JP3578612B2 - Electric car control device - Google Patents

Electric car control device Download PDF

Info

Publication number
JP3578612B2
JP3578612B2 JP32268197A JP32268197A JP3578612B2 JP 3578612 B2 JP3578612 B2 JP 3578612B2 JP 32268197 A JP32268197 A JP 32268197A JP 32268197 A JP32268197 A JP 32268197A JP 3578612 B2 JP3578612 B2 JP 3578612B2
Authority
JP
Japan
Prior art keywords
torque
voltage
motor
command
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32268197A
Other languages
Japanese (ja)
Other versions
JPH11155202A (en
Inventor
博之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP32268197A priority Critical patent/JP3578612B2/en
Publication of JPH11155202A publication Critical patent/JPH11155202A/en
Application granted granted Critical
Publication of JP3578612B2 publication Critical patent/JP3578612B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、交流電動機を制御する電気車の制御装置に係る。
【0002】
【従来の技術】
従来、特開平3−70402号公報に示されているように、電気自動車の制動を行うための制動力は一般に、液圧制動装置による機械制動力と回生制動による電気制動力により行われることがよく知られている。本内容は、機械制動力と回生制動力の合力によりまかなわれる制動力が、電気自動車の車速が高い場合、すなわち電動機の回転数が高く、回生制動トルクが低下している場合、その不足する回生制動トルクを電磁ブレーキによる制動装置の制動力に分担することによって、電気自動車の車速によらず常に一定の減速度を得ることが出来る点が開示されている。
【0003】
【発明が解決しようとする課題】
上記従来技術では、電気自動車が高速域で走行している場合、つまり電動機が高速回転している場合に生じる制動力不足を補うものとして、電気自動車の駆動系に電磁ブレーキによる制動力に分担させているが、これは当然ながら余分な装置を電気自動車に付加することとなり、また車両が低速で走行している状態、つまり、電動機の回転数が低い場合にはこの電磁ブレーキによる制動力が不要であるため、制動力を補うためのこの余分な装置を付加することは得策ではないと考えられる。
【0004】
本発明の目的は、電気車の走行時に、電動機が高速回転している場合でも回生制動力が低下しないようにし、一定以上の制動力を得られるようにした電気車の制御装置を提供することにある。
【0005】
【課題を解決するための手段】
上記電気車の制御装置は、電源から供給された直流電力を変換する電力変換手段と、この電力変換手段で変換された電力の供給を受ける交流電動機と、この交流電動機が発生すべきトルクの指令であるトルク指令を演算すると共に、このトルク指令と交流電動機の回転速度に基づいてトルク制御成分指令と界磁制御成分指令を演算し、これら指令に基づいて電力変換手段を制御するための信号を出力して電力変換手段を制御する制御手段とを有するものにおいて、交流電動機が回生制動を行っている場合、交流電動機が発生する回生制動トルクを電源の電圧に基づいて変え、電源の電圧が上昇した場合には回生制動トルクを大きくすることにより達成できる。
【0006】
上記電気車の制御装置において、回生制動トルクは、電源の電圧に基づいてトルク制御成分指令と界磁制御成分指令を補正することにより変える。
【0008】
上記電気車の制御装置において、トルク制御成分指令と界磁制御成分指令の補正量は、電源の電圧を入力とした任意の関数に基づいて設定される。
【0009】
上記電気車の制御装置において、交流電動機の回生制動時におけるトルク指令は、交流電動機の力行制御時におけるトルク指令に対して大きくなるように設定される。
【0010】
上記電気車の制御装置において、交流電動機の回生制動時におけるトルク指令は、電源の電圧を入力とした任意の関数に基づいて設定される。
【0011】
【発明の実施の形態】
以下、本発明による電気車の制御装置の実施例を図をもとに説明する。
【0012】
図1は本発明の電気車の制御装置の基本構成を示す図である。電気車の制御装置には、運転者の意志を電気的な信号に変換するアクセル装置1,ブレーキ装置2,シフト装置3が備えられており、運転者が行った操作は電気信号として制御手段4の内部の演算手段5に伝達される。演算手段5はアクセル装置1,ブレーキ装置2,シフト装置3の信号と、電動機9の回転を回転検出手段10で検出した信号である回転検出信号12の信号を取り込み、駆動信号11を演算出力する。駆動信号11は電力変換手段6の内部の電力変換素子8に伝達され、電源7の電力を変換して電動機9に供給し、電動機9がトルクを発生して電気車を走行駆動する。電動機9に流れた電流は電流検出手段13によって検出され電流検出信号14として演算手段5に伝達される構成となっている。
【0013】
図2は電気車の制御装置における、本発明を適用しない場合の電動機9の出力特性を示す図である。電動機9は制御手段4の演算手段5で演算する指令値をもとにトルクを発生するが、その出力トルク特性は横軸に電動機9の回転数Nm、縦軸に出力トルクτmをとって表わすと図2に示すように電動機9の回転数が領域Aの範囲では最大トルクを一定に出力できるようになっている。領域Bの電動機9の回転数Nmが高速回転になるほど、出力できるトルクは電動機9の回転数Nmに対して低下していき、最高回転数の時点ではτ1までのトルクになる。これは一般的な交流電動機制御の場合、電力変換手段6により電動機9に印加できる電圧が電源7の電圧により決まってしまうことと、交流電動機を高速まで回転させる場合、例えば永久磁石式同期電動機を用いた場合などは高速回転に応じて発生する誘起電圧を抑制し高速まで回転させる、いわゆる弱め界磁制御を行うため電動機9に流す電流に高速回転では弱め界磁をするための電流分が含まれることとなり、その結果電力変換手段6が通電できる電流制限の内トルクを発生するための電流分が相対的に小さくなるため、高速域で出力トルクが小さくなるという動作になる。
【0014】
一般的な電動機の出力特性は、このように弱め界磁を行うことによって、定トルク,定出力(一定ワット),定電圧(定電動機電圧)という動作を行うようになっている。
【0015】
図2に示す実施例においては、この弱め界磁を行うことにより、電動機9の回転数Nmに対する電動機9の電圧V1は領域Aの範囲では電動機9の回転数Nmに比例して増加していき、領域Bでは電動機9の回転数Nmによらず一定の電圧になるように弱め界磁制御している。この電動機9の電圧V1は、電源7の電圧VBにより上限が決まる値であり、通常のPWMインバータを例にとると、電圧VBの70%程度が電圧V1の上限値になる。また、PWMインバータなどの電力変換手段6は、流すことができる電流の最大値が電力変換素子8の容量によってきまることから、この通電可能最大電流と電圧V1から電動機9が出力できる最大トルクが決まることとなる。
【0016】
言い換えれば、電圧VBが高ければそれだけ電動機9の電圧V1を高くできるため、同じだけ電動機電流を流すとすれば、電動機9の電圧V1が高い方がトルクを多く発生できることになる。この最大トルク特性は力行の場合でも回生の場合でも基本的に対称であり、どのような動作状態でも出力可能なトルクは同じである。つまり最高回転における力行時の最大トルクをτ1、回生時の最大トルクをτ2とするとこのトルクはτ1=τ2の特性となる。
【0017】
図3は本発明の電気車の制御装置における、制御手段4の内部の演算手段5の処理内容の一例を示すブロック図である。アクセル装置1,ブレーキ装置2,シフト装置3からの信号はそれぞれアクセル信号15,ブレーキ信号16,シフト信号17としてトルク指令演算手段18に入力される。回転検出信号12は回転数演算手段19によって演算を行い、電動機回転数20を算出しトルク指令演算手段18に伝達する。トルク指令演算手段18では、入力した信号をもとに電動機9が発生すべきトルクの演算を行い、トルク指令21として出力する。トルク指令21はトルク成分電流発生器22と界磁成分電流発生器23にそれぞれ入力し、同時に電動機回転数20も入力してトルク成分電流指令24と界磁成分電流指令25を演算出力する。トルク成分電流指令24と界磁成分電流指令25は電流制御手段26に伝達される。電流検出信号14は電流変換手段27によって変換を行い、変換電流値28を出力する。電流制御手段26はトルク成分電流指令24と界磁成分電流指令25と変換電流値28をもとに電流制御を行い、電圧指令値29を出力する。駆動信号発生手段30では電圧指令値29の値をもとに、電力変換手段6に伝達する駆動信号11を生成し、電力変換手段6を動作させて電動機9に電流を流し、トルクを発生させる構成となっている。ここで、界磁成分電流発生器23からの界磁成分電流指令25は先に図2で述べた弱め界磁を行うための電流指令であり、図2で述べたように高速回転時に電動機9の電圧V1が一定になるように電動機9に電流を流す動作を行う。
【0018】
図4は本発明の電気車の制御装置における制御ブロック図を示す図である。
【0019】
図3で説明したブロック図と同様にトルク指令21と電動機回転数20からトルク成分電流指令24と界磁成分電流指令25を算出し電流制御手段27で電流制御を行って駆動信号11を発生するが、その処理の他に電源7の電圧検出値 31の値とアクセル装置1とブレーキ装置2とシフト装置3と電動機回転数20の値から発生する力行/回生モードフラグ33の値をもとに、力行/回生モードフラグ33が回生モードを示している場合には補正係数算出手段32において電源7の電圧VBより電動機9の電圧V1を補正するための電圧補正係数34を演算出力する。電圧補正係数34は、トルク成分電流補正手段35と界磁成分電流補正手段36それぞれに伝達され、トルク成分電流補正手段35ではトルク成分電流指令24の値を、界磁成分電流補正手段36では界磁成分電流指令25を電圧補正係数34によって補正を行う。この補正によって補正トルク成分電流指令37と補正界磁成分電流指令38を演算し、電流制御手段26で電流制御を行い、駆動信号11を発生して電力変換手段6を動作させ、電動機9に電流を通電してトルクを発生させる。
【0020】
このような処理を行うことによって、トルク指令演算手段で電気車の制御装置の動作が力行か回生かを判別して、回生動作時には回生制動によって上昇する電源7の電圧VBに応じて電動機9の電圧V1が高くなるように、つまり弱め界磁を弱くする動作をさせるよう電圧補正係数34を発生し界磁成分電流指令25を界磁成分電流補正手段36によって補正する。界磁成分電流指令25のみの補正では、トルク指令21に対する電動機9の出力トルクが合わなくなることが想定されるため、その補正のために電圧補正係数34の値によりトルク成分電流補正手段35にてトルク成分電流指令24も補正し、トルク指令21に対する電動機9が発生するトルクが常に一致するように補正を行う。また、補正係数算出手段32の演算方法は、電源7の電圧VBに比例して電圧補正係数34を発生させてもよいし、電源7の電圧VBを入力とした関数または規定のパターンやテーブルをもとに電圧補正係数34を発生させるようにしてもよい。また、この電圧補正係数34による補正は、力行/回生の動作状態によらず、電源7の電圧VBのみで補正を行うようにしてもよい。
【0021】
図5に補正係数算出手段32によって弱め界磁の補正を行う場合での、電源7の電圧VBに対する電動機9の電圧V1の関係を示す。電源7の電圧VBがVB1 以下の場合には電動機9の電圧V1はV1min になるように弱め界磁を行う。回生制動によって電源7の電圧VBが上昇してきた場合には電圧VBに従ってVBa では電動機9の電圧V1はV1a、VBbではV1b、VBcではV1cとなるように電動機9の電圧V1を弱め界磁制御を行うことにより調節していく。電源7の電圧VBがVB2まで達した場合には電動機9の電圧V1はV1max 以上上昇しないように補正を行う。このV1max は電力変換手段6や電力変換素子8の耐圧などから決めるようにする。このように電源7の電圧VBに応じて電動機9の電圧V1を変化させることによって、電圧VBが高い場合には電動機9の電圧V1を高く設定できるため、電動機9に同じだけ電流を流した場合には電圧V1が高い方が電動機9への入力が大きいためにより大きなトルクを電動機9に発生させることができるようになる。
【0022】
図6に本発明の電気車の制御装置における、電動機9の電圧V1を変化させた場合の最大トルク特性を示す。横軸に電動機9の回転数Nm、縦軸に出力トルクτmと電動機9の電圧V1として表わすと、力行は正のトルク、回生は負のトルクで表わすことができる。ここで通常の力行においては、電動機9の回転数Nmに対する電圧V1は、Vlmin で示すようにある任意の回転数Nfから弱め界磁制御によって電圧V1を一定になるように調整する。この電圧Vlは電気車の制御装置の動作範囲内で、電源7の電圧VBが一番低下した場合または動力性能を保証する下限の電圧VBに合わせて設定するのが普通である。しかし回生制動を行った場合には電源7の電圧VBも上昇する。そのために必ずしも電源7の電圧VBが最も低下した場合に合わせて電動機9の電圧V1を決める必要はない。そこで回生制動時には上昇する電圧VBに合わせて電動機9の電圧V1の上限を V1a,V1b,V1cと段階的または電圧VBに比例するように弱め界磁制御を補正する。このようにすることによって、電動機9に同じだけの電流を流した場合には、電動機9の電圧を高くした方が回生制動のためのトルクを多く電動機9に発生させることができるようになるため、その結果回生制動のトルクは電動機9の電圧がV1aの時はτa、V1bの時はτb、V1cの時はτcと、回生制動トルクも大きく発生させることができるようになる。
【0023】
図7に本発明の電気車の制御装置を適用した場合の最大トルク特性を示す。先に述べたように従来の制御では、力行と回生のトルクが対象な出力となるため、図の斜線で示す領域のように回生制動トルクを高速域で力行時のトルク以上の値で、つまりτ1=τ2からτ1<τ2となるように制動トルクを発生させて、一定以上かつ回転数による制動力の変化の無い減速度を得たい場合にも、要求回生制動トルクτrtに対してτuだけ制動トルクが不足することが避けられなかった。この場合には本来τrtのレベルの回生制動トルクが必要な高速域で逆に回生制動トルクが低下してしまうために、高速域でも強い回生制動トルクを必要とするバッテリフォークリフトなどに適用した場合、高速域で制動性能の低下を招いていた。しかし本発明の電気車の制御装置を適用した場合、回生制動による電源7の電圧VBの上昇に応じて回生制動トルクをaカーブのレベルからbカーブのレベルにまで回生制動トルクを上げることができるため、斜線で示したτrtのレベルの回生制動トルクをどの電動機回転数においても発生させることができるようになる。特に、高速域でも強い制動力を必要とするバッテリフォークリフト等の車両に適用した場合に走行性能を向上させることができる。
【0024】
【発明の効果】
本発明によれば、力行動作や回生動作によって変化する電源の電圧に伴って電動機の電動機電圧を電源の電圧に応じて調整できるようになり、電動機の回転数が高速の時の弱め界磁によって発生する回生制動トルクの低下を抑制することが可能となり、電動機の回転によらず一定レベル以上の強い制動力を得ることができるようになる。
【0025】
また、制御装置自体は従来の大きさ,容量のままで制動トルクだけを上げることができるために、装置を大型化せずに所望の動力性能を確保できる。
【図面の簡単な説明】
【図1】本発明の電気車の制御装置の基本構成を示す図である。
【図2】電気車の制御装置における、本発明を適用しない場合の最大トルク特性を示す図である。
【図3】本発明の電気車の制御装置における、制御手段4の内部の演算手段5の処理内容を示すブロック図である。
【図4】本発明の電気車の制御装置における制御ブロック図を示す図である。
【図5】補正係数算出手段32によって弱め界磁の補正を行う場合での、電源7の電圧VBに対する電動機9の電圧V1の関係を示す図である。
【図6】本発明の電気車の制御装置における、電動機9の電圧V1を変化させた場合の最大トルク特性を示す図である。
【図7】本発明の電気車の制御装置を適用した場合の力行と回生のトルク特性を示す図である。
【符号の説明】
1…アクセル装置、2…ブレーキ装置、3…シフト装置、4…制御手段、5…演算手段、6…電力変換手段、7…電源、9…電動機、10…回転検出手段、 11…駆動信号、13…電流検出手段、18…トルク指令演算手段、19…回転数演算手段、20…電動機回転数、21…トルク指令、22…トルク成分電流発生器、23…界磁成分電流発生器、24…トルク成分電流指令、25…界磁成分電流指令、26…電流制御手段、30…駆動信号発生手段、32…補正係数算出手段、34…電圧補正係数、35…トルク成分電流補正手段、36…界磁成分電流補正手段、37…補正トルク成分電流指令、38…補正界磁成分電流指令。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control device for an electric vehicle that controls an AC motor.
[0002]
[Prior art]
Conventionally, as disclosed in JP-A-3-70402, braking force for braking an electric vehicle is generally performed by mechanical braking force by a hydraulic braking device and electric braking force by regenerative braking. well known. This description is based on the case where the braking force provided by the combined force of the mechanical braking force and the regenerative braking force is insufficient when the vehicle speed of the electric vehicle is high, that is, when the rotation speed of the electric motor is high and the regenerative braking torque is low. It is disclosed that a constant deceleration can always be obtained regardless of the vehicle speed of the electric vehicle by sharing the braking torque with the braking force of the braking device using the electromagnetic brake.
[0003]
[Problems to be solved by the invention]
In the above prior art, when the electric vehicle is running in a high speed range, that is, when the electric motor is rotating at a high speed, the driving system of the electric vehicle is shared with the braking force by the electromagnetic brake as a supplement to the insufficient braking force. However, this naturally adds extra equipment to the electric vehicle, and when the vehicle is running at low speed, that is, when the rotation speed of the electric motor is low, the braking force by this electromagnetic brake is unnecessary. Therefore, it is considered that it is not advisable to add this extra device to supplement the braking force.
[0004]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a control apparatus for an electric vehicle that prevents a regenerative braking force from decreasing even when an electric motor is rotating at a high speed during traveling of the electric vehicle, and that can obtain a braking force equal to or more than a certain value. It is in.
[0005]
[Means for Solving the Problems]
The electric vehicle control device includes a power conversion unit that converts DC power supplied from a power supply, an AC motor that receives the power converted by the power conversion unit, and a command for a torque to be generated by the AC motor. A torque control component command and a field control component command are calculated based on the torque command and the rotation speed of the AC motor, and a signal for controlling the power conversion means is output based on these commands. Control means for controlling the power conversion means, the regenerative braking torque generated by the AC motor is changed based on the voltage of the power supply when the AC motor is performing regenerative braking, and the voltage of the power supply is increased. Can be achieved by increasing the regenerative braking torque .
[0006]
In the electric vehicle control device, the regenerative braking torque is changed by correcting the torque control component command and the field control component command based on the voltage of the power supply.
[0008]
In the control device for an electric vehicle, the correction amounts of the torque control component command and the field control component command are set based on an arbitrary function that receives a power supply voltage as an input.
[0009]
In the electric vehicle control device, the torque command at the time of regenerative braking of the AC motor is set to be larger than the torque command at the time of power running control of the AC motor.
[0010]
In the above electric vehicle control device, the torque command at the time of regenerative braking of the AC motor is set based on an arbitrary function that receives the voltage of the power supply.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of an electric vehicle control device according to the present invention will be described with reference to the drawings.
[0012]
FIG. 1 is a diagram showing a basic configuration of a control device for an electric vehicle according to the present invention. The control device of the electric vehicle is provided with an accelerator device 1, a brake device 2, and a shift device 3 for converting a driver's intention into an electric signal. Is transmitted to the calculating means 5 inside the. The calculating means 5 takes in the signals of the accelerator device 1, the brake device 2 and the shift device 3 and the signal of the rotation detecting signal 12 which is the signal detected by the rotation detecting means 10 of the rotation of the electric motor 9, and calculates and outputs the driving signal 11. . The drive signal 11 is transmitted to the power conversion element 8 inside the power conversion means 6, converts the power of the power supply 7 and supplies it to the electric motor 9, and the electric motor 9 generates torque to drive and drive the electric vehicle. The current flowing through the motor 9 is detected by the current detecting means 13 and transmitted to the calculating means 5 as a current detection signal 14.
[0013]
FIG. 2 is a diagram showing the output characteristics of the electric motor 9 in the control device of the electric vehicle when the present invention is not applied. The motor 9 generates a torque based on a command value calculated by the calculating means 5 of the control means 4, and its output torque characteristic is represented by the rotation speed Nm of the motor 9 on the horizontal axis and the output torque τm on the vertical axis. As shown in FIG. 2 and FIG. 2, when the rotation speed of the electric motor 9 is in the range A, the maximum torque can be output constantly. As the rotation speed Nm of the electric motor 9 in the region B becomes higher, the output torque decreases with respect to the rotation speed Nm of the electric motor 9, and becomes a torque up to τ1 at the time of the maximum rotation speed. This is because in the case of general AC motor control, the voltage that can be applied to the motor 9 by the power conversion means 6 is determined by the voltage of the power supply 7, and when the AC motor is rotated to high speed, for example, a permanent magnet synchronous motor is used. In the case where the motor is used, the induced current generated in response to the high-speed rotation is suppressed and the motor is rotated to a high speed. In order to perform so-called field-weakening control, the current flowing through the electric motor 9 includes a current component for the field-weakening at the high-speed rotation. As a result, the amount of current for generating the torque within the current limit that the power conversion means 6 can supply is relatively small, so that the operation is such that the output torque is reduced in the high-speed range.
[0014]
The output characteristics of a general motor are such that the operation of constant torque, constant output (constant wattage), and constant voltage (constant motor voltage) is performed by performing the field weakening in this manner.
[0015]
In the embodiment shown in FIG. 2, by performing the field weakening, the voltage V1 of the electric motor 9 with respect to the rotational speed Nm of the electric motor 9 increases in proportion to the rotational speed Nm of the electric motor 9 in the range of the region A. In the region B, the field-weakening control is performed so that the voltage becomes constant regardless of the rotation speed Nm of the electric motor 9. The upper limit of the voltage V1 of the electric motor 9 is determined by the voltage VB of the power supply 7. In the case of a normal PWM inverter, for example, about 70% of the voltage VB is the upper limit of the voltage V1. Further, in the power conversion means 6 such as a PWM inverter, the maximum value of the current that can flow is determined by the capacity of the power conversion element 8, so the maximum torque that the motor 9 can output is determined from the maximum current that can be supplied and the voltage V1. It will be.
[0016]
In other words, the higher the voltage VB, the higher the voltage V1 of the motor 9 can be. Therefore, if the same motor current is applied, the higher the voltage V1 of the motor 9, the more torque can be generated. This maximum torque characteristic is basically symmetric in the case of power running and in the case of regeneration, and the torque that can be output in any operating state is the same. That is, assuming that the maximum torque during power running at the maximum rotation is τ1 and the maximum torque during regeneration is τ2, this torque has a characteristic of τ1 = τ2.
[0017]
FIG. 3 is a block diagram showing an example of the processing contents of the arithmetic means 5 inside the control means 4 in the control device for the electric vehicle of the present invention. The signals from the accelerator device 1, the brake device 2, and the shift device 3 are input to the torque command calculating means 18 as an accelerator signal 15, a brake signal 16, and a shift signal 17, respectively. The rotation detection signal 12 is calculated by a rotation speed calculation means 19 to calculate a motor rotation speed 20 and to transmit it to a torque command calculation means 18. The torque command calculating means 18 calculates the torque to be generated by the electric motor 9 based on the input signal, and outputs it as a torque command 21. The torque command 21 is input to a torque component current generator 22 and a field component current generator 23, respectively, and at the same time, the motor speed 20 is also input to calculate and output a torque component current command 24 and a field component current command 25. The torque component current command 24 and the field component current command 25 are transmitted to the current control means 26. The current detection signal 14 is converted by the current conversion means 27 and outputs a converted current value 28. The current control means 26 performs current control based on the torque component current command 24, the field component current command 25, and the converted current value 28, and outputs a voltage command value 29. The drive signal generation means 30 generates a drive signal 11 to be transmitted to the power conversion means 6 based on the value of the voltage command value 29 and operates the power conversion means 6 to flow a current to the electric motor 9 to generate torque. It has a configuration. Here, the field component current command 25 from the field component current generator 23 is a current command for performing the field weakening described above with reference to FIG. 2, and as described with reference to FIG. An operation of flowing a current to the electric motor 9 is performed so that the voltage V1 of the motor 9 becomes constant.
[0018]
FIG. 4 is a diagram showing a control block diagram in the electric vehicle control device of the present invention.
[0019]
As in the block diagram described with reference to FIG. 3, a torque component current command 24 and a field component current command 25 are calculated from the torque command 21 and the motor speed 20, and the current control unit 27 performs current control to generate the drive signal 11. However, in addition to the processing, based on the value of the voltage detection value 31 of the power supply 7 and the value of the powering / regeneration mode flag 33 generated from the values of the accelerator device 1, the brake device 2, the shift device 3, and the motor speed 20. When the powering / regeneration mode flag 33 indicates the regeneration mode, the correction coefficient calculation means 32 calculates and outputs a voltage correction coefficient 34 for correcting the voltage V1 of the electric motor 9 from the voltage VB of the power supply 7. The voltage correction coefficient 34 is transmitted to each of the torque component current correction means 35 and the field component current correction means 36, and the torque component current correction means 35 outputs the value of the torque component current command 24, and the field component current correction means 36 The magnetic component current command 25 is corrected by the voltage correction coefficient 34. By this correction, a correction torque component current command 37 and a correction field component current command 38 are calculated, current control is performed by the current control means 26, a drive signal 11 is generated to operate the power conversion means 6, and the electric motor 9 To generate torque.
[0020]
By performing such a process, the operation of the control device of the electric vehicle is determined by the torque command calculating unit as to whether the operation is power running or regenerative. A voltage correction coefficient 34 is generated so that the voltage V1 is increased, that is, the field weakening field is weakened, and the field component current command 25 is corrected by the field component current correction means 36. In the correction of only the field component current command 25, it is assumed that the output torque of the electric motor 9 does not match the torque command 21. Therefore, the torque component current correction means 35 uses the value of the voltage correction coefficient 34 for the correction. The torque component current command 24 is also corrected so that the torque generated by the electric motor 9 with respect to the torque command 21 always matches. The calculation method of the correction coefficient calculation means 32 may generate the voltage correction coefficient 34 in proportion to the voltage VB of the power supply 7, or may calculate a function or a specified pattern or table using the voltage VB of the power supply 7 as an input. The voltage correction coefficient 34 may be generated based on this. Further, the correction by the voltage correction coefficient 34 may be performed only by the voltage VB of the power supply 7 irrespective of the powering / regeneration operating state.
[0021]
FIG. 5 shows the relationship between the voltage VB of the power supply 7 and the voltage V1 of the electric motor 9 when the field-weakening is corrected by the correction coefficient calculating means 32. When the voltage VB of the power source 7 is equal to or lower than VB1, the field weakening is performed so that the voltage V1 of the electric motor 9 becomes V1min. When the voltage VB of the power supply 7 increases due to the regenerative braking, the voltage V1 of the motor 9 is weakened according to the voltage VB such that the voltage V1 of the motor 9 is V1a for VBa, V1b for VBb, and V1c for VBc. To adjust. When the voltage VB of the power supply 7 reaches VB2, a correction is made so that the voltage V1 of the electric motor 9 does not increase more than V1max. This V1max is determined from the withstand voltage of the power conversion means 6 and the power conversion element 8, and the like. By changing the voltage V1 of the electric motor 9 in accordance with the voltage VB of the power source 7 as described above, the voltage V1 of the electric motor 9 can be set high when the voltage VB is high. Since the higher the voltage V1 is, the larger the input to the motor 9 is, the larger the torque can be generated in the motor 9.
[0022]
FIG. 6 shows the maximum torque characteristics when the voltage V1 of the electric motor 9 is changed in the control device for an electric vehicle according to the present invention. When the horizontal axis represents the rotation speed Nm of the motor 9 and the vertical axis represents the output torque τm and the voltage V1 of the motor 9, power running can be represented by positive torque and regeneration can be represented by negative torque. Here, in normal power running, the voltage V1 with respect to the rotation speed Nm of the electric motor 9 is adjusted from an arbitrary rotation speed Nf as shown by Vlmin so that the voltage V1 becomes constant by field weakening control. This voltage Vl is usually set within the operating range of the control device of the electric vehicle, when the voltage VB of the power supply 7 is the lowest or at the lower limit voltage VB that guarantees the power performance. However, when regenerative braking is performed, the voltage VB of the power supply 7 also increases. Therefore, it is not always necessary to determine the voltage V1 of the electric motor 9 in accordance with the case where the voltage VB of the power supply 7 is the lowest. Therefore, during the regenerative braking, the field weakening control is corrected so that the upper limit of the voltage V1 of the electric motor 9 is stepwise or proportional to the voltage VB with V1a, V1b, V1c in accordance with the rising voltage VB. By doing so, when the same amount of current flows through the motor 9, increasing the voltage of the motor 9 allows the motor 9 to generate more torque for regenerative braking. As a result, the regenerative braking torque is τa when the voltage of the electric motor 9 is V1a, τb when V1b, and τc when V1c.
[0023]
FIG. 7 shows a maximum torque characteristic when the control device for an electric vehicle of the present invention is applied. As described above, in the conventional control, since the powering and the regenerative torque are the target outputs, the regenerative braking torque is set to a value equal to or greater than the torque at the time of the powering in the high-speed region as shown by the hatched area in the drawing, that is, Even when a braking torque is generated from τ1 = τ2 so that τ1 <τ2 to obtain a deceleration that is not less than a fixed value and does not change the braking force due to the rotation speed, the required regenerative braking torque τrt is braked by τu. Insufficient torque was inevitable. In this case, the regenerative braking torque is reduced in the high-speed region where the regenerative braking torque of the level of τrt is originally required. Therefore, when applied to a battery forklift or the like that requires a strong regenerative braking torque even in the high-speed region, The braking performance was reduced in the high-speed range. However, when the control device for an electric vehicle according to the present invention is applied, the regenerative braking torque can be increased from the level of the a curve to the level of the b curve according to the increase in the voltage VB of the power supply 7 due to the regenerative braking. Therefore, a regenerative braking torque having a level of τrt indicated by oblique lines can be generated at any motor speed. In particular, when the present invention is applied to a vehicle such as a battery forklift that requires a strong braking force even in a high speed range, the traveling performance can be improved.
[0024]
【The invention's effect】
According to the present invention, the motor voltage of the motor can be adjusted according to the voltage of the power supply in accordance with the voltage of the power supply that changes due to the powering operation and the regenerative operation. It is possible to suppress a decrease in the generated regenerative braking torque, and it is possible to obtain a strong braking force of a certain level or more regardless of the rotation of the electric motor.
[0025]
Further, since the control device itself can increase only the braking torque while maintaining the conventional size and capacity, desired power performance can be secured without increasing the size of the device.
[Brief description of the drawings]
FIG. 1 is a diagram showing a basic configuration of a control device for an electric vehicle according to the present invention.
FIG. 2 is a diagram showing a maximum torque characteristic in a case where the present invention is not applied in a control device for an electric vehicle.
FIG. 3 is a block diagram showing a processing content of a calculation means 5 inside the control means 4 in the control device for an electric vehicle of the present invention.
FIG. 4 is a diagram showing a control block diagram in a control device for an electric vehicle according to the present invention.
FIG. 5 is a diagram showing a relationship between the voltage VB of the power supply 7 and the voltage V1 of the electric motor 9 when the field-weakening is corrected by the correction coefficient calculating means 32.
FIG. 6 is a diagram showing a maximum torque characteristic when the voltage V1 of the electric motor 9 is changed in the control device for an electric vehicle according to the present invention.
FIG. 7 is a diagram showing power running and regenerative torque characteristics when the electric vehicle control device of the present invention is applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Accelerator device, 2 ... Brake device, 3 ... Shift device, 4 ... Control means, 5 ... Calculation means, 6 ... Power conversion means, 7 ... Power supply, 9 ... Electric motor, 10 ... Rotation detection means, 11 ... Drive signal, 13: current detection means, 18: torque command calculation means, 19: rotation speed calculation means, 20: motor rotation speed, 21: torque command, 22: torque component current generator, 23: field component current generator, 24 ... Torque component current command, 25 ... Field component current command, 26 ... Current control means, 30 ... Drive signal generation means, 32 ... Correction coefficient calculation means, 34 ... Voltage correction coefficient, 35 ... Torque component current correction means, 36 ... Field Magnetic component current correction means, 37: corrected torque component current command, 38: corrected field component current command.

Claims (5)

電源から供給された直流電力を変換する電力変換手段と、該電力変換手段で変換された電力の供給を受ける交流電動機と、該交流電動機が発生すべきトルクの指令であるトルク指令を演算すると共に、該トルク指令と前記交流電動機の回転速度に基づいてトルク制御成分指令と界磁制御成分指令を演算し、これら指令に基づいて前記電力変換手段を制御するための信号を出力して前記電力変換手段を制御する制御手段とを有する電気車の制御装置において、前記交流電動機が回生制動を行っている場合、前記交流電動機が発生する回生制動トルクを前記電源の電圧に基づいて変え、前記電源の電圧が上昇した場合には前記回生制動トルクを大きくすることを特徴とする電気車の制御装置。A power converter for converting DC power supplied from a power supply, an AC motor receiving the power converted by the power converter, and a torque command which is a command for torque to be generated by the AC motor. Calculating a torque control component command and a field control component command based on the torque command and the rotational speed of the AC motor, and outputting a signal for controlling the power conversion means based on these commands to output the power conversion means. Controlling the electric vehicle having control means for controlling, when the AC motor is performing regenerative braking, changes the regenerative braking torque generated by the AC motor based on the voltage of the power supply, the voltage of the power supply is A control device for an electric vehicle, wherein the regenerative braking torque is increased when it rises . 請求項1に記載の電気車の制御装置において、前記電源の電圧に基づいて前記トルク制御成分指令と前記界磁制御成分指令を補正し、前記回生制動トルクを変えることを特徴とする電気車の制御装置。2. The electric vehicle control device according to claim 1, wherein the regenerative braking torque is changed by correcting the torque control component command and the field control component command based on a voltage of the power supply. . 請求項2に記載の電気車の制御装置において、前記トルク制御成分指令と前記界磁制御成分指令の補正量は、前記電源の電圧を入力とした任意の関数に基づいて設定されることを特徴とする電気車の制御装置。3. The control device for an electric vehicle according to claim 2, wherein the correction amounts of the torque control component command and the field control component command are set based on an arbitrary function that receives the voltage of the power supply. Electric car control device. 請求項2に記載の電気車の制御装置において、前記交流電動機の回生制動時における前記トルク指令は、前記交流電動機の力行制御時における前記トルク指令に対して大きくなるように設定されることを特徴とする電気車の制御装置。3. The control device for an electric vehicle according to claim 2, wherein the torque command during regenerative braking of the AC motor is set to be larger than the torque command during power running control of the AC motor. 4. Electric vehicle control device. 請求項4に記載の電気車の制御装置において、前記交流電動機の回生制動時における前記トルク指令は、前記電源の電圧を入力とした任意の関数に基づいて設定されることを特徴とする電気車の制御装置。5. The electric vehicle according to claim 4, wherein the torque command at the time of regenerative braking of the AC motor is set based on an arbitrary function that receives a voltage of the power supply. 6. Control device.
JP32268197A 1997-11-25 1997-11-25 Electric car control device Expired - Lifetime JP3578612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32268197A JP3578612B2 (en) 1997-11-25 1997-11-25 Electric car control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32268197A JP3578612B2 (en) 1997-11-25 1997-11-25 Electric car control device

Publications (2)

Publication Number Publication Date
JPH11155202A JPH11155202A (en) 1999-06-08
JP3578612B2 true JP3578612B2 (en) 2004-10-20

Family

ID=18146437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32268197A Expired - Lifetime JP3578612B2 (en) 1997-11-25 1997-11-25 Electric car control device

Country Status (1)

Country Link
JP (1) JP3578612B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4756251B2 (en) * 2000-08-04 2011-08-24 株式会社東京アールアンドデー Control method of DC brushless motor for electric vehicle
JP5385730B2 (en) * 2009-09-03 2014-01-08 公益財団法人鉄道総合技術研究所 Regenerative brake control method and regenerative brake control device
JP5904583B2 (en) * 2012-06-27 2016-04-13 トヨタ車体株式会社 Motor control device
EP2982560B1 (en) 2013-04-02 2018-05-02 Panasonic Corporation Electromotive drive device used in engine-driven vehicle

Also Published As

Publication number Publication date
JPH11155202A (en) 1999-06-08

Similar Documents

Publication Publication Date Title
JP4751854B2 (en) Vehicle control device, control method, program for realizing the method, and recording medium recording the program
US7005819B2 (en) Control apparatus for controlling traction motor equipped in vehicle
KR950015169B1 (en) Control system for induction motor driven electric car
US8073583B2 (en) Apparatus and method for controlling energy feedback for electric vehicle
US7235937B2 (en) Traction motor control system
JP3812299B2 (en) Electric vehicle motor controller
JP3644174B2 (en) Electric vehicle control equipment
US5677610A (en) Control apparatus for electric vehicles
US9252699B2 (en) Control device and control method for vehicular rotating electric machine
US5877607A (en) Electric motor controller capable of performing stable current control during load disturbance and/or a regenerating mode
WO2017018335A1 (en) Motor drive device
JP2002084780A (en) Motor controller
JP4848976B2 (en) Electric motor control device
JP7056219B2 (en) Motor vehicle control method and motor vehicle control device
JP3578612B2 (en) Electric car control device
JP4969344B2 (en) Electric vehicle power converter
JP3397694B2 (en) Motor control device
JP2003219699A (en) Apparatus and method for controlling driving of motor and recording medium with program for implementing the method recorded thereon
JP2007006666A (en) Motor control unit
JP2004023943A (en) Reversing suppression controller for electric vehicle
JP4313493B2 (en) Device for monitoring the frictional force of electric railway vehicle sets
JP2007020317A (en) Electric vehicle controller
JPH07143606A (en) Controller for electric motor vehicle
JP2002271908A (en) Series hybrid electric vehicle
JPH06133410A (en) Controller for electric motor car

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

EXPY Cancellation because of completion of term