JP3578502B2 - 単一プロセッサにおいて並列データ処理を実行する方法 - Google Patents

単一プロセッサにおいて並列データ処理を実行する方法 Download PDF

Info

Publication number
JP3578502B2
JP3578502B2 JP31267194A JP31267194A JP3578502B2 JP 3578502 B2 JP3578502 B2 JP 3578502B2 JP 31267194 A JP31267194 A JP 31267194A JP 31267194 A JP31267194 A JP 31267194A JP 3578502 B2 JP3578502 B2 JP 3578502B2
Authority
JP
Japan
Prior art keywords
partial
word
bit
multiplication
partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31267194A
Other languages
English (en)
Other versions
JPH07200260A (ja
Inventor
ルビー・ベイ−ロー・リー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HP Inc
Original Assignee
Hewlett Packard Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Co filed Critical Hewlett Packard Co
Publication of JPH07200260A publication Critical patent/JPH07200260A/ja
Application granted granted Critical
Publication of JP3578502B2 publication Critical patent/JP3578502B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/523Multiplying only
    • G06F7/53Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel
    • G06F7/5324Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel partitioned, i.e. using repetitively a smaller parallel parallel multiplier or using an array of such smaller multipliers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/483Computations with numbers represented by a non-linear combination of denominational numbers, e.g. rational numbers, logarithmic number system or floating-point numbers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/50Adding; Subtracting
    • G06F7/505Adding; Subtracting in bit-parallel fashion, i.e. having a different digit-handling circuit for each denomination
    • G06F7/506Adding; Subtracting in bit-parallel fashion, i.e. having a different digit-handling circuit for each denomination with simultaneous carry generation for, or propagation over, two or more stages
    • G06F7/508Adding; Subtracting in bit-parallel fashion, i.e. having a different digit-handling circuit for each denomination with simultaneous carry generation for, or propagation over, two or more stages using carry look-ahead circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/30007Arrangements for executing specific machine instructions to perform operations on data operands
    • G06F9/3001Arithmetic instructions
    • G06F9/30014Arithmetic instructions with variable precision
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/30007Arrangements for executing specific machine instructions to perform operations on data operands
    • G06F9/30036Instructions to perform operations on packed data, e.g. vector, tile or matrix operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/30007Arrangements for executing specific machine instructions to perform operations on data operands
    • G06F9/30036Instructions to perform operations on packed data, e.g. vector, tile or matrix operations
    • G06F9/30038Instructions to perform operations on packed data, e.g. vector, tile or matrix operations using a mask
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2207/00Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F2207/38Indexing scheme relating to groups G06F7/38 - G06F7/575
    • G06F2207/3804Details
    • G06F2207/3808Details concerning the type of numbers or the way they are handled
    • G06F2207/3828Multigauge devices, i.e. capable of handling packed numbers without unpacking them

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Nonlinear Science (AREA)
  • Advance Control (AREA)
  • Executing Machine-Instructions (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、単一プロセッサにおける並列データ処理に関するものである。
【0002】
【従来の技術】
一般に、単一プロセッサ・システムは、2つのオペランドに順次演算を施す。例えば、32ビットコンピュータの場合、各整数オペランドは、32ビットである。64ビット・コンピュータの場合、各整数オペランドは、64ビットである。従って、64ビット・コンピュータにおける整数「加算」命令では、2つの64ビット整数オペランドを加算して、64ビットの整数結果が得られる。ほとんどのパイプラインで形成された64ビット・プロセッサでは、64ビット加算命令に、1サイクルの実行時間を要する。
【0003】
多くの例において、オペランドの直接関連する範囲は16ビット又はそれ以下である。しかし、現在の32ビットまたは64ビット・コンピュータにおいて、1対の16ビット・オペランドの演算を施すには今まで通り完全な命令が必要になる。従って、16ビット・オペランドに演算を施すのに必要な実行サイクル数は、32ビット・コンピュータにおける2つの32ビット・オペランド、または64ビット・コンピュータにおける2つの64ビット・オペランドに演算を施すのに必要な実行サイクル数と同じになる。
【0004】
先行技術の場合、並列データ処理には、それぞれ、フル・ワード長のデータを取り扱うことが可能な機能毎のユニットからなる、機能毎のユニットの複製品を作ることが必要とされた。例えば、1966年12月の、Proceedings of IEEE、第54巻、1901〜1909ページにおける、Michael FlynnによるVery High−Speed Computing Systemsを参照されたい。
【0005】
【発明が解決しようとする課題】
しかし、こうした並列処理の実施は、必要なハードウェア及び設計の複雑さの両方に関連して、コストが高くつく。
【0006】
【課題を解決するための手段】
本発明の望ましい実施例によれば、単一プロセッサ内における並列データ処理を可能にするシステムが提供される。データの並列処理を可能にするため、シフタのような処理システム内における論理演算装置または他の演算実行エンティティが区分化される。各パーティション内で、演算が実施される。フル・ワード長のオペランドに対する演算を実施すべき場合には、並列処理は行われない。従って、パーティション間における境界を越えてデータを自由に伝搬させることが可能である。1フル・ワード長未満の複数のオペランドを利用して、並列に演算を実施する場合には、パーティション間における少なくとも1つの境界を越えてデータが伝搬しないようにする。
【0007】
例えば、演算が加算演算(例えば、2の補数加算)の場合、複数のパーティションが、それぞれ、加算演算を実施する。フル・ワード長のオペランドに加算を施すべき場合には、パーティション間における桁上げの伝播が可能になる。1フル・ワード長より短い複数のオペランド集合に並列加算演算を施す場合には、パーティション間における少なくとも1つの境界を越える桁上げの伝播が阻止される。
【0008】
同様に、演算がシフトの場合、複数のパーティションが、それぞれ、シフト演算を実施する。フル・ワード長のオペランドにシフトを施すべき場合には、パーティション間におけるシフトが可能になる。1フル・ワード長より短い複数のオペランドを利用して、並列に演算を施す場合には、パーティション間における少なくとも1つの境界を越えるシフトが阻止される。
【0009】
また、本発明の望ましい実施例によれば、乗算器は、全ワード被乗数の乗算とサブ・ワード被乗数の並列乗算の両方を実施する。例えば、論理ANDゲート(またはその同等物)のアレイといった回路要素が、部分積を発生する。部分積和回路要素が、部分積を合計することによって、結果が得られる。部分積ゲート手段が、サブ・ワード被乗数の並列乗算の選択に応答して、選択された部分積の値を強制的にゼロにし、この結果、サブ・ワード被乗数の並列乗算が実施される。乗算器が全ワード乗算を実施している間、部分積の値が強制的にゼロにされることはない。部分積ゲート手段は、例えば、論理ANDゲートの少なくとも一部に対する第3の入力を利用して実施することが可能である。
【0010】
本発明によれば、オペランドがフル・ワード長より短い場合における並列処理演算を容易化することによって、単一プロセッサ・システムの性能を大幅に高めることが可能になる。並列処理のこの低コストの利用によって、プロセッサ・チップにおけるシリコン・スペースまたは設計の複雑さにあまりコストを費やすことなく、このタイプのデータ並列処理を利用可能な計算に関する性能が大幅に向上する。
【0011】
【実施例】
図1には、本発明の望ましい実施例による、プロセッサ内における演算実行データ経路の略ブロック図が示されている。近く行われることになる演算のオペランド及び実施済みの演算の結果は、汎用レジスタ25に記憶される。演算が実施される際には、汎用レジスタ25内の第1のレジスタに記憶された第1のオペランドが、第1のソース・バス21に送り出される。演算に別のオペランドが必要な場合には、汎用レジスタ25内の第2のレジスタに記憶されている第2のオペランドが、第2のソース・バス22に送り出される。
【0012】
演算の実施後、結果は、結果バス23に送り出され、汎用レジスタ25内のレジスタにロードされる。演算は、論理演算装置(ALU)26またはシフタ29によって実施される。プリ・シフタ27及び補数回路要素28のそれぞれを利用して、ALU26が受信する前に、オペランドに修正を加えることが可能である。本発明と同様に構成された、単一プロセッサ・システムのアーキテクチャに関する一般的背景については、1989年1月の、IEEE Computer、第22巻、第1号、78〜91ページにおける、Ruby B.LeeよるPrecision Architectureを参照されたい。
【0013】
本発明の望ましい実施例によれば、ALUを区分化して、並列データ処理を行うことが可能である。例えば、図2には、2つのパーティションに分割されたALU26が示されている。第1のパーティション41は、第1のオペランドの下位ビット42、及び、第2のオペランドの下位ビット43に演算を施して、下位ビットの結果44を求める。第2のパーティション51は、第1のオペランドの上位ビット52、及び、第2のオペランドの上位ビット53に演算を施して、上位ビットの結果54を求める。
【0014】
セレクタ50を利用することによって、制御入力49に応答して、データ経路45の情報を第1のパーティション41から第2のパーティション51に伝搬できるようにするか、あるいは、第1のパーティション41から第2のパーティション51への伝搬前に、データ経路45の情報を遮断することが可能になる。すなわち、フル・ワード・オペランドに対して実施される算術演算の場合、情報は、セレクタ50を介して第1のパーティション41から第2のパーティション51に伝搬させることが可能である。ハーフ・ワード・オペランドに対して並列算術演算が実施される場合には、セレクタ50によって、第1のパーティション41から第2のパーティション51への情報の伝搬が阻止される。一般に、論理演算の場合、第1のパーティション41から第2のパーティション51への情報の伝搬は生じない。
【0015】
例えば、32ビット幅のデータ経路を備えたコンピュータの場合、各フル・ワード・オペランドは、32ビットである。従って、32ビットのフル・ワード・オペランドを利用して演算を行う場合、セレクタ50は、セレクタ50を介した、第1のパーティション41から第2のパーティション51への情報伝搬を可能にする。16ビットのハーフ・ワード・オペランドを利用して2つの並列演算を行う場合、セレクタ50は、セレクタ50を介した、第1のパーティション41から第2のパーティション51への情報伝搬を阻止する。代わりに、ライン59の値がパーティション51に送られる。「加算」の実施時には、論理0が、入力ライン59におきかわる。「減算」の実施時には、論理1が、入力ライン59におきかわる。
【0016】
本発明の望ましい実施例の場合、図1に示すALUによって実施される一般的な算術演算は、2の補数加算である。当該技術の熟練者には明らかなように、ALUにおいて2の補数加算演算を実施する前に、2の補数回路要素28を利用して、あるオペランドに対する2の補数演算を実施することによって、2の補数減算が実施される。また、ALUにおいて2の補数加算演算を実施する前に、プリ・シフタ27を利用して、オペランドのプリ・シフトを行うことによって、シフト及び加算演算が実施される。
【0017】
図3には、本発明の望ましい実施例による、ALU26内における桁上げ伝播加算を行う2の補数加算器の実施例が示されている。代替案では、ALU26に、桁上げ先見加算を行う2の補数加算器が含まれる。ハーフ加算器60は、第1のオペランドの単一ビットX0及び第2のオペランドの単一ビットY0を受信する。ハーフ加算器60は、和ビットZ0及び桁上げビットC0を送り出す。フル加算器61は、第1のオペランドの単一ビットX1、第2のオペランドの単一ビットY1、及び、桁上げビットC0を受け取る。フル加算器61は、和ビットZ1及び桁上げビットC1を送り出す。フル加算器65は、第1のオペランドの単一ビットXiー1、第2のオペランドの単一ビットYiー1、及び、先行加算器(すなわち、不図示のCiー2)からの桁上げビットを受け取る。フル加算器65は、和ビットZiー1及び桁上げビットCiー1を送り出す。フル加算器66は、第1のオペランドの単一ビットXi及び第2のオペランドの単一ビットYiを受け取る。許可ビット49の値によって、フル加算器66は、セレクタ50(または、当該技術の通常の技術者であれば理解し得る同等の論理回路要素)を介して桁上げビットCiを受信する。フル加算器69は、第1のオペランドの単一ビットXjー1、第2のオペランドの単一ビットYjー1、及び、先行加算器(不図示)からの桁上げビットを受信する。フル加算器69は、和ビットZj−1及び桁上げビットCj−1を送り出す。
【0018】
図3に示す加算器の実施例の場合、「j」は、データ経路のサイズ、及び、フル・ワード演算のビット長である。また、「i」は、「j」を2で割った値に等しい。例えば、「j」が32に等しければ、「i」は16に等しい。
【0019】
セレクタ50は、図3にも示されている。「j」ビットのフル・ワード・オペランドを利用して演算を行う場合、許可ビット49は、論理1に等しく、桁上げがセレクタ50を介してフル加算器66に伝播するのを可能にする。「i」ビットのハーフ・ワード・オペランドを利用して2つの並列演算を実施する場合、許可ビット49は論理ゼロに等しく、桁上げがセレクタ50を介してフル加算器66に伝播するのを阻止する。代わりに、ライン59の値が、フル加算器66に送られる。「加算」の実施時には、論理0が入力ライン59におきかわる。「減算」の実施時には、論理1が入力ライン59におきかわる。
【0020】
図2及び図3には、2つのパーティションを備えたALU26の実施例が示されているが、本発明の他の望ましい実施例に基づいて設計されたALUの場合、ALUをさまざまに区分化することが可能である。例えば、図4には、本発明の望ましい代替実施例に基づくALU26の代替略ブロック図が示されている。図4では、ALU6は、4つのパーティションに分割されている。第1のパーティション71は、第1のオペランドの下位ビット72及び第2のオペランドの下位ビット73に演算を施し、下位ビットの結果74を求める。第2のパーティション81は、第1のオペランドのビット82及び第2のオペランドのビット83に演算を施し、結果ビット84を求める。第3のパーティション91は、第1のオペランドのビット92及び第2のオペランドのビット93に演算を施し、結果ビット94を求める。第4のパーティション101は、第1のオペランドの上位ビット102及び第2のオペランドの上位ビット103に演算を施し、上位ビットの結果104を求める。
【0021】
セレクタ80を利用して、制御入力79に応答し、第1のパーティション71から第2のパーティション81へのデータ経路75における情報の伝搬を可能にするか、あるいは、第1のパーティション71から第2のパーティション81へ伝搬する前に、データ経路75の情報を遮断する。すなわち、フル・ワード・オペランドまたはハーフ・ワード・オペランドに対して実施される算術演算の場合、セレクタ80を介した、第1のパーティション71から第2のパーティション81への情報伝搬が可能になる。クォータ・ワード・オペランドに対する並列算術演算を実施する場合、セレクタ80は、第1のパーティション71から第2のパーティション81への情報の伝搬を阻止する。代わりに、ライン88の値がパーティション81に送られる。「加算」の実施時には、ライン88で論理0が伝送される。「減算」の実施時には、ライン88で論理1が伝送される。一般に、論理演算の場合、パーティション間における情報の伝搬は生じない。
【0022】
セレクタ90を利用して、制御入力89に応答し、第2のパーティション81から第3のパーティション91へのデータ経路85における情報の伝搬を可能にするか、あるいは、第2のパーティション81から第3のパーティション91へ伝搬する前に、データ経路75の情報を遮断する。すなわち、フル・ワード・オペランドに対して実施される算術演算の場合、セレクタ90を介した、第2のパーティション81から第3のパーティション91への情報伝搬が可能になる。クォータ・ワード・オペランドまたはハーフ・ワード・オペランドに対する並列算術演算を実施する場合、セレクタ90は、第2のパーティション81から第3のパーティション91への情報の伝搬を阻止する。代わりに、ライン98の値がパーティション91に送られる。「加算」の実施時には、ライン98で論理0が伝送される。「減算」の実施時には、ライン98で論理1が伝送される。
【0023】
セレクタ100を利用して、制御入力99に応答し、第3のパーティション91から第4のパーティション101へのデータ経路95における情報の伝搬を可能にするか、あるいは、第3のパーティション91から第4のパーティション101へ伝搬する前に、データ経路75の情報を遮断する。すなわち、フル・ワード・オペランド及びハーフ・ワード・オペランドに対して実施される算術演算の場合、セレクタ100を介した、第3のパーティション91から第4のパーティション101への情報伝搬が可能になる。クォータ・ワード・オペランドに対する並列算術演算を実施する場合、セレクタ100は、第3のパーティション91から第4のパーティション101への情報の伝搬を阻止する。代わりに、ライン108の値がパーティション101に送られる。「加算」の実施時には、ライン108で論理0が伝送される。「減算」の実施時には、ライン108で論理1が伝送される。
【0024】
例えば、64ビット幅のデータ経路を備えるコンピュータの場合、各フル・ワード・オペランドは64ビットである。従って、64ビットのフル・ワード・オペランドを利用して演算を実施する場合、セレクタ80は、セレクタ80を介した、第1のパーティション71から第2のパーティション81への情報の伝搬を可能にし、セレクタ90は、セレクタ90を介した、第2のパーティション81から第3のパーティション91への情報の伝搬を可能にし、セレクタ100は、セレクタ100を介した、第3のパーティション91から第4のパーティション101への情報の伝搬を可能にする。32ビットのハーフ・ワード・オペランドを利用して2つの並列演算を実施する場合、セレクタ80は、セレクタ80を介した、第1のパーティション71から第2のパーティション81への情報の伝搬を可能にし、セレクタ90は、セレクタ90を介した、第2のパーティション81から第3のパーティション91への情報の伝搬を阻止し、セレクタ100は、セレクタ100を介した、第3のパーティション91から第4のパーティション101への情報の伝搬を可能にする。16ビットのクォータ・ワード・オペランドを利用して4つの並列演算を実施する場合、セレクタ80は、セレクタ80を介した、第1のパーティション71から第2のパーティション81への情報の伝搬を阻止し、セレクタ90は、セレクタ90を介した、第2のパーティション81から第3のパーティション91への情報の伝搬を阻止し、セレクタ100は、セレクタ100を介した、第3のパーティション91から第4のパーティション101への情報の伝搬を阻止する。
【0025】
図5には、本発明のもう1つの望ましい代替実施例に基づく、ALU26のもう1つの代替略ブロック図が示されている。図5の場合、ALU26は、それぞれ、1ビット幅のパーティションに分割される。第1のパーティション111は、第1のオペランドの下位ビット112及び第2のオペランドの下位ビット113に演算を施し、下位結果ビット114を求める。第2のパーティション121は、第1のオペランドのビット122及び第2のオペランドのビット123に演算を施し、結果ビット124を求める。パーティション131は、第1のオペランドのビット132及び第2のオペランドのビット133に演算を施し、結果ビット134を求める。パーティション141は、第1のオペランドのビット142及び第2のオペランドのビット143に演算を施し、結果ビット144を求める。パーティション151は、第1のオペランドの上位ビット152及び第2のオペランドの上位ビット153に演算を施し、上位結果ビット154を求める。
【0026】
セレクタ120を利用して、制御入力119に応答し、第1のパーティション111から第2のパーティション121へのデータ経路115における情報の伝搬を可能にするか、あるいは、第1のパーティション111から第2のパーティション121へ伝搬する前に、データ経路115の情報を遮断する。データが遮断されると、ライン128の値がパーティション121に送られる。「加算」の実施時には、ライン128で論理0が伝送される。「減算」の実施時には、ライン128で論理1が伝送される。
【0027】
セレクタ130を利用して、制御入力129に応答し、あるデータ経路におけるすぐ前のパーティション(不図示)からパーティション131への、前記すぐ前のパーティションからの情報の伝搬を可能にするか、あるいは、パーティション131に伝搬する前に、該データ経路における前記すぐ前のパーティションからの情報を遮断する。データが遮断されると、ライン138の値がパーティション131に送られる。「加算」の実施時には、ライン138で論理0が伝送される。「減算」の実施時には、ライン138で論理1が伝送される。
【0028】
セレクタ140を利用して、制御入力139に応答し、パーティション131からパーティション141へのデータ・ライン135における情報の伝搬を可能にするか、あるいは、パーティション131からパーティション141へ伝搬する前に、データ経路135の情報を遮断する。データが遮断されると、ライン148の値がパーティション141に送られる。「加算」の実施時には、ライン148で論理0が伝送される。「減算」の実施時には、ライン148で論理1が伝送される。
【0029】
セレクタ150を利用して、制御入力149に応答し、あるデータ経路におけるすぐ前のパーティション(不図示)からパーティション151への、前記すぐ前のパーティションからの情報の伝搬を可能にするか、あるいは、パーティション151に伝搬する前に、該データ経路における前記すぐ前のパーティションからの情報を遮断する。データが遮断されると、ライン158の値がパーティション151に送られる。「加算」の実施時には、ライン158で論理0が伝送される。「減算」の実施時には、ライン158で論理1が伝送される。
【0030】
セレクタに対する制御入力を利用することによって、可変長オペランドの並列処理を可能にすることができる。例えば、64ビット幅のデータ経路を備えた処理システムの場合、制御入力は、2つの16ビット算術演算及び4つの8ビット算術演算の並列処理が、全て、同時に実施されるように選択することが可能である。さらに、合計しても、そのワード・サイズまでにしかならない任意のビット組み合わせを利用することも可能である。例えば、17ビット、3ビット、16ビット、12ビット、5ビット、及び、11ビットの算術演算を同時に実施することも可能である。
【0031】
上述の原理は、桁上げ先見加算器にも当てはまる。例えば、図10には、本発明の別の望ましい実施例に基づく、ALU26内の桁上げ先見を伴う、2の補数加算器の実施例が示されている。桁上げ先見回路470によって、加算器の桁上げが生じる。ハーフ加算器460は、第1のオペランドの単一ビットX0及び第2のオペランドの単一ビットY0を受信する。ハーフ加算器460は、和ビットZ0を送り出す。フル加算器461は、第1のオペランドの単一ビットX1、第2のオペランドの単一ビットY1、及び、桁上げビットC0を受信する。フル加算器461は、和ビットZ1を送り出す。フル加算器465は、第1のオペランドの単一ビットXi−1、第2のオペランドの単一ビットYi−1、及び、桁上げビットCi−2を受信する。フル加算器465は、和ビットZi−1を送り出す。フル加算器466は、第1のオペランドの単一ビットXi、第2のオペランドの単一ビットYi、及び、桁上げビットCi−1を受信する。フル加算器466は、和ビットZiを送り出す。フル加算器469は、第1のオペランドの単一ビットXj− 1、第2のオペランドの単一ビットYj−1、及び、桁上げビットCj−2を受信する。フル加算器469は、和ビットZj−1を送り出す。
【0032】
図10に示す加算器の実施例の場合、「j」は、データ経路のサイズ及びフル・ワード演算のビット長である。また、「i」は、「j」を2で割った値に等しい。例えば、「j」が32に等しいと、「i」は16に等しい。代わりに、jが32に等しい場合、iを32未満の任意の整数に等しくなるようにすることも可能である。
【0033】
「j」ビットのフル・ワード・オペランドを利用して演算を実施する場合、許可ビット452は、論理1に等しく、全ての桁上げの伝播を可能にする。ビットiとi+1の間で区分された「i」ビットのサブ・ワード・オペランドを利用して2つの並列演算を実施する場合、許可ビット452は、論理0に等しく、パーティション境界を越える桁上げの伝播を阻止する。代わりに、ライン451の値が、フル加算器466に送られる値として利用される。「加算」の実施時には、入力ライン451で論理0が伝送される。「減算」の実施時には、入力ライン451で論理1が伝送される。
【0034】
桁上げ先見加算器の働きは、当該技術において周知のところである。例えば、A[i]が入力の1ビットであり、B[i]が他の入力の1ビットであり、S[i]が加算器からの和の1ビットであると仮定する。加算器からの和の1ビットは、下記の式1によって示される。
【0035】
【数1】
Figure 0003578502
【0036】
式1において、C[i−1]は、桁上げ先見加算器の先行ビットからの桁上げである。桁上げ先見加算器は、これらの桁上げビットを素早く発生するのに有効である。
【0037】
G[i]が、このビットによって桁上げを発生させるべきであることを示す信号であり、P[i]が、先行ビットからこのビットの出力に桁上げが伝播する可能性のあることを示す信号であると仮定する。これらは、下記の式2によって決まる。
【0038】
【数2】
Figure 0003578502
【0039】
従って、桁上げ先見加算器内における4ビットの場合、桁上げビットは、下記の式3のように発生させることが可能である。
【0040】
【数3】
Figure 0003578502
【0041】
上記式3において、「*」は、論理AND演算に相当し、「+」は、論理OR演算に相当する。
【0042】
本発明の望ましい実施例を実行する場合、発生G[i]及び伝播P[i]が強制的に偽にされると、桁上げは、特定のビットで停止する。例えば、上記式3の場合、G[i−3]及びP[i−3]が偽の場合、C[i−3]は偽になり、C[i−4]は、C[i−2]、C[i−1]、及び、C[i]の値に影響を及ぼすことはできない。同様に、G[i−2]及びP[i−2]が偽の場合、C[i−2]は偽になり、G[i−3]及びP[i−3]及びC[i−4]は、C[i−1]及びC[i]の値に影響を及ぼすことはできない。
【0043】
M[i]が、1の場合、ビット[i]とビット[i+1]との桁上げ連鎖をブレークするマスク・ビットであると仮定すると、新しい式4は、下記のように生成することが可能である。
【0044】
【数4】
Figure 0003578502
【0045】
M[i]が1の場合、桁上げは、ビット[i]から発生することができないか、あるいは、ビット[i]を介して伝播することができない。
【0046】
キャリ・インに関して、オペランドの一方の1の補数を生成し、もう一方のオペランドに加算することによる減算(2の補数演算)の場合、M[i]が1であれば、あるビットにおいて強制的に桁上げを発生しなければならない。
【0047】
Fが、真の場合、M[i]が1であれば、あるビットにおいて強制的に桁上げを発生させる信号であると仮定する。Gs[i]及びPs[i]に関する式は、下記の式5に示すようになる。
【0048】
【数5】
Figure 0003578502
【0049】
M[i]が1の場合、Gs[i]の値はFによって決まる。M[i]が1の場合、Gs[i]の値は、前述のように、A[i]及びB[i]によって決まる。この伝播は、F信号によって強制する必要はない。
【0050】
キャリ・アウトの式は、下記の式6によって示される。
【0051】
【数6】
Figure 0003578502
【0052】
当該技術の熟練者には明らかなように、本発明の原理は、コンピュータ・システムALU内の算術演算に限定されるものではない。例えば、ALUに示される区分化は、データに基づいて機能するコンピュータ・システム内の他のエンティティにも拡張することが可能である。例えば、図6には、プリ・シフタ27において具現化された本発明が示されている。本発明の同じ実施例は、シフタ29の実施にも利用することが可能である。プリ・シフタ27及びシフタ29を区分化することによって、例えば、並列シフト・加算演算、及び、並列シフト演算の実施が可能になる。
【0053】
プリ・シフタ27には、図示のように、シフト・レジスタ・1ビット・スライス160、シフト・レジスタ・1ビット・スライス161、シフト・レジスタ・1ビット・スライス165、シフト・レジスタ・1ビット・スライス166、及び、シフト・レジスタ・1ビット・スライス169が含まれている。
【0054】
データを左にシフトする場合には、一般に、論理値が0の、入力171におけるデータが、シフト・レジスタ・1ビット・スライス160に対する入力として利用される。データを右にシフトする場合には、セレクタ175が、制御入力182に応答し、入力181におけるデータ(論理値0または論理値1)を選択するか、あるいは、シフト・レジスタ・1ビット・スライス169によって現在記憶されている値を選択して、シフト・レジスタ・1ビット・スライス169に対する入力とする。
【0055】
シフタを区分化すべき場所がどこであれ、シフタには、追加セレクタが追加される。例えば、図6には、シフト・レジスタ・1ビット・スライス165とシフト・レジスタ・1ビット・スライス166の間で区分化されたシフタが示されている。そこには、セレクタ174及びセレクタ173が追加されている。区分化オペランドに対するシフト演算に関して、データが左にシフトされる場合には、セレクタ173は、制御入力185に応答して、一般には論理値0の、入力172のデータを選択し、シフト・レジスタ・1ビット・スライス166として利用する。フル・ワード・オペランドに対するシフト演算に関して、データが左にシフトされる場合には、セレクタ173は、シフト・レジスタ・1ビット・スライス165からの出力を選択し、シフト・レジスタ・1ビット・スライス166に対する入力として利用する。
【0056】
区分化オペランドに対するシフト演算に関して、データが右にシフトされる場合には、セレクタ174は、制御入力184に応答し、入力183におけるデータ(論理値0または論理値1)を選択するか、あるいは、シフト・レジスタ・1ビット・スライス166によって現在記憶されている値を選択して、シフト・レジスタ・1ビット・スライス165に対する入力とする。フル・ワード・オペランドに対するシフト演算に関して、データが右にシフトされる場合には、セレクタ174は、シフト・レジスタ・1ビット・スライス166からの出力を選択し、シフト・レジスタ・1ビット・スライス165に対する入力として利用する。
【0057】
図6には、パーティションが2つだけのシフタが示されている。ALUにおけるパーティションに関する以上の説明から明らかなように、シフタは、さまざまなやり方で区分化することが可能である。例えば、64ビットのシフタは、2、4、8、16、32、または、64ビットの等サイズのパーティションに区分化することが可能である。さらに、パーティションが、それぞれ、等しいビット数で動作するのは、本発明の要件ではない。
【0058】
上記実施例では、一連の1ビット・スライスから構成されるシフト・レジスタとして実施された、プリ・シフタ27及びシフタ29が示されているが、望ましい代替実施例には、マルチプレクサで実施されるプリ・シフタ及びシフタがある。一般に、プリ・シフタ27は、通常、例えば、せいぜい、0、1、2、3、または、4ビットといった小ビット数ずつしかシフトすることができないので、1レベルのマルチプレクサによって実施される。シフタ29は、一般に、各レベルが4対1マルチプレクサである、3レベルのマルチプレクサによって実施される。例えば、64ビット・シフタ29の場合、第1レベルのマルチプレクサは、0、16、32、または、48ビットのシフトを行う。第2レベルのマルチプレクサは、0、4、8、または、12ビットのシフトを行うことができる。第3レベルのマルチプレクサは、0、1、2、または、3ビットのシフトを行うことができる。これによって、0〜63の任意のビット数のシフトが行えることになる。3段のマルチプレクサから構成されるこうしたシフタの場合、1ビット・スライスを識別することも可能である。しかし、当該技術の熟練者には明らかなように、3つのマルチプレクサ段の1つ以上において、任意の2ビット間におけるシフトをブロックすることが必要になる可能性がある。
【0059】
本発明の原理は、コンピュータ・システムにおける他の構成要素にも拡張することが可能である。例えば、乗算器は、本発明の望ましい実施例に従い、全ワード乗算以外に、部分ワード並列乗算も行えるように実施することが可能である。
【0060】
例えば、図7には、先行技術による4ビット乗算器が示されている。乗算器が、4ビットの最初の被乗数X3X2X1X0(基数2)と4ビットの第2の被乗数Y3Y2Y1Y0(基数2)を掛け合わせることによって、8ビットの結果Z7Z6Z5Z4Z3Z2Z1Z0(基数2)が得られる。当該技術の熟練者には明らかなように、論理ANDゲート201、202、203、204、205、206、207、208、209、210、211、212、213、214、215、及び216を利用して、乗算に関する部分積を発生することが可能である。部分積和回路220が、論理ANDゲート201〜216によって発生する部分積の和を求めることによって、結果が得られる。
【0061】
2つの被乗数X3X2X1X0及びY3Y2Y1Y0、論理ANDゲート201〜216によって発生する部分積、及び、部分積和回路220によって生じる結果は、乗算器の働きを要約するやり方で、表に組み入れることが可能である。例えば、こうした表は、下記の表1のように示される。
【0062】
【表1】
Figure 0003578502
【0063】
上記表1に示す表記法によれば、両方の被乗数及び結果における各ビットのビット位置が、明確に識別される。さらに、各部分積の形成に利用される被乗数のビットが、明確に示されている。当該技術の熟練者には明らかなように、上記表1に示す情報は、下記の表2に示すように、省略または単純化した表記法を用いて、表すことも可能である。
【0064】
【表2】
Figure 0003578502
【0065】
上記表2において、第1の被乗数の各ビットは、「X」で表され、第2の被乗数の各ビットは、「Y」で表され、部分積の各ビットは、「z」で表され、結果の各ビットは、「Z」で表されている。表2のさらに単純な表記法を利用すると、8ビットの乗算器について、下記の表3に示すように、解説することが可能である。
【0066】
【表3】
Figure 0003578502
【0067】
表3に示すように、乗算器が、8ビットの第1の被乗数XXXXXXXX(基数2)と8ビットの第2の被乗数YYYYYYYY(基数2)を掛け合わせることによって、16ビットの結果ZZZZZZZZZZZZZZZZ(基数2)が得られる。
【0068】
同様に、表2及び表3のより単純な表記法を利用すると(ただし、ビット位置間のスペースは考慮外とする)、16ビットの乗算器について、下記の表4に示すように、解説することができる。
【0069】
【表4】
Figure 0003578502
【0070】
表4に示すように、乗算器が、16ビットの第1の被乗数XXXXXXXXXXXXXXXX(基数2)と16ビットの第2の被乗数YYYYYYYYYYYYYYYY(基数2)を掛け合わせることによって、32ビットの結果ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ(基数2)が得られる。
【0071】
本発明の望ましい実施例によれば、標準的な乗算器に修正を加えることによって、全ワードの乗算以外に、部分ワードの並列乗算を可能にする乗算器を実現することができる。例えば、図8には、本発明の望ましい実施例による4ビット乗算器が示されている。論理ANDゲート301、302、303、304、305、306、307、308、309、310、311、312、313、314、315、及び、316は、乗算に関して、部分積を発生する。部分積和回路320が、論理ANDゲート301〜316によって発生する部分積の和を求めることによって結果が得られる。
【0072】
図8に示す乗算器の場合、部分積和回路320は、図7に示す部分積和回路220と全く同じように実施することが可能である。図8に示す乗算器と図7に示す乗算器との差は、論理ANDゲート303、304、307、308、309、310、313、及び314のそれぞれに含まれる追加入力に接続された、制御ライン321の追加である。
【0073】
図8に示すように、制御ライン321が論理1にセットされると、乗算器が、4ビットの第1の被乗数X3X2X1X0(基数2)及び4ビットの第2の被乗数Y3Y2Y1Y0(基数2)に対して全ワード乗算を実施し、8ビットの結果Z7Z6Z5Z4Z3Z2Z1Z0(基数2)が得られる。2つの被乗数X3X2X1X0及びY3Y2Y1Y0、論理ANDゲート301〜316によって発生する部分積、及び、部分積和回路320によって発生する結果は、下記の表5に示すように、表の形に表すことが可能である。
【0074】
【表5】
Figure 0003578502
【0075】
表5と上記表1との比較を行うことによって、ライン321が論理1にセットされると、図8に示す乗算器の働きが、図7に示す乗算器の働きと同じになることが確認される。従って、上記表2と同様、単純化した表記法を利用して、下記表6に示すように、図8に示す乗算器の働きを解説することが可能である。
【0076】
【表6】
Figure 0003578502
【0077】
図9には、図8に示す乗算器が示されているが、制御ライン321が0にセットされている点だけは異なっている。この結果、部分積の半分がゼロになり、乗算器は、部分(2ビット)ワードの並列処理が可能になる。すなわち、第1の乗算において、2ビット被乗数A1A0(基数2)と2ビット被乗数C1C0(基数2)を掛けることによって、4ビットの結果E3E2E1E0(基数2)が得られる。第2の乗算において、2ビットの被乗数B1B0(基数2)と2ビットの被乗数D1D0を掛けることによって、4ビットの結果F3F2F1F0(基数2)が得られる。並列乗算に利用されない部分積は、強制的に論理ゼロにされる。この並列乗算は、下記の表7に示すように、表の形で表すことが可能である。
【0078】
【表7】
Figure 0003578502
【0079】
【表8】
Figure 0003578502
【0080】
表7及び8に示すように、部分ワードの並列乗算は、乗算器において選択された部分積を強制的にゼロにすることによって、乗算器で実施される。一般に、利用されない部分積を強制的にゼロにすることによって、任意のサイズの標準的な乗算器を利用して、並列乗算を行うことが可能である。部分積は、例えば、1つ以上の制御入力及び3つの入力論理ANDゲート(またはその同等物)を用いて、強制的に論理0にされる。
【0081】
例えば、上述のように、8ビット乗算器は、表3に示すように実施することが可能である。本発明の教示に従い、図8及び図9に示すような回路要素を設けて、部分積を強制的にゼロにすることによって、この同じ乗算器を利用して、部分ワード被乗数の並列乗算を実施することが可能である。部分積和回路要素に対する修正は不必要である。従って、本発明の教示に基づいて表3に示す乗算器に修正を施すことによって、例えば、下記の表9によって実施されるように、4ビット被乗数を利用し、2つの並列乗算を実施することが可能になる。
【0082】
【表9】
Figure 0003578502
【0083】
上記表9から明らかなように、部分ワード被乗数の第1の並列乗算において、4ビット被乗数AAAA(基数2)と4ビット被乗数CCCC(基数2)を掛けることによって、8ビットの結果EEEEEEEE(基数2)が得られる。部分ワード被乗数の第2の並列乗算において、4ビット被乗数BBBB(基数2)と4ビット被乗数DDDD(基数2)を掛けることによって、8ビットの結果FFFFFFFF(基数2)が得られる。部分席を強制的にゼロにせずに、乗算器によって、2つの全ワード(8ビット)被乗数の乗算が実施される。
【0084】
同様に、上述のように、16ビット乗算器は、表4に示すようにして実施することが可能である。本発明の教示に従い、図8及び図9に示すような回路要素を設けて、部分積を強制的にゼロにすることによって、この同じ乗算器を利用して、部分ワード被乗算器の並列乗算を実施することが可能である。部分積和回路要素に対する修正は必要はない。従って、本発明の教示に基づき、表4に解説の乗算器に修正を加えることによって、例えば、下記の表10によって実施されるように、8ビット(部分ワード)被乗数を利用して、2つの並列乗算を実施することが可能になる。
【0085】
【表10】
Figure 0003578502
【0086】
上記表10から分かるように、第1の並列乗算において、8ビット被乗数AAAAAAAA(基数2)と8ビット被乗数CCCCCCCC(基数2)を掛けることによって、16ビットの結果EEEEEEEEEEEEEEEE(基数2)が得られる。部分ワード被乗数の第2の並列乗算において、8ビット被乗数BBBBBBBB(基数2)と8ビット被乗数DDDDDDDD(基数2)を掛けることによって、16ビットの結果FFFFFFFFFFFFFFFF(基数2)が得られる。部分積を強制的にゼロにせずに、乗算器によって、2つの全ワード(16ビット)被乗数の乗算が実施される。
【0087】
上記説明においては、ハーフ・ワードの並列乗算が示されているが、当該技術の通常の技術者であれば明らかなように、適合する部分積を選択して、強制的にゼロにすることによって、実施される並列乗算の数ち部分ワード・サイズの両方を変更することが可能である。
【0088】
例えば、本発明の教示に従い、図8及び図9に示すような回路要素を設けて、部分積を強制的にゼロにすることによって、表4(及び表10の両方又は一方)に解説のように実施される16ビット乗算器を利用して、3つの同時並列乗算を実施することが可能である。従って、本発明の教示に基づき、表4に解説の乗算器に修正を加えることによって、例えば、下記の表11によって実施されるように、8ビット被乗数を利用して、1つの並列乗算を実施し、4ビット被乗数を利用して、2つの並列乗算を実施する事が可能になる。
【0089】
【表11】
Figure 0003578502
【0090】
上記表11から分かるように、第1の並列乗算において、8ビット被乗数AAAAAAAA(基数2)と8ビット被乗数DDDDDDDD(基数2)を掛けることによって、16ビットの結果GGGGGGGGGGGGGGGG(基数2)が得られる。第2の並列乗算において、4ビット被乗数BBBB(基数2)と4ビット被乗数EEEE(基数2)を掛けることによって、8ビットの結果HHHHHHHH(基数2)が得られる。第3の並列乗算において、4ビット被乗数CCCC(基数2)と4ビット被乗数FFFF(基数2)を掛けることによって、8ビットの結果IIIIIIII(基数2)が得られる。当該技術の熟練者には明らかなように、表11に示す、値がゼロの、全ての部分積について、3つの入力論理ANDゲートまたはその論理同等物を設けて、並列乗算演算の実施時に、部分積を強制的にゼロにすることができるようにしなければならない。しかし、表11に示すように、サイズの異なるパーティションの混合が行われると、当該技術の熟練者には明らかなように、実施例によっては、異なる部分積の項を強制的にゼロにするために、異なる制御入力が必要とされる可能性がある。
【0091】
上記解説から明らかなように、乗算器の部分積を選択的かつ強制的にゼロにすることによって、乗算器において、部分ワードの並列乗算を十分に実施することが可能になる。ワード・サイズ、同時に実施される並列乗算の数、及び、部分ワールド・サイズは、本発明の教示に従って自由に変更することが可能である。
【0092】
図11には、本発明の望ましい実施例に従って実行可能な命令の一例が示されている。例えば、命令500には、フィールド501、サブ・フィールド502、フィールド503、フィールド504、及び、フィールド505が含まれている。フィールド501は、演算コードについて記述する。フィールド501は、例えば、加算、シフト及び加算、減算、シフト及び減算、左シフト、右シフト、乗算、または、任意の数の他の演算を示している。フイ −ルド501のサブ・フィールド502は、その演算を並列演算として実施すべきか否かを指示するものであり、並列演算する場合には、オペランドのサイズを指示する。フィールド503は、第1の送信元レジスタを指示する。フィールド504は、第2の送信元レジスタを指示する。フィールド505は、宛先レジスタを指示する。
【0093】
当該技術において周知のように、命令500は、命令の編成を可能にする、見込みのある多くの方法のうちの1つが示されている。例えば、命令510には、並列演算指示が別個のフィールドに含まれる、代替実施例が示されている。例えば、命令510には、フィールド511、フィールド512、フィールド513、フィードフィールド514、及び、フィールド515が含まれている。フィールド511は、演算コードについて記述する。フィールド511は、例えば、加算、シフト及び加算、減算、シフト及び減算、左シフト、右シフト、乗算、または、任意の数の他の演算を示している。フィールド512は、その演算を並列演算として実施すべきか否かを指示するものであり、並列演算する場合には、オペランドのサイズを指示する。フィールド513は、第1の送信元レジスタを指示する。フィールド514は、第2の送信元レジスタを指示する。フィールド515は、宛先レジスタを指示する。
【0094】
当該技術において明らかなように、本発明は、部分積を発生する他の乗算器にも有効である。例えば、本発明は、Booth符号化乗算器において利用することも可能である。Booth符号化乗算器の場合、部分積の項の各行毎に2ビット以上の乗数(y被乗数)を考慮することによって、発生する部分積の項の行数が少なくなる。例えば、1990年にMorgan Kaufmannから刊行された、John Hennessy & David PattaesonによるCompyuter Architecture、A Quantitative Approachの付録pp.A−39〜A−49を参照されたい。上記乗算器の場合、当該技術の熟練者には明らかなように、Booth符号化乗算器によって発生する部分積の項の値は、並列処理を考慮して変更される。
【0095】
すなわち、Booth符号化乗算器の場合、図8及び図9に示すANDゲート301〜316の代わりにマルチプレクサが用いられる。例えば、「オーバーラッピング・トリプレット」法を利用したBooth符号化乗算器は、いつも1ビットではなく、いつも乗数(すなわち、y被乗数)の3ビットを検査して、図8及び図9に示す乗算器のように、常に+xまたは0になる部分積の行ではなく、+x、+2x、−x、及び、0のうちの1つになる部分積の行を発生する。これは、5対1乗算器として実施する事が可能である。「オーバーラッピング・トリプレット」という名称は、この方法が、乗数(y被乗数)の3ビットを検査して、各行毎に乗数(y被乗数)の2ビットを廃棄するという事実によるものである。次の行に関して、この次の行に用いられる乗数(y被乗数)の3ビットのうち最下位ビットが、先行行から用いられる乗数の3ビットのうちの最上位ビットである場合に、オーバーラップが生じる。
【0096】
並列サブ・ワード乗算を実施するため、その部分積の行が形成中のサブ・ワードの積に対応しないx被乗数のビットは、ゼロにセットされる。これは、無修正のBooth符号化乗算器の場合と同様、マルチプレクサに対する制御信号を修正することによって、マルチプレクサを用いて実施することが可能である。部分積の行の符号、マルチプレクサに対する追加入力として用いられることも可能である。
【0097】
以上の解説には、本発明の典型的な方法及び実施例が開示され、説明されているだけである。当該技術の熟練者には明らかなように、本発明は、その精神または本質的な特徴を逸脱することなく、他の特定の形態において具現化することが可能である。従って、本発明の開示は、本発明の範囲を例示することを意図したものであって、それを制限するものではなく、該範囲については、下記に示す実施例に記載されている。
【0098】
即ち、上記説明した単一プロセッサにおける並列データ処理は下記に示すようにして具現化できる。
【0099】
[1]複数のオペランドからの第1のビット集合に演算を施す第1のパーティション回路要素と、複数のオペランドからの第2のビット集合に演算を施す第2のパーティション回路要素と、第1のパーティション回路要素と第2のパーティション回路要素の間に結合されて、フル・ワード長のオペランドに演算を施す場合には、第1のパーティション回路要素から第2のパーティション回路要素へのデータ伝搬を可能にし、フル・ワード長オペランドのビット長より短いビット長のオペランドに並列演算を施す場合には、第1のパーティション回路要素から第2のパーティション回路要素へのデータ伝搬を阻止できるようにする第1の選択手段から構成される、処理システム内の機能単位である。
【0100】
[2]第1のパーティション回路要素が、複数のオペランドの下位ビットに加算演算を実施することと、第2のパーティション回路要素が、複数のオペランドの上位ビットに加算演算を実施することと、第1の選択手段が、フル・ワード長のオペランドに加算を施す場合には、第1のパーティション回路要素から第2のパーティション回路要素への桁上げ伝播を可能にし、サブ・ワード長オペランドに並列加算を施す場合には、第1のパーティション回路要素から第2のパーティション回路要素への桁上げ伝播を阻止できるようにするセレクタである上記[1]に記載の機能単位である。
【0101】
[3]複数のオペランドからの第3のビット集合に演算を施す第3のパーティション回路要素と、複数のオペランドからの第4のビット集合に演算を施す第4のパーティション回路要素と、第2のパーティション回路要素と第3のパーティション回路要素の間に結合されて、フル・ワード長のオペランドに演算を施す場合には、第2のパーティション回路要素から第3のパーティション回路要素へのデータ伝搬を可能にし、オペランドに並列演算を施す場合には、第2のパーティション回路要素から第3のパーティション回路要素へのデータ伝搬を阻止できるようにする第2の選択手段と、第3のパーティション回路要素と第4のパーティション回路要素の間に結合されて、フル・ワード長のオペランドに演算を施す場合には、第3のパーティション回路要素から第4のパーティション回路要素へのデータ伝搬を可能にし、オペランドに並列演算を施す場合には、第3のパーティション回路要素から第4のパーティション回路要素へのデータ伝搬を阻止できるようにする第3の選択手段が設けられている上記[1]に記載の機能単位である。
【0102】
[4]第1の選択手段に、フル・ワード長オペランドのビット長より短いビット長のオペランドに並列加算を施す場合には、第2のパーティション回路要素に論理0を送り、フル・ワード長オペランドのビット長より短いビット長のオペランドに並列減算を施す場合には、第2のパーティション回路要素に論理1を送る手段が設けられている上記[1]に記載の機能単位である。
【0103】
[5]機能単位が、桁上げ先見加算器から構成される上記[1]に記載の機能単位である。
【0104】
[6]機能単位が、単一命令に応答して、オペランドに並列演算を実施する上記[1]に記載の機能単位である。
【0105】
[7]機能単位が、減算を実施する上記[1]に記載の機能単位である。
【0106】
[8]それぞれ、少なくとも1つのオペランドからのビット集合に演算を施す、ハードウェアで実施される複数のパーティションと、それぞれ、複数のパーティションからの2つのパーティション間に結合されて、オペランド・サイズの選択に応答し、2つのパーティション間におけるデータ転送を可能にしたり、阻止できるようにする少なくとも1つの選択手段が設けられた、演算を実行するための第1の演算実施手段から構成される、並列データ処理を可能にするプロセッサである。
【0107】
[9]複数のパーティションが、それぞれ、1クォータ・ワード幅である上記[8]に記載のプロセッサである。
【0108】
[10]複数のパーティションが、それぞれ、1ビット幅であることと、プロセッサに、さらに、どの選択手段によって、パーティション間におけるデータ転送を可能にし、また、どの選択手段によって、パーティション間におけるデータ転送を阻止するかを選択するための手段が設けられている上記[8]に記載のプロセッサである。
【0109】
[11]各パーティションに、1ビット加算器が設けられていることと、各選択手段が、2つの1ビット加算器間における桁上げの伝播を促進するか、または、中断するセレクタである上記[10]に記載のプロセッサである。
【0110】
[12]複数のパーティションが、それぞれ、1ハーフ・ワード幅である上記[8]に記載のプロセッサである。
【0111】
[13]第1の演算実施手段が、シフタである上記[8]に記載のプロセッサである。
【0112】
[14]第1の演算実施手段が、論理演算装置である上記[8]に記載のプロセッサである。
【0113】
[15]さらに、それぞれ、オペランドからのビット集合をシフトする、複数のシフト・レジスタ・パーティションと、それぞれ、複数のシフト・レジスタ・パーティションからの2つのシフト・レジスタ・パーティション間に結合されて、オペランド・サイズの選択に応答し、2つのシフト・レジスタ・パーティション間におけるデータ・ビットのシフトを可能にしたり、阻止したりする、少なくとも1つの選択手段からなる、論理演算装置の入力に結合されたプリ・シフタが設けられている上記[14]に記載のプロセッサである。
【0114】
[16]各パーティションが、桁上げ先見加算を実施する上記[8]に記載のプロセッサである。
【0115】
[17]各パーティションが、減算を実施する上記[8]に記載のプロセッサである。
【0116】
[18](a)第1のパーティション回路要素において、少なくとも1つのオペランドからの第1のビット集合に演算を施すステップと、(b)第2のパーティション回路要素において、少なくとも1つのオペランドからの第2のビット集合に演算を施すステップと、(c)フル・ワード長オペランドに演算を施す場合、第1のパーティション回路要素からのデータが、第2のパーティション回路要素による結果の計算に影響を及ぼすことを可能にするステップと、(d)オペランドに並列演算を施す場合、第1のパーティション回路要素からのデータが、第2のパーティション回路要素による結果の計算に影響を及ぼさないようにするステップから構成される、単一プロセッサ内における並列データ処理を可能にするための方法である。
【0117】
[19]ステップ(a)に、複数のオペランドの下位ビットに加算演算を施すステップが含まれることと、ステップ(b)に、複数のオペランドの上位ビットに加算演算を施すステップが含まれることと、ステップ(c)に、フル・ワード長オペランドに加算を施す場合、第1のパーティション回路要素からの桁上げが、第2のパーティション回路要素による結果の計算に影響を及ぼすことを可能にするステップが含まれることと、ステップ(d)に、オペランドに並列加算を施す場合、第1のパーティション回路要素からの桁上げが、第2のパーティション回路要素による結果の計算に影響を及ぼさないようにするステップが含まれ上記[18]に記載の方法である。
【0118】
[20]ステップ(a)に、複数のオペランドの下位ビットに桁上げ先見加算演算を施すステップが含まれることと、ステップ(b)に、複数のオペランドの上位ビットに桁上げ先見加算演算を施すステップが含まれる上記[18]に記載の方法である。
【0119】
[21]ステップ(a)に、複数のオペランドの下位ビットに減算演算を施すステップが含まれることと、ステップ(b)に、複数のオペランドの上位ビットに減算演算を施すステップが含まれる上記[18]に記載の方法。
【0120】
[22]ステップ(a)に、複数のオペランドの下位ビットに桁上げ伝播加算演算を施すステップが含まれることと、ステップ(b)に、複数のオペランドの上位ビットに桁上げ伝播加算演算を施すステップが含まれることと、ステップ(c)に、フル・ワード長オペランドに加算を実施する場合には、第2のパーティション回路要素への桁上げの伝播を可能にするステップが含まれることと、ステップ(d)に、オペランドに並列加算を実施する場合には、第2のパーティション回路要素への桁上げの伝播を阻止するステップが含まれる上記[18]に記載の方法である。
【0121】
[23](a)ハードウェアによって実施される複数のパーティションのそれぞれにおいて、少なくとも1つのオペランドからのビット集合に演算を施すステップと、(b)少なくとも1つのフル・ワード長オペランドに演算を施す場合には、データが、複数のパーティション間における境界を越えて、計算に影響を及ぼすことを可能にするステップと、(c)複数のフル・ワード長より短いオペランドを用いて、並列演算を実施する場合には、データが、複数のパーティション間における少なくとも1つの境界を越えて、計算に影響を及ぼさないようにするステップから構成される、単一プロセッサ内における並列データ処理を可能にするための方法である。
【0122】
[24]上記[23]のステップ(a)に、複数のパーティションのそれぞれにおいて、ビット集合に加算演算を施すステップが含まれることと、上記[23]のステップ(b)に、パーティション間における桁上げの伝播を可能にするステップが含まれることと、上記[23]のステップ(c)に、並列演算を実施する場合には、複数のパーティション間における少なくとも1つの境界を越えて、桁上げが伝播しないようにするステップが含まれる上記[23]に記載の方法である。
【0123】
[25]上記[23]のステップ(a)、(b)、及び、(c)の前に、さらに、(d)複数のシフト・レジスタ・パーティションのそれぞれにおいて、ビット集合をシフトするステップと、(e)フル・ワード長より短い複数のオペランドを用いて、並列演算を実施する場合には、データが、複数のシフト・レジスタ・パーティション間における少なくとも1つの境界を越えてシフトしないようにするステップが実施される上記[23]に記載の方法である。
【0124】
[26]各パーティションに、1ビット加算器が含まれている上記[23]に記載の方法である。
【0125】
[27]複数のパーティションのそれぞれが、1ハーフ・ワード幅である上記[23]に記載の方法である。
【0126】
[28]複数のパーティションが、マルチプレクサを利用して実施されるシフタから構成される上記[23]に記載の方法である。
【0127】
[29]上記[23]のステップ(a)に、複数のパーティションのそれぞれにおいて、ビット集合にシフト演算を施すステップが含まれることと、上記[23]のステップ(b)に、パーティション間におけるシフトの伝播を可能にするステップが含まれることと、上記[23]のステップ(c)に、並列演算を実施する場合には、複数のパーティション間における少なくとも1つの境界を越えて、シフトが伝播しないようにするステップが含まれ上記[23]に記載の方法。
【0128】
[30]部分積を発生するための部分積発生手段と、部分積発生手段に結合されて、部分積を合計し、結果を求めるための部分積和回路要素と、全ワード乗算とサブ・ワード被乗数の並列乗算の一方を選択するための選択手段と、部分積発生手段及び選択手段に結合されて、選択手段がサブ・ワード被乗数の並列乗算を選択するのに応答し、選択された部分積を強制的に新しい値にして、サブ・ワード被乗数の並列乗算が実施されるようにするための部分積選択手段から構成される、全ワード乗算及びサブ・ワード被乗数の並列乗算の両方を実施する乗算器である。
【0129】
[31]選択手段がサブ・ワード被乗数の並列乗算を選択するのに応答して、部分積選択手段が、選択された部分積の値を強制的にゼロにする上記[30]に記載の乗算器。
【0130】
[32]部分積発生手段が、論理ANDゲート・アレイから構成され、論理ANDゲート・アレイにおける各論理ANDゲート毎に、部分積を発生する上記[31]に記載の乗算器。
【0131】
[33]部分積選択手段が、論理ANDゲートの少なくとも一部に対する第3の入力から構成される上記[32]に記載の乗算器。
【0132】
[34]乗算器が全ワード乗算を実施する場合には、部分積選択手段が、部分積の値を強制的にゼロにすることはないという上記[31]に記載の乗算器である。
【0133】
[35]乗算器が、Booth符号化乗算器である上記[30]に記載の乗算器である。
【0134】
[36]単一のハードウェア乗算器を利用して、全ワード被乗数の乗算及びサブ・ワード被乗数の並列乗算の両方を実施するための方法において、(a)部分積を発生するステップと、(b)サブ・ワード被乗数の並列乗算を実施する選択に応答し、選択された部分積を強制的に新しい値にするステップと、(c)部分積和回路要素を利用して、部分積を合計し、結果を求めるステップから構成される、単一のハードウェア乗算器を利用して、全ワード被乗数の乗算及びサブ・ワード被乗数の並列乗算の両方を実施するための方法である。
【0135】
[37]上記[36]のステップ(b)に、サブ・ワード被乗数の並列乗算を行う選択に応答し、選択された部分積の値を強制的にゼロにするステップが含まれる上記[36]に記載の乗算方法である。
【0136】
[38]上記[36]のステップ(a)が、論理ANDゲート・アレイを利用して、実施されることと、論理ANDゲートにおける各論理ANDゲート毎に、部分積を発生する上記[37]に記載の乗算方法である。
【0137】
[39]上記[36]のステップ(b)において、選択された部分積の値を強制的にゼロにするステップが、論理ANDゲートの一部に対する入力に論理0を配置することによって実施される上記[38]に記載の乗算方法である。
【0138】
[40]上記[36]のステップ(b)において、乗算器が全ワード乗算を実施している間、部分積の値を強制的にゼロにすることはないという上記[37]に記載の乗算方法である。
【0139】
【発明の効果】
上記説明したように本発明に係る単一プロセッサにおける並列デ−タ処理は、第1のパーティション回路要素と、第2のパーティション回路要素と、第1のパーティション回路要素と第2のパーティション回路要素の間に結合されて、フル・ワード長のオペランドに演算を施す場合には、第1のパーティション回路要素から第2のパーティション回路要素へのデータ伝搬を可能にし、フル・ワード長オペランドのビット長より短いビット長のオペランドに並列演算を施す場合には、第1のパーティション回路要素から第2のパーティション回路要素へのデータ伝搬を阻止できるようにする第1の選択手段から構成したことにより、オペランドがフル・ワ−ド長より短い場合における並列処理演算を容易化することができ、単一プロセッサ・システムの性能を大幅に高めることができると共に、並列処理の低コスト化を図り、プロセッサ・チップにおけるシリコン・スペ−スまたは設計の複雑さにコストを費やすことなく、デ−タ並列処理を利用可能な計算に関する性能を大幅に向上させるとができると云う極めて優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の望ましい実施例に基づく、プロセッサ内における演算実行データ経路の略ブロック図である。
【図2】本発明の望ましい実施例に基づく、図1に示す論理演算装置(ALU)の略ブロック図である。
【図3】本発明の望ましい実施例に基づく、図2に示すALU内における2の歩数加算機の実施例を示す図である。
【図4】本発明の望ましい代替実施例に基づく、図1に示す論理演算装置(ALU)の代替略ブロック図である。
【図5】本発明の望ましい代替実施例に基づく、図1に示す論理演算装置(ALU)のもう1つの代替略ブロック図である。
【図6】本発明の望ましい代替実施例に基づく、図1にシフタの実施例を示す図である。
【図7】先行技術による乗算器を示す図である。
【図8】本発明の望ましい実施例に基づいて実施される乗算器を示す図である。
【図9】本発明の望ましい実施例に基づいて実施される乗算器を示す図である。
【図10】本発明の望ましい代替実施例に基づく、図1に示すALU内における桁上げ先見加算機の実施例を示す図である。
【図11】本発明の望ましい代替実施例に基づく、命令のレイアウトの一例を示す図である。
【符号の説明】
21 ソース・バス
23 結果バス
25 汎用レジスタ
26 ALU
27 プリ・シフタ
28 補数回路要素
29 シフタ
50、80、90、100、120、130、140、150、173、174 セレクタ
60460 ハーフ加算器
61、65、66、69、465、466、469 フル加算器
220、320 部分積和回路
301〜316 論理ANDゲート
470 桁上げ先見回路

Claims (9)

  1. 第1および第2の全ワード被乗数を乗算する全ワード乗算、および、第1および第2の部分ワード被乗数を乗算する部分ワード乗算を複数並列に実行する部分ワード並列乗算、を選択的に実行可能な乗算器であって、
    前記第1の全ワード被乗数、または複数の前記第1の部分ワード被乗数を含む第1の値と、前記第2の全ワード被乗数、または複数の前記第2の部分ワード被乗数を含む第2の値とを受け取り、該第1の値のビット部分のそれぞれに、該第2の値のビット部分のそれぞれを乗算して、複数の部分積を生成する部分積生成手段と、
    前記全ワード乗算および前記部分ワード並列乗算のいずれかを選択する選択手段と、
    前記部分積生成手段および前記選択手段に接続される部分積選択手段であって、該選択手段が前記部分ワード並列乗算を選択することに応じて、該部分積生成手段により生成される複数の部分積のうち、或る部分ワード乗算の前記第1の部分ワード被乗数に含まれるビット部分と他の部分ワード乗算の前記第2の部分ワード被乗数に含まれるビット部分の乗算により生成される部分積を、強制的にゼロに設定する、部分積選択手段と、
    前記部分積生成手段に接続される部分積和回路であって、前記生成された複数の部分積を合計して結果を生成する部分積和回路と、
    を備える、乗算器。
  2. 前記部分積生成手段は論理ANDゲートのアレイを有しており、該アレイにおける論理ANDゲートのそれぞれが部分積を生成する、請求項1に記載の乗算器。
  3. 前記部分積選択手段は、前記論理ANDゲートの少なくとも一部に対する第3の入力を有する、請求項2に記載の乗算器。
  4. 前記乗算器が全ワード乗算を実行するとき、前記部分積選択手段は、いずれの部分積をも強制的に値ゼロに設定しないようにする、請求項1に記載の乗算器。
  5. 前記乗算器はBooth符号化乗算器である、請求項1に記載の乗算器。
  6. 第1および第2の全ワード被乗数を乗算する全ワード乗算、および、第1および第2の部分ワード被乗数を乗算する部分ワード乗算を複数並列に実行する部分ワード並列乗算、を選択的に実行する方法であって、
    (a)前記第1の全ワード被乗数、または複数の前記第1の部分ワード被乗数を含む第1の値と、前記第2の全ワード被乗数、または複数の前記第2の部分ワード被乗数を含む第2の値とを受け取り、該第1の値のビット部分のそれぞれに、該第2の値のビット部分のそれぞれを乗算して、複数の部分積を生成するステップと、
    (b)前記全ワード乗算および前記部分ワード並列乗算のいずれかを選択するステップと、
    (c)前記部分ワード並列乗算を選択することに応じて、前記生成される複数の部分積のうち、或る部分ワード乗算の前記第1の部分ワード被乗数に含まれるビット部分と他の部分ワード乗算の前記第2の部分ワード被乗数に含まれるビット部分の乗算により生成される部分積を、強制的にゼロに設定するステップと、
    (d)前記生成された複数の部分積を合計して結果を生成するステップと、
    を含む、方法。
  7. 前記ステップ(a)は論理ANDゲートのアレイを用いて実行され、該アレイのそれぞれの論理ANDゲートが部分積を生成する、請求項6に記載の方法。
  8. 前記ステップ(c)において前記選択された部分積を強制的に値ゼロにするステップは、前記論理ANDゲートの一部に対する入力を論理ゼロにすることによって実行される、請求項7に記載の被乗数の乗算を実行する方法。
  9. 前記ステップ(b)において、前記乗算器が全ワード乗算を実行するとき、いずれの部分積をも強制的に値ゼロに設定しないようにする、請求項6に記載の方法。
JP31267194A 1993-11-23 1994-11-22 単一プロセッサにおいて並列データ処理を実行する方法 Expired - Fee Related JP3578502B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15734693A 1993-11-23 1993-11-23
US157,346 1993-11-23

Publications (2)

Publication Number Publication Date
JPH07200260A JPH07200260A (ja) 1995-08-04
JP3578502B2 true JP3578502B2 (ja) 2004-10-20

Family

ID=22563337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31267194A Expired - Fee Related JP3578502B2 (ja) 1993-11-23 1994-11-22 単一プロセッサにおいて並列データ処理を実行する方法

Country Status (4)

Country Link
US (1) US5636351A (ja)
EP (2) EP0654733B1 (ja)
JP (1) JP3578502B2 (ja)
DE (2) DE69428466T2 (ja)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3479385B2 (ja) * 1995-06-29 2003-12-15 東芝マイクロエレクトロニクス株式会社 情報処理装置
US5734599A (en) * 1995-07-07 1998-03-31 Hewlett-Packard Company Performing a population count using multiplication
US5742840A (en) 1995-08-16 1998-04-21 Microunity Systems Engineering, Inc. General purpose, multiple precision parallel operation, programmable media processor
US7483935B2 (en) * 1995-08-16 2009-01-27 Microunity Systems Engineering, Inc. System and method to implement a matrix multiply unit of a broadband processor
US5953241A (en) 1995-08-16 1999-09-14 Microunity Engeering Systems, Inc. Multiplier array processing system with enhanced utilization at lower precision for group multiply and sum instruction
US6295599B1 (en) * 1995-08-16 2001-09-25 Microunity Systems Engineering System and method for providing a wide operand architecture
US6643765B1 (en) * 1995-08-16 2003-11-04 Microunity Systems Engineering, Inc. Programmable processor with group floating point operations
US7301541B2 (en) 1995-08-16 2007-11-27 Microunity Systems Engineering, Inc. Programmable processor and method with wide operations
US6385634B1 (en) 1995-08-31 2002-05-07 Intel Corporation Method for performing multiply-add operations on packed data
US7395298B2 (en) * 1995-08-31 2008-07-01 Intel Corporation Method and apparatus for performing multiply-add operations on packed data
WO1997008608A1 (en) * 1995-08-31 1997-03-06 Intel Corporation A set of instructions for operating on packed data
US6092094A (en) * 1996-04-17 2000-07-18 Advanced Micro Devices, Inc. Execute unit configured to selectably interpret an operand as multiple operands or as a single operand
US6058465A (en) * 1996-08-19 2000-05-02 Nguyen; Le Trong Single-instruction-multiple-data processing in a multimedia signal processor
GB2317469B (en) * 1996-09-23 2001-02-21 Advanced Risc Mach Ltd Data processing system register control
GB2317465B (en) * 1996-09-23 2000-11-15 Advanced Risc Mach Ltd Data processing apparatus registers.
GB2317467B (en) * 1996-09-23 2000-11-01 Advanced Risc Mach Ltd Input operand control in data processing systems
GB2317466B (en) * 1996-09-23 2000-11-08 Advanced Risc Mach Ltd Data processing condition code flags
GB2317464A (en) * 1996-09-23 1998-03-25 Advanced Risc Mach Ltd Register addressing in a data processing apparatus
US5793654A (en) * 1996-09-30 1998-08-11 Intel Corporation Saturating alignment shifter
US5784602A (en) * 1996-10-08 1998-07-21 Advanced Risc Machines Limited Method and apparatus for digital signal processing for integrated circuit architecture
US5996066A (en) * 1996-10-10 1999-11-30 Sun Microsystems, Inc. Partitioned multiply and add/subtract instruction for CPU with integrated graphics functions
US6003125A (en) * 1997-01-24 1999-12-14 Texas Instruments Incorporated High performance adder for multiple parallel add operations
US6223198B1 (en) * 1998-08-14 2001-04-24 Advanced Micro Devices, Inc. Method and apparatus for multi-function arithmetic
US6088800A (en) 1998-02-27 2000-07-11 Mosaid Technologies, Incorporated Encryption processor with shared memory interconnect
GB2381913B (en) * 1998-02-27 2003-06-25 Mosaid Technologies Inc A multiplier circuit
EP3073388A1 (en) 1998-03-18 2016-09-28 Koninklijke Philips N.V. Data processing device and method of computing the cosine transform of a matrix
US6282633B1 (en) * 1998-11-13 2001-08-28 Tensilica, Inc. High data density RISC processor
US6397241B1 (en) * 1998-12-18 2002-05-28 Motorola, Inc. Multiplier cell and method of computing
WO2000049494A1 (en) * 1999-02-17 2000-08-24 Analog Devices, Inc. Fast multi-format adder
WO2000057270A1 (en) * 1999-03-23 2000-09-28 Sony Electronics, Inc. Adder circuit
US6449629B1 (en) * 1999-05-12 2002-09-10 Agere Systems Guardian Corp. Three input split-adder
US6654870B1 (en) * 1999-06-21 2003-11-25 Pts Corporation Methods and apparatus for establishing port priority functions in a VLIW processor
US6725360B1 (en) * 2000-03-31 2004-04-20 Intel Corporation Selectively processing different size data in multiplier and ALU paths in parallel
US6748411B1 (en) 2000-11-20 2004-06-08 Agere Systems Inc. Hierarchical carry-select multiple-input split adder
FR2818145B1 (fr) * 2000-12-18 2003-11-28 Oreal Compositions cosmetiques antisolaires a base d'un melange synergetique de filtres et utilisations
WO2003021423A2 (en) 2001-09-04 2003-03-13 Microunity Systems Engineering, Inc. System and method for performing multiplication
US7430578B2 (en) * 2001-10-29 2008-09-30 Intel Corporation Method and apparatus for performing multiply-add operations on packed byte data
JP2003186567A (ja) * 2001-12-19 2003-07-04 Matsushita Electric Ind Co Ltd マイクロプロセッサ
FR2853425B1 (fr) * 2003-04-07 2006-01-13 Atmel Corp Sequence de multiplication efficace pour operandes a grands nombres entiers plus larges que le materiel multiplicateur
US7099910B2 (en) * 2003-04-07 2006-08-29 Sun Microsystems, Inc. Partitioned shifter for single instruction stream multiple data stream (SIMD) operations
US7668897B2 (en) * 2003-06-16 2010-02-23 Arm Limited Result partitioning within SIMD data processing systems
GB2411974C (en) * 2003-12-09 2009-09-23 Advanced Risc Mach Ltd Data shift operations
US7433912B1 (en) 2004-02-19 2008-10-07 Sun Microsystems, Inc. Multiplier structure supporting different precision multiplication operations
DE102004013484B3 (de) * 2004-03-18 2005-08-11 Infineon Technologies Ag Rechenwerk
DE102004051251B3 (de) 2004-10-21 2006-03-02 Thomas, Götz, Dipl.-Ing. Sternförmiger Dekorationsartikel sowie Zuschnitte und Verfahren zu seiner Herstellung
TWI307874B (en) * 2005-04-06 2009-03-21 Himax Tech Inc Shift register circuit
US7716264B2 (en) * 2005-08-16 2010-05-11 International Business Machines Corporation Method and apparatus for performing alignment shifting in a floating-point unit
US20080282052A1 (en) * 2005-11-18 2008-11-13 Xiang Ma Operating Media Devices in Pre-Os Environment
US20080229058A1 (en) * 2007-03-13 2008-09-18 Hung Qui Le Configurable Microprocessor
US20080229065A1 (en) * 2007-03-13 2008-09-18 Hung Qui Le Configurable Microprocessor
MY177563A (en) * 2010-04-15 2020-09-20 Univ Malaya Parallel self-timed adder (pasta)
JP5664039B2 (ja) 2010-09-08 2015-02-04 富士通株式会社 リダクション演算装置、処理装置及びコンピュータシステム
US9329835B1 (en) * 2011-10-19 2016-05-03 Marvell International Ltd. Systems and methods for performing mathematical functions
US10747534B1 (en) * 2018-11-26 2020-08-18 Xilinx, Inc. Vectorization of wide integer data paths into parallel operations with value extraction for maintaining valid guard bands

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2222195A1 (de) * 1972-05-05 1973-11-22 Siemens Ag Anordnung zur verarbeitung von operanden von programmen
US4128872A (en) * 1977-06-20 1978-12-05 Motorola, Inc. High speed data shifter array
US4161784A (en) * 1978-01-05 1979-07-17 Honeywell Information Systems, Inc. Microprogrammable floating point arithmetic unit capable of performing arithmetic operations on long and short operands
US4418383A (en) * 1980-06-30 1983-11-29 International Business Machines Corporation Data flow component for processor and microprocessor systems
US4707800A (en) * 1985-03-04 1987-11-17 Raytheon Company Adder/substractor for variable length numbers
US4754412A (en) * 1985-10-07 1988-06-28 Schlumberger Systems & Services, Inc. Arithmetic logic system using the output of a first alu to control the operation of a second alu
JPS62229440A (ja) * 1986-03-31 1987-10-08 Toshiba Corp 配列乗算器
US4864529A (en) * 1986-10-09 1989-09-05 North American Philips Corporation Fast multiplier architecture
JPS63253433A (ja) * 1987-04-10 1988-10-20 Hitachi Ltd 演算処理装置
US5189636A (en) * 1987-11-16 1993-02-23 Intel Corporation Dual mode combining circuitry
US5047975A (en) * 1987-11-16 1991-09-10 Intel Corporation Dual mode adder circuitry with overflow detection and substitution enabled for a particular mode
KR920003908B1 (ko) * 1987-11-19 1992-05-18 미쓰비시뎅끼 가부시끼가이샤 승산기(乘算器)
GB2215496A (en) * 1988-02-25 1989-09-20 Texas Instruments Ltd Multi-stage parallel binary adders and/or subtractors
DE3850096D1 (de) * 1988-03-19 1994-07-14 Itt Ind Gmbh Deutsche CMOS-Parallel-Serien-Multiplizierschaltung sowie deren Multiplizier- und Addierstufen.
US5126964A (en) * 1988-04-01 1992-06-30 Digital Equipment Corporation High performance bit-sliced multiplier circuit
US4901268A (en) * 1988-08-19 1990-02-13 General Electric Company Multiple function data processor
US4953119A (en) * 1989-01-27 1990-08-28 Hughes Aircraft Company Multiplier circuit with selectively interconnected pipelined multipliers for selectively multiplication of fixed and floating point numbers
US5001662A (en) * 1989-04-28 1991-03-19 Apple Computer, Inc. Method and apparatus for multi-gauge computation
US5020013A (en) * 1989-09-29 1991-05-28 Cyrix Corporation Bidirectional variable bit shifter
US5038314A (en) * 1989-11-17 1991-08-06 Digital Equipment Corporation Method and apparatus for correction of underflow and overflow
US5203002A (en) * 1989-12-27 1993-04-13 Wetzel Glen F System with a multiport memory and N processing units for concurrently/individually executing 2N-multi-instruction-words at first/second transitions of a single clock cycle
JP2523962B2 (ja) * 1990-08-20 1996-08-14 松下電器産業株式会社 浮動小数点演算装置
US5163139A (en) * 1990-08-29 1992-11-10 Hitachi America, Ltd. Instruction preprocessor for conditionally combining short memory instructions into virtual long instructions
US5218564A (en) * 1991-06-07 1993-06-08 National Semiconductor Corporation Layout efficient 32-bit shifter/register with 16-bit interface
US5247471A (en) * 1991-12-13 1993-09-21 International Business Machines Corporation Radix aligner for floating point addition and subtraction
US5257218A (en) * 1992-01-06 1993-10-26 Intel Corporation Parallel carry and carry propagation generator apparatus for use with carry-look-ahead adders
FR2693287B1 (fr) * 1992-07-03 1994-09-09 Sgs Thomson Microelectronics Sa Procédé pour effectuer des calculs numériques, et unité arithmétique pour la mise en Óoeuvre de ce procédé.
US5268855A (en) * 1992-09-14 1993-12-07 Hewlett-Packard Company Common format for encoding both single and double precision floating point numbers
US5327369A (en) * 1993-03-31 1994-07-05 Intel Corporation Digital adder and method for adding 64-bit, 16-bit and 8-bit words

Also Published As

Publication number Publication date
US5636351A (en) 1997-06-03
EP0924601B1 (en) 2001-09-26
EP0654733A1 (en) 1995-05-24
EP0654733B1 (en) 2000-05-24
JPH07200260A (ja) 1995-08-04
EP0924601A3 (en) 1999-07-21
DE69424626T2 (de) 2001-01-25
EP0924601A2 (en) 1999-06-23
DE69428466T2 (de) 2002-05-23
DE69424626D1 (de) 2000-06-29
DE69428466D1 (de) 2001-10-31

Similar Documents

Publication Publication Date Title
JP3578502B2 (ja) 単一プロセッサにおいて並列データ処理を実行する方法
JP3589719B2 (ja) 算術演算の結果として生じる正および負のオーバーフローのハードウェアによる効率的な取り扱い方法
JP3573808B2 (ja) 論理演算装置
US5953241A (en) Multiplier array processing system with enhanced utilization at lower precision for group multiply and sum instruction
US5844830A (en) Executing computer instrucrions by circuits having different latencies
JP3729881B2 (ja) 並列加算および平均演算を行うための回路およびその方法
US4811269A (en) Bit slice multiplication circuit
US6401194B1 (en) Execution unit for processing a data stream independently and in parallel
US6411980B2 (en) Data split parallel shifter and parallel adder/subtractor
JPH0727456B2 (ja) 浮動小数点演算装置
EP1049025B1 (en) Method and apparatus for arithmetic operations
EP0040279B1 (en) Binary divider
US5892698A (en) 2's complement floating-point multiply accumulate unit
JP2683488B2 (ja) 3−1論理演算装置
US5508952A (en) Carry-lookahead/carry-select binary adder
US5235539A (en) Method and apparatus for generating carry out signals
US8219604B2 (en) System and method for providing a double adder for decimal floating point operations
EP0534760A2 (en) High speed multiplier device
Nasiri et al. Modified fused multiply-accumulate chained unit
EP0508627B1 (en) Method and apparatus for generating carry out signals
Radix et al. The Open Cybernetics & Systemics
US5051943A (en) Adder circuit with an encoded carry
US7580968B2 (en) Processor with scaled sum-of-product instructions
EP0438962A2 (en) Method and apparatus for exponent adder
WO1998006029A1 (en) Apparatus and methods for execution of computer instructions

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees