JP3577357B2 - Method for producing ultra-low carbon steel with excellent surface properties - Google Patents

Method for producing ultra-low carbon steel with excellent surface properties Download PDF

Info

Publication number
JP3577357B2
JP3577357B2 JP08437895A JP8437895A JP3577357B2 JP 3577357 B2 JP3577357 B2 JP 3577357B2 JP 08437895 A JP08437895 A JP 08437895A JP 8437895 A JP8437895 A JP 8437895A JP 3577357 B2 JP3577357 B2 JP 3577357B2
Authority
JP
Japan
Prior art keywords
mass
concentration
aluminum
titanium
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08437895A
Other languages
Japanese (ja)
Other versions
JPH08283823A (en
Inventor
明人 清瀬
健一 吉井
哲治 門矢
光雄 内村
裕規 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP08437895A priority Critical patent/JP3577357B2/en
Publication of JPH08283823A publication Critical patent/JPH08283823A/en
Application granted granted Critical
Publication of JP3577357B2 publication Critical patent/JP3577357B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、自動車、家庭電気製品、家具、容器等に用いられる、表面性状に優れた極低炭素鋼の製造方法に関するものである。
【0002】
【従来の技術】
従来の極低炭素鋼は、鋼精錬炉で溶製された炭素(以下、Cと記す)濃度が0.01mass%以上0.06mass%以下の未脱酸溶鋼を真空脱炭装置を用いて、C濃度が0.005mass%以下まで脱炭した後、アルミを添加して脱酸することにより製造されていた。溶鋼中にアルミを添加すると、脱酸生成物としてアルミナが生成する。さらに、溶鋼中の酸可溶アルミが大気やスラグと接触することによって酸化され、アルミナが生成する。溶鋼中で生成したアルミナは浮上し、スラグに吸収されたり、取鍋やタンディッシュの耐火物に付着して、溶鋼中より除去されるが、鋼の中に残存するものも多くある。
【0003】
このアルミナが圧延時に鋼板の表面に露出して表面欠陥となる。したがって、鋼板の表面欠陥を低減するためには、鋼中に残存するアルミナを低減する必要がある。鋼中のアルミナを少なくするためには、脱酸時のアルミナ生成量を減少させる方法、生成したアルミナの除去を促進する方法、大気やスラグによる溶鋼の中の酸可溶アルミの酸化を防止する方法がある。
【0004】
極低炭素鋼では、アルミ脱酸後の溶存酸素濃度を0.001mass%以下にするため、脱酸時のアルミナ生成量はアルミ脱酸前の溶存酸素濃度でほぼ決まる。脱炭処理するためには溶存酸素が0.03mass%以上は必要であることを念頭におくと、アルミ脱酸前の溶存酸素濃度をむやみに下げることはできないため、脱酸時のアルミナ生成量を低減させることは困難である。
【0005】
生成したアルミナの除去を促進する方法として、アルミ脱酸後の溶鋼環流時間を長くしたり、取鍋の底部に設置したガス吹込み口より不活性ガスを吹込む方法等が一般に行なわれている。溶鋼環流時間の延長は、処理時間の延長をもたらし、生産性が悪化する。取鍋底部に設置したガス吹込み口より不活性ガスを吹込む方法は、ガス吹込み口のメンテナンスや不活性ガスの原単位の増加により製造コストが増加する。
【0006】
溶鋼中の酸可溶アルミの酸化を防止する方法として、タンディッシュのArシールを強化する方法が公知技術としてあり、また、スラグによる酸化を防止する方法として、取鍋内のスラグ上に脱酸剤を投入し、スラグ中のT.Fe濃度を5mass%以下とする方法が特開平2−30711号公報に開示されている。タンディッシュのArシールを強化する場合は、Arガスの原単位が増加し、コストが増加する。スラグ中のT.Feを下げる方法はスラグの脱酸剤が必要でコスト高となる。
【0007】
【発明が解決しようとする課題】
以上述べたように、従来の技術では、製造コストを増加させずに、鋼中のアルミナの残存量を低減することは困難である。さらに、上記の対策をとっても鋼中のアルミナを皆無にすることは困難である。したがって、製造コストを上げることなく、介在物の組成を表面欠陥が生成しにくい範囲に制御することが課題である。
【0008】
【課題を解決するための手段】
本発明は、上記の課題を有利に解決するために発明されたもので、その要旨とするところは、炭素濃度が0.005mass%以下の鋼を溶製するにあたり、真空脱ガス処理装置にて、脱炭処理をした後、アルミ脱酸し、酸可溶アルミ濃度を0.005〜0.015mass%にした後、チタンを添加し、チタン濃度を0.02〜0.10mass%にすることを特徴とした表面性状に優れた極低炭素鋼の製造方法である。
【0009】
【作用】
通常、極低炭素鋼では加工特性を向上させるためにチタンが添加される。チタンと脱酸のために添加されるアルミとで、鋼中の介在物の組成を表面欠陥が出にくい組成に制御することが本発明の本質である。本発明者は系統的な実験により、表面欠陥の出にくい介在物の組成は、チタン濃度が42mass%以上54mass%以下、かつアルミ濃度が3mass%以上13mass%以下で残部が酸素および不可避的不純物元素よりなる組成であることを解明した。
【0010】
そこで、介在物組成をこの範囲に制御するための脱酸方法を検討し、アルミ脱酸後の酸可溶アルミ濃度とチタン添加後のチタン濃度が介在物組成制御のためには重要であることを明らかにした。
【0011】
鋳片中の介在物の組成に及ぼすアルミ脱酸後の酸可溶アルミ濃度とチタン添加後のチタン濃度の影響を図1に示す。アルミ脱酸後の酸可溶アルミ濃度を0.005mass%以上0.015mass%以下にし、チタン添加後のチタン濃度を0.02mass%以上0.10mass%以下にすることによって、介在物の組成を上記の表面欠陥が出にくい組成に制御することができる。
【0012】
冷間圧延製品の表面欠陥指数に及ぼすアルミ脱酸後の酸可溶アルミ濃度とチタン添加後のチタン濃度の影響を図2に示す。ここで、表面欠陥指数はコイル100mあたりの表面欠陥の個数を指数化したものである。アルミ脱酸後の酸可溶アルミ濃度を0.005mass%以上0.015mass%以下にし、チタン添加後のチタン濃度を0.02mass%以上0.10mass%以下にすることによって、冷間圧延製品の表面欠陥指数を低減することができる。
【0013】
本発明の方法において、溶鋼に添加するアルミは純アルミ、アルミ含有合金の一種もしくは二種以上の混合物、チタンは純チタン、チタン含有合金の一種もしくは二種以上の混合物のいずれを用いてもよく、その効果は同等である。
また、真空脱ガス装置としては、RH,DH,VOD,タンクデガッサーのいずれを用いてもよく、その効果は同等である。
【0014】
【実施例】
転炉で溶製されたC:0.03〜0.05mass%、Si:0.001〜0.03mass%、Mn:0.05〜0.2mass%、P:0.01〜0.02mass%、S:0.005〜0.02mass%、O:0.03〜0.1mass%で不可避的不純物元素を含有する溶鋼を取鍋に出鋼し、RH真空脱ガス装置を用いて、C濃度を0.005mass%以下まで脱炭処理を行なった。溶存酸素濃度を測定し、その値に応じてアルミを添加し、さらにチタンを添加した、アルミ脱酸後の酸可溶アルミ濃度とチタン添加後のチタン濃度を表1に示すように変更した。No.1〜4は本発明の方法で、No.5〜8は比較例である。これらの溶鋼を連続鋳造し、同一条件で熱間圧延、冷間圧延を行ない、製品の表面欠陥指数を比較した。その結果を表1に併示した。
【0015】
【表1】

Figure 0003577357
【0016】
比較例であるNo.5とNo.8は介在物中のチタン濃度が54mass%超、No.6とNo.7は介在物中のアルミ濃度が13mass%超であり、冷間圧延製品の表面欠陥指数は0.45以上であるのに対して、本発明の方法では、鋳片中の介在物の組成がチタン濃度が42mass%以上54mass%以下かつアルミ濃度が3mass%以上13mass%以下で残部が酸素および不可避的不純物元素よりなる組成であり、冷間圧延製品の表面欠陥指数が0.15以下と比較例の1/3以下になっている。
【0017】
【発明の効果】
本発明の方法により、製造コストを上げることなく、鋳片中の介在物の組成を冷間圧延製品での表面欠陥が出現しにくい組成に制御することができ、冷間圧延製品の表面欠陥を低減することができた。
【図面の簡単な説明】
【図1】鋳片中の介在物組成に及ぼすアルミ脱酸後の酸可溶アルミ濃度とチタン添加後のチタン濃度の影響を示す図である。
【図2】冷間圧延製品の表面欠陥指数に及ぼすアルミ脱酸後の酸可溶アルミ濃度とチタン添加後のチタン濃度の影響を示す図である。[0001]
[Industrial applications]
The present invention relates to a method for producing ultra-low carbon steel having excellent surface properties, which is used for automobiles, household appliances, furniture, containers, and the like.
[0002]
[Prior art]
Conventional ultra-low carbon steel uses a vacuum decarburizer to melt undeoxidized molten steel having a carbon (hereinafter referred to as C) concentration of 0.01 mass% or more and 0.06 mass% or less in a steel smelting furnace. It has been manufactured by decarburizing to a C concentration of 0.005 mass% or less and then adding aluminum to deoxidize. When aluminum is added to molten steel, alumina is generated as a deoxidation product. Further, the acid-soluble aluminum in the molten steel is oxidized by contact with the atmosphere or slag, and alumina is generated. Alumina generated in the molten steel floats and is absorbed by the slag or adheres to a refractory of a ladle or a tundish and is removed from the molten steel, but many of the alumina remains in the steel.
[0003]
The alumina is exposed on the surface of the steel sheet during rolling, and becomes a surface defect. Therefore, in order to reduce the surface defects of the steel sheet, it is necessary to reduce the alumina remaining in the steel. To reduce the amount of alumina in steel, reduce the amount of alumina generated during deoxidation, promote removal of generated alumina, and prevent oxidation of acid-soluble aluminum in molten steel by air or slag. There is a way.
[0004]
In ultra-low carbon steel, the amount of alumina produced during deoxidation is substantially determined by the dissolved oxygen concentration before aluminum deoxidation in order to keep the dissolved oxygen concentration after aluminum deoxidation at 0.001 mass% or less. Keeping in mind that dissolved oxygen must be at least 0.03 mass% for decarburization, the dissolved oxygen concentration before aluminum deoxidation cannot be reduced unnecessarily. Is difficult to reduce.
[0005]
As a method of accelerating the removal of the generated alumina, a method of increasing the reflux time of molten steel after deoxidizing aluminum or a method of blowing an inert gas from a gas inlet installed at the bottom of a ladle is generally performed. . Prolonging the reflux time of the molten steel results in prolongation of the processing time, and lowers productivity. The method of blowing an inert gas from a gas inlet installed at the bottom of a ladle increases the production cost due to maintenance of the gas inlet and an increase in the unit of inert gas.
[0006]
As a method of preventing oxidation of acid-soluble aluminum in molten steel, there is a known technique of strengthening an Ar seal of a tundish. As a method of preventing oxidation by slag, deoxidation is performed on slag in a ladle. Agent was added, and T.G. A method for reducing the Fe concentration to 5 mass% or less is disclosed in Japanese Patent Application Laid-Open No. Hei 2-30711. In the case where the Ar seal of the tundish is strengthened, the unit consumption of Ar gas increases and the cost increases. T. in slag The method of lowering Fe requires a deoxidizing agent for slag and increases the cost.
[0007]
[Problems to be solved by the invention]
As described above, it is difficult to reduce the residual amount of alumina in steel without increasing the manufacturing cost with the conventional technology. Furthermore, it is difficult to eliminate alumina in steel even if the above measures are taken. Therefore, it is an object to control the composition of inclusions within a range in which surface defects are hardly generated without increasing the manufacturing cost.
[0008]
[Means for Solving the Problems]
The present invention was invented in order to advantageously solve the above-mentioned problems, and the gist of the present invention is to produce a steel having a carbon concentration of 0.005 mass% or less by using a vacuum degassing apparatus. After decarburizing treatment, aluminum is deoxidized to make the acid-soluble aluminum concentration 0.005 to 0.015 mass%, and then titanium is added to make the titanium concentration 0.02 to 0.10 mass%. This is a method for producing an ultra-low carbon steel having excellent surface properties.
[0009]
[Action]
Normally, in ultra-low carbon steel, titanium is added to improve processing characteristics. The essence of the present invention is to control the composition of inclusions in the steel to a composition that hardly causes surface defects by using titanium and aluminum added for deoxidation. The present inventor has conducted systematic experiments to find that the composition of inclusions that are unlikely to cause surface defects is such that the titanium concentration is 42 mass% or more and 54 mass% or less, the aluminum concentration is 3 mass% or more and 13 mass% or less, and the balance is oxygen and inevitable impurity elements. It was clarified that the composition consisted of:
[0010]
Therefore, a deoxidation method for controlling the inclusion composition within this range was studied, and the acid-soluble aluminum concentration after aluminum deoxidation and the titanium concentration after titanium addition were important for controlling the inclusion composition. Revealed.
[0011]
FIG. 1 shows the effect of the acid-soluble aluminum concentration after aluminum deoxidation and the titanium concentration after titanium addition on the composition of inclusions in the slab. The composition of inclusions is adjusted by setting the acid-soluble aluminum concentration after aluminum deoxidization to 0.005 mass% or more and 0.015 mass% or less, and the titanium concentration after titanium addition to 0.02 mass% or more and 0.10 mass% or less. The composition can be controlled so that the above-mentioned surface defects are hardly generated.
[0012]
FIG. 2 shows the effect of the acid-soluble aluminum concentration after aluminum deoxidization and the titanium concentration after titanium addition on the surface defect index of the cold-rolled product. Here, the surface defect index is an index of the number of surface defects per 100 m of the coil. By making the acid-soluble aluminum concentration after deoxidizing aluminum 0.005 mass% or more and 0.015 mass% or less and the titanium concentration after adding titanium to 0.02 mass% or more and 0.10 mass% or less, the cold-rolled product The surface defect index can be reduced.
[0013]
In the method of the present invention, aluminum added to molten steel is pure aluminum, one or a mixture of two or more aluminum-containing alloys, and titanium may be any of pure titanium and one or a mixture of two or more titanium-containing alloys. , The effect is equivalent.
Further, any of RH, DH, VOD, and tank degasser may be used as the vacuum degassing device, and the effects are the same.
[0014]
【Example】
C: 0.03 to 0.05 mass%, Si: 0.001 to 0.03 mass%, Mn: 0.05 to 0.2 mass%, P: 0.01 to 0.02 mass% produced in the converter. , S: 0.005 to 0.02 mass%, O: 0.03 to 0.1 mass%, molten steel containing an unavoidable impurity element is put on a ladle, and the C concentration is measured using an RH vacuum degassing apparatus. Was decarburized to 0.005 mass% or less. The dissolved oxygen concentration was measured, aluminum was added according to the value, and titanium was further added. The acid-soluble aluminum concentration after aluminum deoxidation and the titanium concentration after titanium addition were changed as shown in Table 1. No. Nos. 1 to 4 are the methods of the present invention. 5 to 8 are comparative examples. These molten steels were continuously cast, hot-rolled and cold-rolled under the same conditions, and the surface defect indexes of the products were compared. The results are shown in Table 1.
[0015]
[Table 1]
Figure 0003577357
[0016]
No. of Comparative Example. 5 and No. 5 No. 8 has a titanium concentration in the inclusions of more than 54 mass%, 6 and no. In No. 7, the aluminum concentration in the inclusions was more than 13 mass%, and the surface defect index of the cold-rolled product was 0.45 or more, whereas in the method of the present invention, the composition of the inclusions in the slab was Comparative example in which the titanium concentration is from 42 mass% to 54 mass% and the aluminum concentration is from 3 mass% to 13 mass% and the balance is composed of oxygen and unavoidable impurity elements, and the surface defect index of the cold-rolled product is 0.15 or less. Is 1/3 or less.
[0017]
【The invention's effect】
By the method of the present invention, it is possible to control the composition of inclusions in a slab to a composition in which surface defects in a cold-rolled product are unlikely to appear without increasing the production cost, and to reduce the surface defects of the cold-rolled product. Could be reduced.
[Brief description of the drawings]
FIG. 1 is a graph showing the effects of the concentration of acid-soluble aluminum after deoxidation of aluminum and the concentration of titanium after addition of titanium on the composition of inclusions in a slab.
FIG. 2 is a graph showing the influence of the acid-soluble aluminum concentration after aluminum deoxidization and the titanium concentration after titanium addition on the surface defect index of a cold-rolled product.

Claims (1)

炭素濃度が0.005mass%以下の鋼を溶製するにあたり、真空脱ガス処理装置にて脱炭処理をした後、アルミ脱酸し、酸可溶アルミ濃度を0.005〜0.015mass%にした後、チタンを添加し、チタン濃度を0.02〜0.10mass%にすることを特徴とした表面性状に優れた極低炭素鋼の製造方法。In melting steel having a carbon concentration of 0.005 mass% or less, after decarburizing in a vacuum degassing apparatus, aluminum is deoxidized, and the acid-soluble aluminum concentration is reduced to 0.005 to 0.015 mass%. And then adding titanium to adjust the titanium concentration to 0.02 to 0.10 mass%, thereby producing a very low carbon steel having excellent surface properties.
JP08437895A 1995-04-10 1995-04-10 Method for producing ultra-low carbon steel with excellent surface properties Expired - Lifetime JP3577357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08437895A JP3577357B2 (en) 1995-04-10 1995-04-10 Method for producing ultra-low carbon steel with excellent surface properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08437895A JP3577357B2 (en) 1995-04-10 1995-04-10 Method for producing ultra-low carbon steel with excellent surface properties

Publications (2)

Publication Number Publication Date
JPH08283823A JPH08283823A (en) 1996-10-29
JP3577357B2 true JP3577357B2 (en) 2004-10-13

Family

ID=13828888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08437895A Expired - Lifetime JP3577357B2 (en) 1995-04-10 1995-04-10 Method for producing ultra-low carbon steel with excellent surface properties

Country Status (1)

Country Link
JP (1) JP3577357B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW408184B (en) * 1997-09-29 2000-10-11 Kawasaki Steel Co Manufacturing method for producing Titanium killed steel with smooth surface texture
JP3686579B2 (en) * 2000-09-18 2005-08-24 新日本製鐵株式会社 Method of melting steel sheet for thin plate and slab cast using the same
KR100554142B1 (en) * 2001-12-07 2006-02-20 주식회사 포스코 Refining process of invar steel

Also Published As

Publication number Publication date
JPH08283823A (en) 1996-10-29

Similar Documents

Publication Publication Date Title
JPH09263820A (en) Production of cluster-free aluminum killed steel
JP3577357B2 (en) Method for producing ultra-low carbon steel with excellent surface properties
JP3893770B2 (en) Melting method of high clean ultra low carbon steel
JP3627755B2 (en) Method for producing high cleanliness ultra low carbon steel with extremely low S content
JP7126103B2 (en) Melting method of high manganese steel
JP2991796B2 (en) Melting method of thin steel sheet by magnesium deoxidation
KR100844794B1 (en) A method for refining with high purity of austenitic stainless steel
JP3499349B2 (en) Fe-Ni alloy cold rolled sheet excellent in surface properties and method for producing the same
JP3635122B2 (en) Method for producing ultra-low carbon steel with excellent surface properties
JPH10317049A (en) Method for melting high clean steel
JP3619283B2 (en) Method for producing medium carbon Al killed steel
JP3548273B2 (en) Melting method of ultra low carbon steel
JPH11279631A (en) Method for refining molten stainless steel
CN113265511B (en) Smelting method of low-nitrogen steel
JP2001105101A (en) Melting method of steel plate for thin sheet
JP3411220B2 (en) Refining method of high nitrogen low oxygen chromium-containing molten steel
JP3807297B2 (en) Method for producing ultra-low carbon steel with high nitrogen concentration
JP2002294327A (en) High cleanliness steel and production method therefor
JPH05331523A (en) Method for refining molten steel for bearing steel
KR100554142B1 (en) Refining process of invar steel
SU926028A1 (en) Method for refining low-carbon steel
KR20170046216A (en) Apparatus for reducing inclusion in molten metal and method for manufacturing stainless steel with improved cleanness
JPH0892629A (en) Production of oxide dispersed steel
JPH0619102B2 (en) Ultra low carbon steel melting method
JP2923182B2 (en) Melting method of ultra low carbon steel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040712

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6