JP3578303B2 - Method for producing electrode of sealed prismatic battery - Google Patents

Method for producing electrode of sealed prismatic battery Download PDF

Info

Publication number
JP3578303B2
JP3578303B2 JP05762497A JP5762497A JP3578303B2 JP 3578303 B2 JP3578303 B2 JP 3578303B2 JP 05762497 A JP05762497 A JP 05762497A JP 5762497 A JP5762497 A JP 5762497A JP 3578303 B2 JP3578303 B2 JP 3578303B2
Authority
JP
Japan
Prior art keywords
foil
ears
separator
electrode
strap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05762497A
Other languages
Japanese (ja)
Other versions
JPH10255753A (en
Inventor
俊彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP05762497A priority Critical patent/JP3578303B2/en
Publication of JPH10255753A publication Critical patent/JPH10255753A/en
Application granted granted Critical
Publication of JP3578303B2 publication Critical patent/JP3578303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン電池の負極、ニッケル・水素電池の負極など、密閉型角形電池の電極の製造方法に関するものである。
【0002】
【従来の技術】
電池の特性のうち、より小型軽量であること、より高容量であることが近年特に要求されている。そこでリチウムイオン電池などにおいては、活物質層をもつ複数枚の金属箔を積層して電極を構成し、電極表面積を大きくすることにより小型・高容量化を図った電池が用いられるようになっている。
【0003】
このような複数の金属箔からなる電極を製造するには、活物質層が形成され耳部をもつ導電性金属箔をセパレータを介して複数枚積層し、最後に金属箔と同一形状の補強板を積層した後、耳部どうしを抵抗溶接法などで溶接している。この溶接された耳部は電極リードとして用いられる。また内部抵抗を極力小さくすることが望ましいため、金属箔の材質としては導電性の高い銅が用いられ、その厚さも10〜20μm程度のきわめて薄い銅箔が用いられている。
【0004】
ところが耳部どうしを抵抗溶接法で溶接すると、抵抗溶接時に溶融した銅箔が溶接電極に付着してメンテナンスが増大したり、溶接設定条件の幅が狭く設定が困難となったりする不具合があり、生産性や信頼性が低いという問題があった。そこで特開平8−167408号公報には、補強板の電極リードに対応する位置に断面略コ字状の突片を設けておき、その突片で積層された耳部を把持し、その突片を介して溶接する密閉型角形電池の電極の製造方法が開示されている。
【0005】
この製造方法によれば、溶接電極等が直接耳部に接触することがないので、溶融した銅箔が付着するような不具合が回避される。また溶接設定条件の幅が広がり、かつ作業性も向上する。
また、銅箔の積層枚数が多い場合には、複数枚毎の何組かに分割し、図6に示すようにそれぞれの組の耳部をストラップで挟んで溶接することが行われている。この場合にはストラップが上記突片と同様の機能をもち、同様の効果が得られる。
【0006】
【発明が解決しようとする課題】
ところで銅は、導電性が高いと同時に、表1に示すように鉄やニッケルに比べて熱伝導率の高い金属でもある。一方、セパレータとしてはポリオレフィン系の熱可塑性樹脂が一般に用いられている。そのため上記公報に開示の方法で電極を製造した場合には、溶接時の熱が銅箔からセパレータに伝わり易く、図6に示すようにセパレータの耳部近傍の部分が溶損して絶縁性が損なわれるという不具合があった。
【0007】
【表1】

Figure 0003578303
この不具合は、銅に代えて熱伝導率の低い金属箔を用いる方法、あるいはセパレータの熱容量を大きくする方法で解決することが可能である。しかし銅に代えて熱伝導率の低い金属箔を用いると、導電性が銅より低下するため容量が低下したり、原価が高騰したりする場合が多い。またセパレータの熱容量を大きくするにはセパレータを厚くすることが一般的であるが、この方法では小型化の要請に反することとなり好ましくない。
【0008】
本発明はこのような事情に鑑みてなされたものであり、従来と同様の導電性金属箔とセパレータを用い、かつセパレータの溶損を防止することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決する本発明の密閉型角形電池の電極の製造方法の特徴は、熱可塑性樹脂製のセパレータを用いた電池における導電性金属箔の耳部をストラップに溶接する密閉型角形電池の電極の製造方法であって、
複数の耳部とストラップとが積層された積層部の溶接部分に予め導電性金属箔より分光反射率が低い金属体を配置し、積層部の耳部の端面を含む面に向かってレーザビームを照射して金属体を溶融させることで積層部を該金属体によって溶接することにある。
【0010】
【発明の実施の形態】
積層工程では、導電性金属箔がセパレータを介して複数枚積層される。導電性金属箔としては通常は銅箔が用いられるが、他の導電性金属を用いることもできる。但し銅以外の金属では、導電性が銅より低下して容量が低下したり、原価が高騰したりする場合がある。この導電性金属箔の厚さは、従来と同様に10〜20μmのものが一般に用いられる。導電性金属箔の厚さが10μmより薄いと取り扱いが困難になり、20μmより厚くなると、従来と同一容量とするには電池が大型化し、電極を従来と同体積とすると容量が不足する。
【0011】
セパレータとしては、従来と同様にポリプロピレン、ポリエチレンなどを用いることができ、その厚さは一般に30〜50μmのものが用いられる。またセパレータの状態としては、電解液が出入可能なように不織布など多孔質状態のものが用いられる。
そして積層された耳部は、ストラップで把持される。このストラップとしては、耳部と溶接可能なものであればその材質は特に制限されず、従来と同様にステンレス鋼などが用いられる。
【0012】
本発明の特徴をなす溶接工程では、溶接部分に予め導電性金属箔を構成する金属より分光反射率が低い金属体を配置し、溶接工程は金属体にレーザビームを照射して金属体を溶融させる。これにより耳部どうし及び耳部とストラップとは、溶融した金属体により溶接される。
レーザビーム溶接法によれば、より狭い範囲を短時間で溶接することが可能となる。しかし銅など分光反射率が高い金属では、レーザビームが反射されてしまうため溶融に長時間が必要となったり、また高出力のレーザビームが必要となる。しかし照射時間を長くしたり高出力のレーザビームを用いたりした場合には、熱伝導が進行し過ぎてセパレータが溶損する恐れがある。
【0013】
そこで本発明では、溶接部分に予め導電性金属箔を構成する金属より分光反射率が低い金属体を配置しておくこととした。このようにすることにより、レーザビームは金属体に優先的に吸収されて金属体が溶融するため、低出力のレーザビームを用いて速やかに溶接することが可能となり、セパレータの溶損を防止することができる。
【0014】
金属体の材質としては、例えば導電性金属箔として銅箔を用いた場合には、表2に示すように銅より分光反射率が低い鉄、ニッケルを用いることができる。また金属体の配置方法としては、粉末状あるいは箔状の金属体を耳部どうしの間及びストラップと耳部の間に挟持しておく方法、金属体の箔あるいは金属体粉末で積層された耳部端面を被覆しておく方法などが例示される。
【0015】
【表2】
Figure 0003578303
レーザビームとしては、Nレーザ、YAGレーザなど、発振波長が0.3〜1.0μmのものを用いることが望ましい。
【0016】
【実施例】
以下、実施例により本発明を具体的に説明する。本実施例は、リチウムイオン電池用電極の製造に本発明を適用したものである。
(実施例1)
まず図1に示すように、厚さ18μmの銅箔を基材とする負極板1を用意する。この負極板1は、45mm×45mmの正方形状の電極部10と、電極部10の一辺の一端部から突出し20mm×10mmの長方形状の耳部11とから構成され、予め電極部10の表面にメソカーボンマイクロビーズ(MCMB)からなる活物質合剤層が形成されている。
【0017】
一方、活物質合剤層の材質をLiCoOとしたこと以外は負極板1と同様の構成の正極板2を用意する。
次に、負極板1と正極板2をそれぞれポリプロピレン製で厚さ25μmの不織布からなる袋状のセパレータ3に入れ、負極板1と正極板2とを10枚ずつ交互に積層する。耳部11及び耳部21はセパレータ3から突出している。そして負極板1の耳部11を一端部に揃え、正極板2の耳部21を他端部に揃えるとともに、耳部どうしの間に厚さ15μmのNi箔4を介在させながら積層した。最後に積層体の耳部11と耳部21を、Ni箔4を介在させ、SUS304製のストラップ5で加締めてそれぞれ挟持した。その状態を図2及び図3に示す。
【0018】
そして、積層されたそれぞれの耳部11と耳部21の突出端面に向かって、窒素,アルゴンの非酸化性雰囲気においてYAGレーザ(パルス発振10Hz)を10ミリ秒間照射した。これにより先ずNi箔4が溶融し、耳部11どうし、耳部21どうし、ストラップ5と耳部11及びストラップ5と耳部21とが溶接され、セパレータ3に溶損はみられなかった。
【0019】
(比較例1)
実施例1と同様の負極板1と正極板2を用意し、Ni箔4を用いなかったこと以外は実施例1と同様にして積層し、ストラップ5で挟持した。
そして実施例1と同じ条件でレーザ溶接したところ、銅箔がレーザビームを反射するため溶接が困難であった。そこでパルス発振を10Hzに、照射時間を20ミリ秒間に増大したYAGレーザを照射して溶接した。その結果、セパレータ3の耳部11及び耳部21近傍に約100mmの溶損が観察された。
【0020】
(実施例2)
実施例1と同様の負極板1と正極板2を用意し、Ni箔4を用いなかったこと以外は実施例1と同様に積層した。
次に、図4に示すように、積層体の耳部11と耳部21のレーザビームの照射される端面を厚さ15μmのNi箔6で覆い、さらにそのNi箔6を間に挟んだ状態で、ストラップ5で積層体の耳部11と耳部21をそれぞれ挟持した。
【0021】
そして実施例1と同一条件でYAGレーザを照射したところ、Ni箔6が溶融するとともに、毛細管現象により溶融ニッケルが耳部11どうし、耳部21どうし、ストラップ5と耳部11及びストラップ5と耳部21の間に滲入してそれぞれが溶接され、セパレータ3に溶損はみられなかった。
(実施例3)
実施例1と同様の負極板1と正極板2を用意し、Ni箔4を用いなかったこと以外は実施例1と同様にして積層し、ストラップ5で挟持した。
【0022】
次に、図5に示すように、積層体の耳部11と耳部21のレーザビームの照射される端面に、平均粒径2μmのNi粉末7を均一に置き、実施例1と同一条件でYAGレーザを照射したところ、Ni粉末7が溶融するとともに、毛細管現象により溶融ニッケルが耳部11どうし、耳部21どうし、ストラップ5と耳部11及びストラップ5と耳部21の間に滲入してそれぞれが溶接され、セパレータ3に溶損はみられなかった。
【0023】
【発明の効果】
すなわち本発明の密閉型角形電池の電極の製造方法によれば、銅箔などの導電性に優れた金属箔と25μm程度の薄い熱可塑性樹脂製セパレータを用いて、セパレータの溶損を防止しつつ耳部どうし及び耳部とストラップとを溶接することができる。
【0024】
したがって本発明の製造方法によれば、小型で高容量の電池用電極を容易にかつ安定して製造することができる。
【図面の簡単な説明】
【図1】本発明の一実施例に用いた負極板の斜視図である。
【図2】本発明の一実施例で製造された電極の溶接工程前の斜視図である。
【図3】図2の要部拡大断面図である。
【図4】本発明の第2の実施例で製造された電極の溶接工程前の要部拡大斜視図である。
【図5】本発明の第3の実施例で製造された電極の溶接工程前の要部拡大斜視図である。
【図6】比較例1で製造された電極の要部斜視図である。
【符号の説明】
1:負極板 2:正極板 3:セパレータ
4:Ni箔 5:ストラップ 11:耳部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an electrode of a sealed rectangular battery, such as a negative electrode of a lithium ion battery and a negative electrode of a nickel-metal hydride battery.
[0002]
[Prior art]
In recent years, among the characteristics of batteries, smaller and lighter weight and higher capacity are particularly required. Therefore, in lithium-ion batteries and the like, batteries are used in which a plurality of metal foils having an active material layer are laminated to form an electrode, and the size and capacity of the electrode are increased by increasing the electrode surface area. I have.
[0003]
In order to manufacture such an electrode composed of a plurality of metal foils, a plurality of conductive metal foils each having an active material layer formed thereon and having ears are laminated via a separator, and finally a reinforcing plate having the same shape as the metal foils. After lamination, the ears are welded together by resistance welding or the like. The welded ears are used as electrode leads. Further, since it is desirable to minimize the internal resistance, highly conductive copper is used as the material of the metal foil, and an extremely thin copper foil having a thickness of about 10 to 20 μm is used.
[0004]
However, when the lugs are welded by resistance welding, the copper foil melted during resistance welding adheres to the welding electrode, which increases maintenance and narrows the welding setting conditions, making it difficult to set. There was a problem that productivity and reliability were low. Japanese Unexamined Patent Publication No. Hei 8-167408 discloses that a protrusion having a substantially U-shaped cross section is provided at a position corresponding to the electrode lead of the reinforcing plate, and the stacked lugs are gripped by the protrusion, and the protrusion is provided. Discloses a method for manufacturing an electrode of a sealed prismatic battery which is welded through a via hole.
[0005]
According to this manufacturing method, since the welding electrode or the like does not come into direct contact with the ears, a problem that the molten copper foil adheres is avoided. Further, the range of welding setting conditions is widened, and workability is also improved.
When the number of laminated copper foils is large, the copper foil is divided into a plurality of sets, and as shown in FIG. 6, the ears of each set are sandwiched by a strap and welded. In this case, the strap has the same function as the above-mentioned protruding piece, and the same effect can be obtained.
[0006]
[Problems to be solved by the invention]
By the way, copper is a metal having high conductivity and high thermal conductivity as compared with iron and nickel as shown in Table 1 at the same time. On the other hand, a polyolefin-based thermoplastic resin is generally used as a separator. Therefore, when an electrode is manufactured by the method disclosed in the above publication, heat during welding is easily transmitted from the copper foil to the separator, and as shown in FIG. There was a defect that was.
[0007]
[Table 1]
Figure 0003578303
This problem can be solved by using a metal foil having a low thermal conductivity instead of copper, or by increasing the heat capacity of the separator. However, when a metal foil having a low thermal conductivity is used instead of copper, the conductivity is lower than that of copper, so that the capacity is often lowered or the cost is soared in many cases. In order to increase the heat capacity of the separator, it is general to increase the thickness of the separator. However, this method is not preferable because it is against the demand for downsizing.
[0008]
The present invention has been made in view of such circumstances, and it is an object of the present invention to use the same conductive metal foil and separator as in the related art, and to prevent the separator from being damaged.
[0009]
[Means for Solving the Problems]
The feature of the manufacturing method of the electrode of the sealed prismatic battery of the present invention which solves the above-mentioned problem is that the electrode of the sealed prismatic battery in which the ear of the conductive metal foil in the battery using the separator made of thermoplastic resin is welded to the strap. The method of manufacturing
A metal body having a lower spectral reflectance than the conductive metal foil is arranged in advance on a welded portion of the laminated portion where a plurality of ears and straps are laminated, and a laser beam is directed toward a surface including an end surface of the ear portion of the laminated portion. The object of the present invention is to irradiate a metal body by irradiating the metal body to weld the laminated portion.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
In the laminating step, a plurality of conductive metal foils are laminated via a separator. Copper foil is usually used as the conductive metal foil, but other conductive metals can also be used. However, in the case of metals other than copper, the conductivity may be lower than that of copper, so that the capacity may decrease or the cost may increase. The thickness of the conductive metal foil is generally 10 to 20 μm as in the conventional case. When the thickness of the conductive metal foil is less than 10 μm, handling becomes difficult. When the thickness is more than 20 μm, the battery becomes large to have the same capacity as the conventional one, and when the electrode has the same volume as the conventional one, the capacity becomes insufficient.
[0011]
As the separator, polypropylene, polyethylene, or the like can be used as in the related art, and a separator having a thickness of generally 30 to 50 μm is used. As the state of the separator, a porous state such as a nonwoven fabric is used so that the electrolytic solution can enter and exit.
The stacked ears are gripped by the strap. The material of the strap is not particularly limited as long as it can be welded to the ear, and stainless steel or the like is used as in the conventional case.
[0012]
In the welding step, which is a feature of the present invention, a metal body having a lower spectral reflectance than the metal constituting the conductive metal foil is arranged in advance on the welded part, and the metal body is irradiated with a laser beam to melt the metal body in the welding step. Let it. As a result, the ear portions and the ear portion and the strap are welded by the molten metal body.
According to the laser beam welding method, a narrower range can be welded in a short time. However, for metals such as copper having a high spectral reflectance, a long time is required for melting because the laser beam is reflected, and a high-power laser beam is required. However, when the irradiation time is lengthened or a high-output laser beam is used, heat conduction proceeds excessively and the separator may be melted.
[0013]
Therefore, in the present invention, a metal body having a lower spectral reflectance than the metal constituting the conductive metal foil is arranged in advance in the welded portion. By doing so, the laser beam is preferentially absorbed by the metal body and the metal body is melted, so that it is possible to quickly weld using a low-power laser beam and prevent erosion of the separator. be able to.
[0014]
As a material of the metal body, for example, when a copper foil is used as the conductive metal foil, as shown in Table 2, iron or nickel having a lower spectral reflectance than copper can be used. Further, as a method of disposing the metal body, a method in which a powdery or foil-like metal body is sandwiched between the ear portions and between the strap and the ear portion, an ear laminated with a metal body foil or a metal body powder. For example, a method of coating the end face of the part is exemplified.
[0015]
[Table 2]
Figure 0003578303
It is desirable to use a laser beam having an oscillation wavelength of 0.3 to 1.0 μm, such as an N 2 laser or a YAG laser.
[0016]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples. In this embodiment, the present invention is applied to the manufacture of an electrode for a lithium ion battery.
(Example 1)
First, as shown in FIG. 1, a negative electrode plate 1 having a copper foil having a thickness of 18 μm as a base material is prepared. The negative electrode plate 1 is composed of a 45 mm × 45 mm square electrode portion 10 and a 20 mm × 10 mm rectangular ear portion 11 protruding from one end of one side of the electrode portion 10. An active material mixture layer made of mesocarbon microbeads (MCMB) is formed.
[0017]
On the other hand, a positive electrode plate 2 having the same configuration as the negative electrode plate 1 is prepared except that the material of the active material mixture layer is LiCoO 2 .
Next, each of the negative electrode plate 1 and the positive electrode plate 2 is placed in a bag-shaped separator 3 made of a nonwoven fabric having a thickness of 25 μm made of polypropylene, and ten negative electrode plates 1 and positive electrode plates 2 are alternately laminated. The ear 11 and the ear 21 protrude from the separator 3. Then, the ears 11 of the negative electrode plate 1 were aligned with one end, the ears 21 of the positive electrode plate 2 were aligned with the other end, and the Ni foil 4 having a thickness of 15 μm was interposed between the ears. Finally, the ear 11 and the ear 21 of the laminated body were clamped by the SUS304 strap 5 with the Ni foil 4 interposed therebetween. The state is shown in FIGS.
[0018]
Then, a YAG laser (pulse oscillation: 10 Hz) was irradiated for 10 milliseconds in a non-oxidizing atmosphere of nitrogen and argon toward the protruding end surfaces of the stacked ear portions 11 and ear portions 21. As a result, the Ni foil 4 was first melted, the ears 11 were welded to each other, the ears 21 were welded to each other, the strap 5 and the ears 11, and the strap 5 and the ears 21 were not welded.
[0019]
(Comparative Example 1)
A negative electrode plate 1 and a positive electrode plate 2 were prepared in the same manner as in Example 1, were laminated in the same manner as in Example 1 except that the Ni foil 4 was not used, and were sandwiched by straps 5.
When laser welding was performed under the same conditions as in Example 1, welding was difficult because the copper foil reflected the laser beam. Therefore, welding was performed by irradiating a pulsed YAG laser at 10 Hz and an irradiation time of 20 ms to a YAG laser. As a result, about 100 mm 2 of erosion was observed near the ears 11 and 21 of the separator 3.
[0020]
(Example 2)
The same negative electrode plate 1 and positive electrode plate 2 as in Example 1 were prepared, and were laminated in the same manner as in Example 1 except that the Ni foil 4 was not used.
Next, as shown in FIG. 4, the end faces 11 and 21 of the laminate that are irradiated with the laser beam are covered with a 15 μm-thick Ni foil 6, and the Ni foil 6 is sandwiched therebetween. Thus, the ears 11 and the ears 21 of the laminate were sandwiched between the straps 5.
[0021]
Then, when the YAG laser was irradiated under the same conditions as in Example 1, the Ni foil 6 was melted, and the molten nickel was transferred between the ears 11, between the ears 21, the strap 5 and the ear 11, the strap 5 and the ear 5 due to the capillary phenomenon. Infiltration between the portions 21 was performed, and the respective portions were welded, and no erosion was observed in the separator 3.
(Example 3)
A negative electrode plate 1 and a positive electrode plate 2 were prepared in the same manner as in Example 1, and were laminated and sandwiched by a strap 5 in the same manner as in Example 1 except that the Ni foil 4 was not used.
[0022]
Next, as shown in FIG. 5, Ni powder 7 having an average particle size of 2 μm was uniformly placed on the end faces of the laminated body 11 and the ears 21 where the laser beam was irradiated, under the same conditions as in Example 1. When the YAG laser is irradiated, the Ni powder 7 is melted, and the molten nickel infiltrates between the ears 11, between the ears 21, the strap 5 and the ear 11, and between the strap 5 and the ear 21 due to the capillary phenomenon. Each was welded, and no erosion was observed in the separator 3.
[0023]
【The invention's effect】
That is, according to the method for producing an electrode of a sealed prismatic battery of the present invention, a metal foil having excellent conductivity such as a copper foil and a thin thermoplastic resin separator of about 25 μm are used, while preventing erosion of the separator. The ears and the ear and the strap can be welded.
[0024]
Therefore, according to the manufacturing method of the present invention, a small and high-capacity battery electrode can be easily and stably manufactured.
[Brief description of the drawings]
FIG. 1 is a perspective view of a negative electrode plate used in one embodiment of the present invention.
FIG. 2 is a perspective view of an electrode manufactured according to an embodiment of the present invention before a welding step.
FIG. 3 is an enlarged sectional view of a main part of FIG. 2;
FIG. 4 is an enlarged perspective view of a main part before a welding step of an electrode manufactured in a second embodiment of the present invention.
FIG. 5 is an enlarged perspective view of a main part before a welding step of an electrode manufactured in a third embodiment of the present invention.
FIG. 6 is a perspective view of a main part of an electrode manufactured in Comparative Example 1.
[Explanation of symbols]
1: negative electrode plate 2: positive electrode plate 3: separator 4: Ni foil 5: strap 11: ear

Claims (1)

熱可塑性樹脂製のセパレータを用いた電池における導電性金属箔の耳部をストラップに溶接する密閉型角形電池の電極の製造方法であって、
複数の該耳部と該ストラップとが積層された積層部の溶接部分に予め該導電性金属箔より分光反射率が低い金属体を配置し、該積層部の該耳部の端面を含む面に向かってレーザビームを照射して該金属体を溶融させることで該積層部を該金属体によって溶接することを特徴とする密閉型角形電池の電極の製造方法。
A method for manufacturing an electrode of a sealed prismatic battery in which a lug of a conductive metal foil in a battery using a thermoplastic resin separator is welded to a strap,
A metal body having a spectral reflectance lower than that of the conductive metal foil is arranged in advance on a welded portion of the laminated portion where the plurality of ears and the strap are laminated, and a surface including an end surface of the ear portion of the laminated portion is provided on the surface . A method of manufacturing an electrode for a sealed prismatic battery, comprising irradiating a laser beam toward the metal body to melt the metal body, thereby welding the laminated portion with the metal body.
JP05762497A 1997-03-12 1997-03-12 Method for producing electrode of sealed prismatic battery Expired - Fee Related JP3578303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05762497A JP3578303B2 (en) 1997-03-12 1997-03-12 Method for producing electrode of sealed prismatic battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05762497A JP3578303B2 (en) 1997-03-12 1997-03-12 Method for producing electrode of sealed prismatic battery

Publications (2)

Publication Number Publication Date
JPH10255753A JPH10255753A (en) 1998-09-25
JP3578303B2 true JP3578303B2 (en) 2004-10-20

Family

ID=13061045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05762497A Expired - Fee Related JP3578303B2 (en) 1997-03-12 1997-03-12 Method for producing electrode of sealed prismatic battery

Country Status (1)

Country Link
JP (1) JP3578303B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3804702B2 (en) * 1997-03-18 2006-08-02 株式会社ジーエス・ユアサコーポレーション Nonaqueous electrolyte secondary battery
FR2797717A1 (en) * 1999-08-16 2001-02-23 Cit Alcatel Plate paralleling and terminal connector, for electro-chemical battery, has inverted U connecting piece, bridging plates, carrying post-type external circuit terminal
JP4168227B2 (en) * 2001-03-02 2008-10-22 トヨタ自動車株式会社 Battery and manufacturing method thereof
JP2006093343A (en) * 2004-09-22 2006-04-06 Tdk Corp Solid electrolyte capacitor
WO2006090511A1 (en) * 2005-02-22 2006-08-31 Nec Corporation Manufacturing method of electrical device assembly
JP2014029823A (en) * 2012-06-29 2014-02-13 Toyota Motor Corp Secondary battery
JP6040603B2 (en) * 2012-07-18 2016-12-07 日立化成株式会社 Manufacturing method of battery electrode group
JP5454649B1 (en) 2012-10-03 2014-03-26 株式会社豊田自動織機 Power storage device and welding method
KR101726909B1 (en) 2013-10-23 2017-04-13 삼성에스디아이 주식회사 Rechargeable secondary battery having light absorption member
JP6183393B2 (en) * 2015-03-03 2017-08-23 トヨタ自動車株式会社 Power storage device manufacturing method and power storage device
JP6582500B2 (en) * 2015-03-31 2019-10-02 株式会社Gsユアサ Electricity storage element
WO2018123865A1 (en) * 2016-12-27 2018-07-05 日立金属株式会社 Lead material for negative electrodes and method for producing lead material for negative electrodes
JP7019548B2 (en) * 2018-11-29 2022-02-15 プライムアースEvエナジー株式会社 Method of manufacturing secondary batteries and secondary batteries

Also Published As

Publication number Publication date
JPH10255753A (en) 1998-09-25

Similar Documents

Publication Publication Date Title
US8025202B2 (en) Method for manufacturing sealed battery
US10919112B2 (en) Method and system for manufacturing a lithium metal negative electrode
US7867644B2 (en) Secondary battery and secondary battery manufacturing method
KR100842493B1 (en) Method for welding thin plates of different metal, joined body of thin plates of different metal, electric device, and electric device assembly
JP5080199B2 (en) Secondary battery and method for manufacturing secondary battery
JP3578303B2 (en) Method for producing electrode of sealed prismatic battery
KR101161965B1 (en) Current collector terminal plate for secondary battery, secondary battery, and method for producing secondary battery
US20110195288A1 (en) Sealed battery and method for fabricating the same
US9559347B2 (en) Negative electrode terminal for battery and method for producing negative electrode terminal for battery
JP2011092995A (en) Current carrying block for resistance welding, and method for manufacturing sealed battery and sealed battery each using the current carrying block
KR20140116184A (en) Method for manufacturing packed electrode, packed electrode, secondary battery, and heat sealing machine
JP2009259697A (en) Battery and its manufacturing method
KR101222284B1 (en) Battery and method for producing the same
JP2003217562A (en) Coin type battery
WO2013191218A1 (en) Process for producing stacked aluminum material, process for producing sealed battery containing same, and sealed battery
US10181594B2 (en) Method for manufacturing stacked metal foil, method for manufacturing sealed cell including said method, and sealed cell
WO2020170598A1 (en) Electrode plate and method for manufacturing same, and secondary battery and method for manufacturing same
JP2002343342A (en) Secondary battery electrode and its manufacturing method
JP2019153438A (en) Secondary battery and method of manufacturing the same
JP5546997B2 (en) Welding method, battery manufacturing method, and battery
JP5158435B2 (en) Battery and manufacturing method thereof
JP2020004643A (en) Power storage device
CN114284648A (en) Ultrasonic welding device for multilayer laminated battery cell
JP2001052681A (en) Polymer electrolyte battery
JP6818237B2 (en) How to manufacture a secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040708

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees