JP3582117B2 - Decomposition method of molten salt in incineration ash melting furnace - Google Patents

Decomposition method of molten salt in incineration ash melting furnace Download PDF

Info

Publication number
JP3582117B2
JP3582117B2 JP29355994A JP29355994A JP3582117B2 JP 3582117 B2 JP3582117 B2 JP 3582117B2 JP 29355994 A JP29355994 A JP 29355994A JP 29355994 A JP29355994 A JP 29355994A JP 3582117 B2 JP3582117 B2 JP 3582117B2
Authority
JP
Japan
Prior art keywords
melting furnace
metal
melt
phase
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29355994A
Other languages
Japanese (ja)
Other versions
JPH08152124A (en
Inventor
順也 西野
十次郎 梅田
健士 櫻井
哲也 渡辺
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP29355994A priority Critical patent/JP3582117B2/en
Publication of JPH08152124A publication Critical patent/JPH08152124A/en
Application granted granted Critical
Publication of JP3582117B2 publication Critical patent/JP3582117B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Furnace Details (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、焼却灰溶融炉における溶融塩の分解方法に係り、特に、ごみや産業廃棄物等を焼却した際の飛灰等を溶融処理した際に生成される溶融塩を分解して安定化及び無害化を図る技術に関するものである。
【0002】
【従来の技術】
都市ごみ等の被焼却物を焼却するための焼却炉の例として、実開平3−56027号「流動床式焼却炉」が提案されている。
また、飛灰(ダスト)を溶融炉で溶融処理する関連技術例として、以下の提案がなされている。
▲1▼特開昭58−030382号「ダストの処理方法」
▲2▼特開昭58−040791号「出滓方法」
▲3▼特開昭60−053780号「直接通電式溶融処理炉の電極挿入制御装置」
▲4▼特開昭60−054780号「ダストの溶融処理炉」
▲5▼特公昭63−051755号「ダストの処理方法」
▲6▼特開昭63−315187号「焼却炉排ガスの処理法」
▲7▼特開平02−099184号「重金属含有ダストの無害化処理方法」
これらの技術では、都市ごみ等の焼却炉から排出される飛灰(ダスト)を溶融炉で溶融処理してダストの溶融固化を行なう際に、溶融時に生じる諸問題を解決するようにしている。
【0003】
例えば従来技術例▲1▼▲4▼▲5▼にあっては、飛灰(ダスト)を溶融によりスラグ化させて、減容化及び無害化を図るようにようにしている。
【0004】
【発明が解決しようとする課題】
しかし、飛灰(ダスト)中に含まれる塩素化合物等の塩類は、溶融処理しただけではスラグ化せず、スラグとともにあるいは塩類として出滓されてしまうため、塩類の水への可溶性に基づいて、廃棄処分後に有害成分が溶出してしまう等の解決すべき課題が残されている。
【0005】
本発明は、上記事情に鑑みてなされたもので、焼却灰を溶融処理した際に生成される溶融塩を、溶融炉の内部で金属または金属酸化物とガス成分とに分解して回収し、安定化及び無害化を図ることを目的としている。
【0006】
【課題を解決するための手段】
ごみや産業廃棄物等を焼却した際に生成される飛灰や焼却灰等の被溶解物を溶融炉に投入して加熱することにより溶融状態に導く場合に、被溶解物を溶融化する工程と、溶融物に上方が正極下方が負極となる直流通電を行ない溶融状態の塩類の電気分解を行なう工程と、電気分解により生成された分解ガスを溶融炉から排出処理するとともに電気分解により生成された金属または金属酸化物をスラグ相または金属相に含浸させる工程とを有する技術が採用される。
電気分解時には、溶融物の上層部を塩類の沸点以下に、かつ溶融物を溶融状態の維持温度以上に保持する技術が採用される。
溶融物の上層部を形成する塩相に、上部電極を位置させた状態で電気分解を行なう技術が付加される。
また、これらの技術に、上下に配した上部電極及び下部電極間のアーク放電により被溶解物を溶融状態に導く工程と、溶融層の抵抗発熱により溶融範囲を拡大する工程と、上部電極及び下部電極間の直流通電により溶融状態の塩類の電気分解を行なう工程とを有する技術が付加される。
上部電極及び下部電極は、アーク放電による被溶解物の加熱と、溶融層の抵抗発熱による加熱とを兼用する技術や、溶融炉の外部操作で上部電極を昇降させる技術が採用される。
【0007】
【作用】
焼却灰等の被溶解物は、溶融炉の内部に供給され、加熱により溶融状態に導かれる。
この際に、上部電極及び下部電極の間でアーク放電を行なって、アーク熱により被溶解物を溶融状態に導き、溶融物が形成された後にあっては、溶融物に直接通電して抵抗発熱を生じさせると、溶融範囲が拡大する。
抵抗加熱の際に、上部電極及び下部電極の間隔を広げて、その間に介在する溶融物に直接通電して温度を上昇させ、溶融状態の保持を行なう。
上部電極を正極、下部電極を負極とする定電流の直流通電を行なうと、溶融物内に一定のイオン流が流れて、溶融物に含まれる塩類の電気分解が生じる。
塩類の大部分は、金属及び金属酸化物とガス成分とに分解され、金属及び金属酸化物にあっては、スラグ相または溶融金属相に含浸吸収され、ガス成分にあっては、溶融物から分離上昇して溶融炉の外に排出される。
溶融物の上層部に塩相が形成されている場合にあっては、上部電極による直接通電がなされて塩類の分解性が向上し、金属成分及びガス成分の分離が促進される。
塩類から分離した金属成分は、スラグに取り込まれて出滓後の固化処理により安定化状態となる。
【0008】
【実施例】
以下、本発明に係る焼却灰溶融炉における溶融塩の分解方法について、その実施状況を示す図1及び図2に基づいて説明する。
図において、符号Xは被溶解物、Aは塩相、Bはスラグ相、Cは金属相、1は溶融炉、2は給電手段、3は電極昇降手段、4は被溶解物供給手段(飛灰供給手段)、5は排ガス処理手段、6は昇降ガイド、11は炉壁、12Aは上部電極、12Bは下部電極、13は飛灰投入口、14はシール装置、15は排ガス口、16Aは塩出滓口,16Bはスラグ出滓口、16Cはメタル出滓口である。
【0009】
前記溶融炉1には、被溶解物Xを供給するための被溶解物供給手段4と、発生したガス成分を炉外に排出して適宜処理を行なうための排ガス処理手段5とが、飛灰投入口13及び排ガス口15を介在して接続され、天井部分と底部とに上下方向に対向した状態の上部電極12A及び下部電極12Bが配され、上部電極12Aの貫通部分にシール装置14が配されるとともに、炉壁11の側部に塩相A,スラグ相B及び金属相Cの取り出しを必要に応じて行なうための塩出滓口16A,スラグ出滓口16B及びメタル出滓口16Cが配される。
【0010】
前記給電手段2は、直流低電圧大電流(または交直両方の低電圧大電流)を発生させるとともに電圧及び電流を連続的に調整し得る電源部を有し、大容量ケーブル,ブスバー,可撓性を有する編組線,接続導体等から構成される給電路21により上部電極12A及び下部電極12Bに接続される。
そして、上部電極12Aが正極(+極)に接続され、下部電極12Bが負極(−極)に接続される。
【0011】
前記電極昇降手段3は、駆動力を発生させる駆動源31と、駆動力伝達系32を構成するピニオン33及び該ピニオン33に噛み合うラックギヤ34とを有しており、該ラックギヤ34が上部電極12Aに一体に取り付けられる。
【0012】
前記被溶解物供給手段(飛灰供給手段)4は、従来技術例として挙げた実開平3−56027号「流動床式焼却炉」等によってごみや産業廃棄物等を焼却した際に生成された飛灰を被溶解物Xとして、必要に応じて、例えば連続的に溶融炉1の内部に送り込むものである。
【0013】
前記排ガス処理手段5は、排ガス口15に接続され、溶融炉1から排出される排ガス中に含まれる可燃性ガスの燃焼機能、排ガスの温度を低下させるための熱交換機能、排ガスに残留している固形分を捕集する固形分捕集機能、排ガス中に残されているガス状のCl,NOx,SOx,HCl,HO,CO,CO等を捕集するガス処理器機能等を有しており、無害化処理を施した後に排ガスを大気放出等により処理するものが適用される。
【0014】
前記上部電極12Aにあっては、炭素、Pt及びPt,Te,Agなどを含む合金等が適用されて例えば丸棒状に形成され、前記下部電極12Bにあっては、炭素、Pt、Fe、Pb、Ni及びこれらの合金等が適用されて例えば板状や皿状に形成される。
【0015】
以下、溶融炉1による被溶解物Xの溶解、スラグ相Bの生成、塩相Aの分解等について説明する。
【0016】
溶融炉1の起動時にあっては、給電手段2の作動により上部電極12A及び下部電極12Bの間に給電を行なって、溶融炉1の内部に投入された飛灰等の被溶解物Xを溶融状態に導くのであるが、この際に、電極昇降手段3の作動により上部電極12Aを下げて、下部電極12Bまたはその上に一部残されているベースメタルに接触させてアークを発生させ、このアーク熱によりその近傍の被溶解物Xまたはベースメタルを溶融状態に導く。
【0017】
被溶解物Xの溶融物がアーク熱により溶解されて、溶融物の量が多くなるとともに、溶融物の導電性が抵抗発熱可能な状態まで高まったら、上部電極12Aを溶融物の上層位置まで徐々に上げる等の上部電極12Aの位置調整を行なう。
【0018】
次いで、上部電極12Aと下部電極12Bとの間の通電により溶融物に抵抗発熱を生じさせ、直流電流の増大及び温度上昇により溶融範囲を拡大するとともに、溶融状態の保持を行なう。この際の電流密度は、溶融物の組成に基づくものであるが、概略0.01〜100A/cmとされる。
【0019】
溶融範囲の拡大後に、上部電極12Aを正極、下部電極12Bを負極とする直流通電が、定電流状態で行なわれていると、溶融物内に一定のイオン流が流れて、イオンの移動状態が安定するために、溶融物に含まれる塩類の電気分解が生じる。
【0020】
塩類がNaClの場合であると、図2に示すように、以下の反応によって、金属ナトリウムと塩素ガスが生成される。
Na+e→Na
2Cl→Cl+2e
通常の場合、塩類の大部分は後述するように、金属及び金属酸化物とガス成分とに分解される。
【0021】
溶融炉1の内部において、熱供給が一定していると、図1に示すように、投入した被溶解物Xの下に、比重差に基づいて塩相A、スラグ相B及び金属相Cが分離形成される。
前述の金属及び金属酸化物にあっては、その比重差、還元条件等によりスラグ相Bまたは金属相Cに含浸吸収されて、取り込まれた状態となる。
【0022】
なお、溶融物の上層部に、塩相Aが分離形成されている場合にあっては、上部電極12Aの下端部を塩相Aの中に設定し、塩相Aへの直接通電を行なうことが合理的である。
この場合にあっては、溶融物の上層部、つまり塩相Aの温度を塩類の沸点以下に、かつスラグ相Bを溶融状態の維持温度以上に保持するように給電手段2からの直流電流が調整され、塩類の分解性の向上により金属成分及びガス成分の分離が促進される。
【0023】
一方、分解によって生成されたガス成分にあっては、溶融物から分離上昇して、排ガス口15を経由して排出されるとともに、排ガス処理手段5に送り込まれて必要な処理がなされる。
【0024】
そして、塩類の分解によって、塩相Aやスラグ相Bから分離した金属成分は、スラグや金属相Cに取り込まれた状態で出滓され、その後の固化処理により安定化状態となる。
【0025】
〔溶融炉内部の温度管理について〕
前述したように、溶融物の上層部の温度を塩類の沸点以下に、かつスラグ相Bを溶融状態の維持温度以上に保持するように、電流の調整が実施されるが、被溶解物Xは、ごみや産業廃棄物等を焼却した際の飛灰等であるために、その組成成分のばらつきが大きく、厳密には組成成分を勘案して調整すべきである。
しかし、焼却灰等を対象とする場合には、塩の種類、溶融状態で分離する金属、スラグ中に固溶する塩及び酸化物の傾向が以下の通りであるため、溶融炉1の内部の温度勾配を加味するとよい。
【0026】
〔塩の種類〕
a)アルカリ金属、アルカリ土類金属の塩化物
NaCl(沸点:1413℃),KCl(沸点:1500℃),CaCl(沸点:1600℃),MgCl(沸点:1412℃)は、溶融状態となる塩の中で最も含有量が多く、全体の70%以上を占める。
b)アルカリ金属、アルカリ土類金属の硫酸塩
例えばNaSO,KSO,CaSO,MgSO,BaSO
c)その他の塩化物及び硫酸塩
Fe,Pb,Zn,Cu,Cd,Ni,Mn,Cr,Si,Al,Hg,As等の金属の塩化物及び硫酸塩が含有されるが、含有量が少なく、全体で溶融状態となる塩の10%以下である。
d)その他の硝酸塩、炭酸塩、燐酸塩等の含有量は、ごく微量である。
【0027】
〔溶融状態で分離する金属〕
下部電極12Bには、耐火物の保護等のために、予めベースメタルを堆積させることが好ましいが、電気分解によって溶融塩が分解、還元されて析出した以下の金属が、ベースメタルに含浸して取り込まれる。
例えば、Fe,Cr,Ni,Cu,Zn,Cd,Na,K,Ca,Mg,Mn,As,Hg
【0028】
〔スラグ中に固溶する塩及び酸化物〕
溶融塩を電気分解すると、正極側でCl,SO,CO等のガスが、また、負極側では還元されて金属が析出するが、その中で酸化され易い金属は、酸化金属の状態でスラグ中に固溶する。
【0029】
〔溶融炉の内部の温度勾配〕
上部電極12A及び下部電極12Bにより上下方向に電流を流して溶融物を加熱する場合であると、下部電極12Bの近傍に主たる発熱部が生じて、溶融物の温度が、下部電極12Bの近傍で高くなり(例えば1400℃程度)、上部電極12Aの回りでは温度が相対的に低くなる(例えば1200℃程度)温度勾配が発生するため、前述したように、全体の大部分を占めるアルカリ金属やアルカリ土類金属の塩化物の沸点を勘案して、溶融物の上層部及び塩相Aの温度を1200℃程度に管理することが有効である。
【0030】
分離したスラグ相B及び金属相Cは、必要に応じてスラグ出滓口16B及びメタル出滓口16Cから流下させることにより取り出されて、固化等の処理がなされる。
【0031】
一方、飛灰の溶融時には、飛灰中に含まれている揮発性ガス分が、飛灰とともに持ち込まれた空気等の排ガスとともに、排ガス口15から排ガス処理手段5に送り込まれる。
排ガス処理手段5にあっては、前述したように排ガス中に含まれる可燃性ガス、固形分、NOx,SOx,HCl等の酸性ガスを捕集する等の無害化処理が行なわれる。
【0032】
〔他の実施態様〕
本発明に係る焼却灰溶融炉における溶融塩の分解方法にあっては、前述した都市ごみ等の飛灰だけでなく、炉底灰、産業廃棄物の焼却灰、石炭灰、下水汚泥焼却灰等の溶融処理に対しても適用可能である。
また、図1及び図2例では、溶融炉1の内部の電極を、上下に配される上部電極12A、下部電極12Bのみとしたが、水平方向に抵抗加熱用電極を配する等の技術を付加することも可能である。
【0033】
【発明の効果】
本発明に係る焼却灰溶融炉における溶融塩の分解方法によれば、以下のような効果を奏する。
(1) 焼却灰を溶融炉に投入して溶融処理する工程と、溶融状態の溶融塩を電気分解する工程と、電気分解により生成された分解ガスを溶融炉から取り出すとともに電気分解により生成された金属または金属酸化物を、スラグまたは金属相に取り込む工程とを有することにより、塩類中の金属成分を金属または金属酸化物として、スラグやベースメタルに取り込ませて回収し、安定化及び無害化を図ることができる。
(2) 上記の溶融塩の電気分解により、溶融塩のまま溶融炉から排出される量を低減することができるとともに、排ガス等とともに揮散する金属類の量を著しく減少させて、溶融炉の故障発生要因を少なくし、溶融塩処理の費用を軽減することができる。
(3) 下部電極を負極とすることにより、還元により金属を析出させるとともに、酸化され易い金属を酸化金属の状態として、スラグ中に効率よく取り込ませることができる。
(4) 電気分解時に、溶融物の上層部を塩類の沸点以下に、かつ溶融物を溶融状態の維持温度以上に保持することにより、溶融塩の揮散を抑制して、電気分解性を向上させることができる。
(5) 塩相に、上部電極を位置させた状態で電気分解を行なうことにより、溶融塩を集中的に電気分解することができる。
(6) アーク放電により被溶解物を溶融状態に導く工程と、溶融層の抵抗発熱により溶融範囲を拡大する工程との組み合わせにより、溶融塩の電気分解までの工程の時間短縮を図ることができる。
【図面の簡単な説明】
【図1】本発明に係る焼却灰溶融炉における溶融塩の分解方法の実施状況を示すブロック図を併記した正断面図である。
【図2】図1の溶融炉における溶融物の分解例を示すモデル図である。
【符号の説明】
X 被溶解物
A 塩相
B スラグ相
C 金属相
1 溶融炉
2 給電手段
3 電極昇降手段
4 被溶解物供給手段(飛灰供給手段)
5 排ガス処理手段
6 昇降ガイド
11 炉壁
12A 上部電極
12B 下部電極
13 飛灰投入口
14 シール装置
15 排ガス口
16A 塩出滓口
16B スラグ出滓口
16C メタル出滓口
21 給電路
31 駆動源
32 駆動力伝達系
33 ピニオン
34 ラックギヤ
[0001]
[Industrial applications]
The present invention relates to a method for decomposing a molten salt in an incineration ash melting furnace, and in particular, decomposes and stabilizes a molten salt generated when a fly ash or the like generated when incinerating waste or industrial waste is melted. And technology for detoxification.
[0002]
[Prior art]
As an example of an incinerator for incinerating materials to be incinerated such as municipal solid waste, Japanese Utility Model Laid-Open No. 3-56027, "fluidized bed incinerator" has been proposed.
Further, the following proposals have been made as examples of related technology for melting and processing fly ash (dust) in a melting furnace.
(1) JP-A-58-030382 "Dust treatment method"
{Circle around (2)} Japanese Patent Application Laid-Open No. 58-040791 "Dashing method"
{Circle around (3)} JP-A-60-053780 "Electrode insertion control device for direct-current-type melting processing furnace"
{Circle around (4)} JP-A-60-054780 "Dust melting furnace"
5) Japanese Patent Publication No. Sho 63-051755 "Dust treatment method"
6) JP-A-63-315187, "Method of treating incinerator exhaust gas"
{Circle around (7)} Japanese Patent Application Laid-Open No. 02-099184 “Detoxification of heavy metal-containing dust”
These techniques are designed to solve various problems that occur during melting when the fly ash (dust) discharged from an incinerator such as municipal solid waste is melted and solidified by a melting furnace.
[0003]
For example, in the prior art examples (1), (4) and (5), fly ash (dust) is made into slag by melting to reduce the volume and render it harmless.
[0004]
[Problems to be solved by the invention]
However, salts such as chlorine compounds contained in fly ash (dust) do not turn into slag only by melt processing, but are discharged as slag or as salts, so based on the solubility of salts in water, There remain problems to be solved such as harmful components eluted after disposal.
[0005]
The present invention has been made in view of the above circumstances, the molten salt generated when the incineration ash is melt-processed, is recovered by decomposing the metal or metal oxide and gas components inside the melting furnace, It aims at stabilization and detoxification.
[0006]
[Means for Solving the Problems]
The process of melting the material to be melted when the material to be melted, such as fly ash or incinerated ash generated when incinerating garbage or industrial waste, is introduced into a melting furnace and heated to a molten state. And a step of performing a DC current application in which the upper portion of the melt becomes a positive electrode and the lower portion becomes a negative electrode to perform electrolysis of salts in a molten state, and discharges a decomposition gas generated by the electrolysis from a melting furnace and generates the gas by electrolysis. Impregnating the slag phase or the metal phase with the metal or the metal oxide thus obtained.
At the time of electrolysis, a technique is employed in which the upper layer of the melt is kept at a temperature lower than the boiling point of the salts and the melt is maintained at a temperature higher than the maintenance temperature of the molten state.
A technique for performing electrolysis with the upper electrode positioned is added to the salt phase forming the upper layer of the melt.
In addition, these techniques include a step of bringing a material to be melted into a molten state by arc discharge between an upper electrode and a lower electrode arranged vertically, a step of expanding a melting range by resistance heating of a molten layer, and a step of expanding a melting range by an upper electrode and a lower electrode. A technique of electrolyzing salts in a molten state by applying a direct current between the electrodes.
For the upper electrode and the lower electrode, a technique that combines heating of the material to be melted by arc discharge and heating by resistance heating of the molten layer, and a technique of raising and lowering the upper electrode by an external operation of the melting furnace are adopted.
[0007]
[Action]
A substance to be melted such as incineration ash is supplied into a melting furnace and is brought into a molten state by heating.
At this time, arc discharge is performed between the upper electrode and the lower electrode, and the melt is led to a molten state by the arc heat. After the melt is formed, the melt is directly energized to generate resistance heat. Causes the melting range to expand.
At the time of resistance heating, the gap between the upper electrode and the lower electrode is widened, and a current is directly applied to the melt interposed therebetween to raise the temperature and maintain the molten state.
When a constant DC current is applied with the upper electrode serving as the positive electrode and the lower electrode serving as the negative electrode, a constant ion flow flows in the melt, and electrolysis of salts contained in the melt occurs.
Most of the salts are decomposed into metals and metal oxides and gas components.In the case of metals and metal oxides, they are impregnated and absorbed in the slag phase or molten metal phase. It separates and rises and is discharged out of the melting furnace.
In the case where a salt phase is formed in the upper layer of the melt, direct current is applied by the upper electrode to improve the decomposability of salts and promote the separation of metal components and gas components.
The metal component separated from the salts is taken into the slag and brought into a stabilized state by the solidification treatment after the slag.
[0008]
【Example】
Hereinafter, a method of decomposing a molten salt in an incineration ash melting furnace according to the present invention will be described with reference to FIGS.
In the figure, the symbol X is the substance to be melted, A is the salt phase, B is the slag phase, C is the metal phase, 1 is the melting furnace, 2 is the power supply means, 3 is the electrode elevating means, 4 is the melt supply means (flying means). Ash supply means), 5 is an exhaust gas treatment means, 6 is an elevating guide, 11 is a furnace wall, 12A is an upper electrode, 12B is a lower electrode, 13 is a fly ash inlet, 14 is a sealing device, 15 is an exhaust gas port, 16A is A salt discharging port, 16B is a slag discharging port, and 16C is a metal discharging port.
[0009]
The melting furnace 1 includes a melted substance supply means 4 for supplying the melted substance X, and an exhaust gas treatment means 5 for discharging generated gas components to the outside of the furnace and performing appropriate treatment. An upper electrode 12A and a lower electrode 12B which are connected to each other through an inlet 13 and an exhaust gas port 15 and are vertically opposed to each other at a ceiling portion and a bottom portion, and a sealing device 14 is provided at a portion penetrating the upper electrode 12A. At the same time, a salt discharge port 16A, a slag discharge port 16B, and a metal discharge port 16C for taking out the salt phase A, the slag phase B, and the metal phase C as needed are provided on the side of the furnace wall 11. Be placed.
[0010]
The power supply means 2 has a power supply unit capable of generating a DC low-voltage large current (or a low-voltage large current in both AC and DC) and continuously adjusting the voltage and the current. Are connected to the upper electrode 12A and the lower electrode 12B by a power supply path 21 composed of a braided wire, a connection conductor, and the like.
Then, the upper electrode 12A is connected to the positive electrode (+ electrode), and the lower electrode 12B is connected to the negative electrode (-electrode).
[0011]
The electrode lifting / lowering means 3 includes a driving source 31 for generating a driving force, a pinion 33 constituting a driving force transmission system 32, and a rack gear 34 meshing with the pinion 33, and the rack gear 34 is attached to the upper electrode 12A. Can be attached together.
[0012]
The to-be-dissolved matter supply means (fly ash supply means) 4 is generated when incineration of garbage and industrial wastes is performed by Japanese Utility Model Application Laid-Open No. 3-56027 "fluidized bed incinerator" or the like cited as a prior art example. For example, fly ash is continuously fed into the melting furnace 1 as the material to be melted X as required, for example.
[0013]
The exhaust gas treatment means 5 is connected to the exhaust gas port 15 and has a function of burning a combustible gas contained in the exhaust gas discharged from the melting furnace 1, a heat exchange function for lowering the temperature of the exhaust gas, and a function of remaining in the exhaust gas. solids collecting function for collecting solids are, gaseous Cl 2 remaining in the exhaust gas, NOx, SOx, HCl, H 2 O, CO, gas processor function for collecting the CO 2 or the like It is applied that the exhaust gas is treated by air release or the like after the detoxification treatment.
[0014]
In the upper electrode 12A, carbon, Pt and an alloy containing Pt, Te, Ag, etc. are applied to form a round bar, for example. In the lower electrode 12B, carbon, Pt, Fe, Pb , Ni and their alloys are applied to form, for example, a plate or a dish.
[0015]
Hereinafter, the melting of the substance to be melted X by the melting furnace 1, the generation of the slag phase B, the decomposition of the salt phase A, and the like will be described.
[0016]
When the melting furnace 1 is started, power is supplied between the upper electrode 12A and the lower electrode 12B by the operation of the power supply means 2 to melt the material X to be melted, such as fly ash, introduced into the melting furnace 1. At this time, the upper electrode 12A is lowered by the operation of the electrode lifting / lowering means 3, and is brought into contact with the lower electrode 12B or the base metal partially left thereon to generate an arc. The object X to be melted or the base metal in the vicinity thereof is led to a molten state by the arc heat.
[0017]
When the melt of the melt X is melted by the arc heat and the amount of the melt increases and the conductivity of the melt increases to a state where resistance heating is possible, the upper electrode 12A is gradually moved to the upper layer position of the melt. The position of the upper electrode 12A is adjusted, such as raising the height.
[0018]
Next, resistance heating is generated in the melt by energization between the upper electrode 12A and the lower electrode 12B, and the melting range is expanded and the melted state is maintained while increasing the DC current and the temperature. The current density at this time is based on the composition of the melt, and is approximately 0.01 to 100 A / cm 2 .
[0019]
After enlarging the melting range, if DC conduction with the upper electrode 12A as a positive electrode and the lower electrode 12B as a negative electrode is performed in a constant current state, a constant ion flow flows in the melt, and the ion movement state is reduced. To stabilize, electrolysis of the salts contained in the melt occurs.
[0020]
In the case where the salts are NaCl, as shown in FIG. 2, metal sodium and chlorine gas are generated by the following reaction.
Na + + e - → Na
2Cl → Cl 2 + 2e
Usually, most of the salts are decomposed into metals and metal oxides and gas components as described later.
[0021]
When the heat supply is constant inside the melting furnace 1, as shown in FIG. 1, the salt phase A, the slag phase B, and the metal phase C are placed under the charged substance X based on the specific gravity difference. Separately formed.
The above-mentioned metals and metal oxides are impregnated and absorbed into the slag phase B or the metal phase C depending on the difference in specific gravity, reduction conditions, and the like, and are taken in.
[0022]
In the case where the salt phase A is formed separately in the upper layer of the melt, the lower end of the upper electrode 12A is set in the salt phase A, and the current is directly supplied to the salt phase A. Is reasonable.
In this case, the DC current from the power supply means 2 is adjusted so that the temperature of the upper layer of the melt, that is, the salt phase A is maintained at a temperature equal to or lower than the boiling point of the salts and the slag phase B is maintained at a temperature equal to or higher than the maintenance temperature of the molten state. It is adjusted and the separation of the metal component and the gas component is promoted by improving the decomposability of the salts.
[0023]
On the other hand, the gas components generated by the decomposition are separated and raised from the melt, discharged through the exhaust gas port 15, and sent to the exhaust gas processing means 5 to perform necessary processing.
[0024]
Then, the metal component separated from the salt phase A or the slag phase B by the decomposition of the salts is discharged while being taken in the slag or the metal phase C, and is brought into a stabilized state by the subsequent solidification treatment.
[0025]
[Temperature control inside the melting furnace]
As described above, the current is adjusted so that the temperature of the upper layer portion of the molten material is lower than the boiling point of the salts and the slag phase B is maintained at a temperature higher than the maintenance temperature of the molten state. In addition, since fly ash and the like are generated when incineration of garbage and industrial waste is performed, the composition of the composition greatly varies. Strictly speaking, the composition should be adjusted in consideration of the composition.
However, in the case of incineration ash and the like, since the types of salts, metals separated in a molten state, and salts and oxides dissolved in slag are as follows, the inside of the melting furnace 1 is It is advisable to add a temperature gradient.
[0026]
[Type of salt]
a) Alkali metal and alkaline earth metal chlorides NaCl (boiling point: 1413 ° C.), KCl (boiling point: 1500 ° C.), CaCl 2 (boiling point: 1600 ° C.), and MgCl 2 (boiling point: 1412 ° C.) It has the highest content of any of the following salts, accounting for over 70% of the total.
b) Sulfates of alkali metals and alkaline earth metals such as NaSO 4 , K 2 SO 4 , CaSO 4 , MgSO 4 and BaSO 4
c) Other chlorides and sulfates Chlorides and sulfates of metals such as Fe, Pb, Zn, Cu, Cd, Ni, Mn, Cr, Si, Al, Hg, and As are contained. Less than 10% of the salts that are in a molten state as a whole.
d) The content of other nitrates, carbonates, phosphates, etc. is very small.
[0027]
[Metal that separates in the molten state]
It is preferable to deposit a base metal on the lower electrode 12B in advance for protection of refractories, etc., but the following metal which is decomposed, reduced and precipitated by electrolysis is used to impregnate the base metal. It is captured.
For example, Fe, Cr, Ni, Cu, Zn, Cd, Na, K, Ca, Mg, Mn, As, Hg
[0028]
(Salts and oxides dissolved in slag)
When the molten salt is electrolyzed, gases such as Cl 2 , SO 2 , and CO 2 are reduced on the positive electrode side, and are reduced and the metal is deposited on the negative electrode side. Dissolves in the slag.
[0029]
[Temperature gradient inside the melting furnace]
In the case where the melt is heated by flowing a current in the vertical direction by the upper electrode 12A and the lower electrode 12B, a main heat generating portion is generated near the lower electrode 12B, and the temperature of the melt is increased near the lower electrode 12B. As the temperature rises (for example, about 1400 ° C.) and the temperature becomes relatively low (for example, about 1200 ° C.) around the upper electrode 12A, a temperature gradient is generated. It is effective to control the temperature of the upper layer of the melt and the temperature of the salt phase A to about 1200 ° C. in consideration of the boiling point of the chloride of the earth metal.
[0030]
The separated slag phase B and metal phase C are taken out by flowing them down from the slag slag port 16B and the metal slag port 16C as necessary, and are subjected to processing such as solidification.
[0031]
On the other hand, when the fly ash is melted, the volatile gas contained in the fly ash is sent from the exhaust gas port 15 to the exhaust gas treatment means 5 together with the exhaust gas such as air brought in with the fly ash.
In the exhaust gas processing means 5, as described above, detoxification processing is performed such as collecting combustible gas, solid content, and acidic gases such as NOx, SOx, and HCl contained in the exhaust gas.
[0032]
(Other embodiments)
In the method for decomposing molten salt in the incineration ash melting furnace according to the present invention, not only fly ash such as municipal waste mentioned above, but also furnace bottom ash, incineration ash of industrial waste, coal ash, sewage sludge incineration ash, etc. Can also be applied to the melting process.
Further, in the examples of FIGS. 1 and 2, the electrodes inside the melting furnace 1 are only the upper electrode 12A and the lower electrode 12B arranged vertically, but a technique such as disposing a resistance heating electrode in the horizontal direction is adopted. It is also possible to add.
[0033]
【The invention's effect】
According to the method for decomposing a molten salt in an incineration ash melting furnace according to the present invention, the following effects can be obtained.
(1) A step of charging the incinerated ash into a melting furnace to perform a melting process, a step of electrolyzing a molten salt in a molten state, and taking out a decomposition gas generated by the electrolysis from the melting furnace and generating the gas by electrolysis. Having a step of incorporating the metal or metal oxide into the slag or the metal phase, thereby collecting and recovering the metal component in the salt as a metal or a metal oxide in the slag or the base metal, and stabilizing and detoxifying the metal component. Can be planned.
(2) By the above-mentioned electrolysis of the molten salt, the amount of the molten salt discharged from the melting furnace as it is can be reduced, and the amount of metals volatilized together with the exhaust gas and the like can be significantly reduced. The generation factor can be reduced, and the cost of molten salt treatment can be reduced.
(3) By using the lower electrode as a negative electrode, a metal can be precipitated by reduction, and a metal that is easily oxidized can be efficiently taken into slag as a metal oxide.
(4) At the time of electrolysis, by maintaining the upper layer portion of the melt at a temperature equal to or lower than the boiling point of the salts and at a temperature equal to or higher than the maintenance temperature of the molten state, volatilization of the molten salt is suppressed, and the electrolysis property is improved. be able to.
(5) By performing electrolysis with the upper electrode positioned in the salt phase, the molten salt can be intensively electrolyzed.
(6) By combining the step of bringing the material to be melted into a molten state by arc discharge and the step of expanding the melting range by resistance heating of the molten layer, it is possible to reduce the time required for the electrolysis of the molten salt. .
[Brief description of the drawings]
FIG. 1 is a front sectional view together with a block diagram showing an implementation state of a method for decomposing a molten salt in an incineration ash melting furnace according to the present invention.
FIG. 2 is a model diagram showing an example of decomposition of a melt in the melting furnace of FIG.
[Explanation of symbols]
X Molten substance A Salt phase B Slag phase C Metal phase 1 Melting furnace 2 Power supply means 3 Electrode lifting / lowering means 4 Melted substance supply means (fly ash supply means)
5 Exhaust gas treatment means 6 Lifting guide 11 Furnace wall 12A Upper electrode 12B Lower electrode 13 Fly ash inlet 14 Sealing device 15 Exhaust gas outlet 16A Salt slag outlet 16B Slag slag outlet 16C Metal stake 21 Power supply path 31 Drive source 32 Drive Force transmission system 33 Pinion 34 Rack gear

Claims (1)

ごみや産業廃棄物等を焼却した際に生成される飛灰や焼却灰等の被溶解物(X)を溶融炉(1)に投入して加熱することにより溶融状態に導くものであって、
被溶解物を溶融化する工程と、
溶融物に上方が正極下方が負極となる直流通電を行ない、溶融物の上層部を塩類の沸点以下に且つ溶融物を溶融状態の維持温度以上に保持して、溶融状態の塩類の電気分解を行なう工程と、
電気分解により生成された分解ガスを溶融炉から排出処理するとともに電気分解により生成された金属または金属酸化物をスラグ相(B)または金属相(C)に含浸させる工程と、
を有することを特徴とする焼却灰溶融炉における溶融塩の分解方法。
A substance to be dissolved (X) such as fly ash or incinerated ash generated when incinerating garbage or industrial waste is introduced into a melting furnace (1) and heated to lead to a molten state,
A step of melting the material to be dissolved;
A direct current is applied to the melt so that the upper part is a positive electrode and the lower part is a negative electrode. Performing the step of
Discharging the decomposition gas generated by the electrolysis from the melting furnace and impregnating the slag phase (B) or the metal phase (C) with the metal or metal oxide generated by the electrolysis;
A method for decomposing a molten salt in an incineration ash melting furnace, comprising:
JP29355994A 1994-11-28 1994-11-28 Decomposition method of molten salt in incineration ash melting furnace Expired - Fee Related JP3582117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29355994A JP3582117B2 (en) 1994-11-28 1994-11-28 Decomposition method of molten salt in incineration ash melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29355994A JP3582117B2 (en) 1994-11-28 1994-11-28 Decomposition method of molten salt in incineration ash melting furnace

Publications (2)

Publication Number Publication Date
JPH08152124A JPH08152124A (en) 1996-06-11
JP3582117B2 true JP3582117B2 (en) 2004-10-27

Family

ID=17796321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29355994A Expired - Fee Related JP3582117B2 (en) 1994-11-28 1994-11-28 Decomposition method of molten salt in incineration ash melting furnace

Country Status (1)

Country Link
JP (1) JP3582117B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102829644B (en) * 2012-08-31 2014-04-16 朱兴发 Electrode lifting and rotary stirring device in electromagnetic-induction mineral slag smelting furnace
CN113787085A (en) * 2021-10-14 2021-12-14 中钢集团马鞍山矿山研究总院股份有限公司 Method for extracting Fe, Zn and Pb from electric furnace dust removal ash and realizing high-value utilization

Also Published As

Publication number Publication date
JPH08152124A (en) 1996-06-11

Similar Documents

Publication Publication Date Title
JP3582117B2 (en) Decomposition method of molten salt in incineration ash melting furnace
JP3849287B2 (en) Exhaust gas treatment method for ash melting furnace
JP3918280B2 (en) Operation method of ash melting furnace
JP3546108B2 (en) Exhaust gas treatment method and apparatus in ash melting furnace
JPH0674888B2 (en) Treatment of process gas containing halogen compounds
JP3205273B2 (en) Waste incineration ash treatment method
JP2010115588A (en) Melting treatment method of incineration ash and melting treatment equipment
JP3567614B2 (en) Exhaust gas treatment equipment for ash melting furnace
JPH0694926B2 (en) Method of melting incineration ash
JP3350169B2 (en) Waste melting method and apparatus
JPH05261359A (en) Method for treating incineration fly ash of waste
JP3862940B2 (en) Fly ash treatment method
JPH08155424A (en) Method for treatment of molten fly ash
JPH11207287A (en) Apparatus for treating exhaust gas of ash melting furnace
JP3744668B2 (en) Ash melting furnace
JPH0481084B2 (en)
JPH10216670A (en) Treatment to change incineration ash or fly ash into harmless
JPH07155722A (en) Treatment of fly ash from refuse incinerator and device therefor
JP2722529B2 (en) Detoxification method for heavy metal-containing dust
EP0772205B1 (en) Process for treatment of radioactive waste
JP6834165B2 (en) Method for treating radioactive cesium-containing inorganic substances
JP2005288434A (en) Detoxifying treatment method for heavy metal-containing substance, apparatus therefor and the system
JP3500622B2 (en) Waste incineration residue melting furnace
JPH11319768A (en) Operation of electric melting furnace for ash treatment
JPH1019230A (en) Method for melting treatment of refuse inclineration ash and melting furnace therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees