999271B2 (en) Reduction of average power-to-peak ratio in multi-carrier modulation systems
EP0839423B1 (en) Pulse shaping for multicarrier modulation
JP3800503B2 (en) Multi-carrier signal generation method
US7526045B2 (en) Multi-tone transmission
EP0553841A2 (en) Method and apparatus for digital signal transmission using orthogonal frequency division multiplexing
US6816453B1 (en) Communication system using orthogonal frequency division multiplexed signal
US20030086363A1 (en) System and apparatus for block segmentation procedure for reduction of peak-to- average power ratio effects in orthogonal frequency-division multiplexing modulation
KR20130020803A (en) Improved orthogonal frequency-division multiplexing (ofdm) communication slot structures and methods
JP2000115034A (en) Wired transmission device and method
KR100554048B1 (en) Amplitude-phase correction circuit, receiving device and transmitting device
JP3525578B2 (en) Frequency division multiplex signal generation device and decoding device
JP3582180B2 (en) Frequency division multiplex signal generator
JP2735025B2 (en) Frequency division multiplex signal generator
US5832030A (en) Multi-carrier transmission system utilizing channels with different error rates
EP1283627B1 (en) Multitone transmission with control of peak power
JP2000115115A (en) Generation method and decoding method for orthogonal multi-carrier signals
JP3235766B2 (en) Multicarrier peak power suppression transmitter
JP3799808B2 (en) Multi-carrier transmission / reception method and receiving apparatus
JP3541526B2 (en) Frequency division multiplex signal generation method and decoding method
JP3541653B2 (en) Received signal correction system and orthogonal frequency division multiplexed signal transmission device
JP3582307B2 (en) IDFT arithmetic unit
JPH09107345A (en) Frequency division multiplex signal generator and decoder
JP2000224133A (en) Frequency division multiplex signal transmitter-receiver and transmission-reception method
JP2790240B2 (en) Orthogonal frequency division multiplexed signal transmitting / receiving device
JPH09149003A (en) Method for generating frequency division multiplex signal and transmission/reception method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees