JP3576681B2 - Optical storage device - Google Patents

Optical storage device Download PDF

Info

Publication number
JP3576681B2
JP3576681B2 JP03210596A JP3210596A JP3576681B2 JP 3576681 B2 JP3576681 B2 JP 3576681B2 JP 03210596 A JP03210596 A JP 03210596A JP 3210596 A JP3210596 A JP 3210596A JP 3576681 B2 JP3576681 B2 JP 3576681B2
Authority
JP
Japan
Prior art keywords
light
storage device
optical storage
pulse
level system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03210596A
Other languages
Japanese (ja)
Other versions
JPH09232525A (en
Inventor
雄三 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP03210596A priority Critical patent/JP3576681B2/en
Publication of JPH09232525A publication Critical patent/JPH09232525A/en
Application granted granted Critical
Publication of JP3576681B2 publication Critical patent/JP3576681B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Semiconductor Memories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光半導体装置に係わり、特に長時間データが保持でき高速の読み書きが可能な光記憶装置に関する。
【0002】
【従来の技術】
近年、長距離大容量の光通信システムの発展に伴い、大容量の光交換システムや光情報処理システムが必要となってきている。また、光コンピュータの実現に向けた研究も盛んである。このようなシステムでは、光スイッチや光論理演算素子のみでなく、光記憶装置が必要である。光を記憶し取り出す技術は難しく、光ファイバ中を周回させるもの、ホールバーニングメモリやフォトンエコー等の研究があるのみである。
【0003】
しかしながら、この種の従来の光記憶装置にあっては、次のような問題があった。即ち、光ファイバ中を周回させる場合は、装置が大掛かりでかつ動作が不安定であった。また、ホールバーニングメモリやフォトンエコーを用いる場合は、記録媒体に金属蒸気,色素,希土類等の特殊な材料を用いなければならなかったり、低温でないと動作しないという欠点があった。
【0004】
【発明が解決しようとする課題】
このように、従来のホールバーニングメモリやフォトンエコーでは、特殊な材料を用いたり、低温でないと動作しないという問題があった。また、光ファイバ中を周回させて光を閉じ込める方法は、装置が非常に大掛かりになり、また安定性も悪かった。
【0005】
本発明は、上記事情を考慮して成されたもので、その目的とするところは、実用的な材料でかつ簡易な構成で実現することができ、安定性に優れた高性能の全く新しい光記憶装置を提供することにある。
【0006】
【課題を解決するための手段】
(構成)
上記課題を解決するために本発明は、次のような構成を採用している。
即ち本発明は、光の閉じ込めと放射を利用した光記憶装置において、2準位系若しくは擬2準位系において場と結合できる光のモードの数を0(系から光を放射できない状態)と1(系から光を放射できる状態)の間で変化させる手段と、前記系に1回若しくは複数回連続するπ/2パルス記録光を照射する手段と、前記系に前記記録光に引き続きπパルスリフレッシュ光を1回若しくは複数回照射する手段とを具備してなることを特徴とする。
【0007】
ここで、本発明の望ましい実施態様としては、次のものがあげられる。
(1) 光のモードの数を0にする手段として、共振器を光の波長オーダ程度に微小に形成してキャビティQEDの効果(量子電磁気学的効果)を利用する。
(2) 光のモードの数を1にする手段として、系に制御光を照射する。
(3) 量子井戸構造をブラッグ反射鏡で挟み、量子井戸のサブバンド間で擬2準位系を形成する。
(作用)
本発明によれば、2準位系若しくは擬2準位系において系が結合できる光のモードの数を0と1の間で変化させる手段を設けると共に、π/2パルス記録光とそれに引き続くπパルスリフレッシュ光を照射する手段とを設けるが、このことは重要な意味を持つ。これを、図4を用いて以下に説明する。
【0008】
図4は、ブロッホベクトルの成分であるu,v,wを座標軸上に表したものである。u,v,wはそれぞれ同相のダイポールモーメント、直角位相のダイポールモーメント、上の準位と下の準位のポピュレーションの差を意味している。
【0009】
いま、系(2準位系若しくは擬2準位系)にπ/2パルス記録光を入射すると(a)、系の状態は上位準位にいる確率と下位準位にいる確率が等しい状態になる(b)。そして、時間と共に位相拡散を起こす。ここで、引き続きπパルスを入射すると、ベクトルは図に示したように反転し(c)、ある時間の後にばらばらだったベクトルが完全に一致する(d)。
【0010】
通常はこのとき、エコーパルスや超放射として知られる光の放出が起こる。従来はこの光の放出が起きるまでの時間が短かったり、光を放出するまでの時間が原理的には長い材料の場合でも、時間と共に位相ずれが蓄積して反転動作後にベクトルが完全に一致せず、有効な光の放出が行われないこともあった。このため、記憶を長い時間保持するには、金属蒸気や有機材料のごく一部のものしか用いることができなかった。
【0011】
本発明では、2準位系若しくは擬2準位系において系が結合できる光のモードの数を0、即ち光が系から放射できないようにしておく。これは、共振器を光の波長オーダ程度に微小にする、いわゆるキャビティQEDの効果を用いることにより実現できる。そのため、系が光を放出しようとしても実際には放出されず、ベクトルは再び位相拡散を起こす(e)。
【0012】
ここで、引き続きπパルスのリフレッシュ光を照射すると、ベクトルは再び反転し(f)、ある時間の後にばらばらだったベクトルが完全に一致する(g)。そして、πパルスのリフレッシュ光を複数回照射して反転動作を繰り返すことにより、光のエネルギーを系に長い時間蓄えておくことができるのみならず、僅かに生じた位相のズレを毎回ベクトルがほぼ一致した時に起きる引き込み現象により解消できる。そのため、半導体のような緩和時間の短い材料も記憶材料として使うことが可能である。
【0013】
そして、例えば制御光の照射により、望みの時に系が結合できる光のモードの数を0から1にすれば、光を外に放出させることができる(h)。
このように本発明によれば、2準位系若しくは擬2準位系において場と結合できる光のモードの数を0と1の間で変化させる手段を設けると共に、π/2パルス記録光とそれに引き続くπパルスリフレッシュ光を系に照射する手段を設けることにより、π/2パルス照射で生じた系の変化を長時間保つことができ、安定な記憶動作が可能となる。
【0014】
【発明の実施の形態】
以下、本発明の詳細を図示の実施形態によって説明する。
(第1の実施形態)
図1は、本発明の第1の実施形態に係わる光記憶装置の概略構造を示す断面図である。
【0015】
図示しないInP基板上に、InAlAsバッファ層11を形成した後、AlAs障壁層(厚さ3nm)12とInGaAs井戸層(厚さ1nm)13からなる量子井戸構造を有機金属気相成長(MOCVD)法により形成した。井戸層13には、Siを2.0×1019cm−3ドーピングした。さらに連続してInAlAsキャップ層14を成長した。
【0016】
次いで、InP基板を除去した後、量子井戸構造の上下にGaAs/AlAsからなるブラッグ反射鏡15を直接接着法により形成した。ここで、量子井戸のサブバンド間で擬2準位系が形成される。
【0017】
このサンプルを4.2Kの低温に冷却し、光記憶素子として動作させた。まず、NaClカラーセンターレーザを用いて波長1500nm帯のフェムト秒π/2パルス記録光を発生し、これをサンプルに照射した。引き続き、フェムト秒πリフレッシュ光を1ピコ秒間隔で繰り返し照射した。系からの光放射は見られなかった。これは、キャビティQEDの効果により系が場と結合できない状態にあったためと理解される。
【0018】
数分後にブラッグ反射鏡部分にキャビティQED効果を制御する光(例えば、波長1300nm帯のサブピコ秒パルス)を入射したところ、系からの光放射がフォトディテクタ16により確認された。これは、制御光によりブラッグ反射鏡15の屈折率が変化し、系と場との結合が生じたためと考えられる。このようにして最初に入射したフェムト秒π/2パルス記録光が実際に保持されているのを確認できた。
【0019】
図2は、複数の信号を記憶する際のパルスのタイミングチャートの例である。信号光(π/2パルス)を“1010”のパターンになるように2回連続して照射した後、リフレッシュ光(πパルス)を一定間隔で照射する。このとき、2つの信号光パルスは周波数を互いに僅かに異なるようにしておく。読み出しが必要な時に制御光を照射することにより、出力光が“1010”に応じて2回得られる。
(第2の実施形態)
図3は、本発明の第2の実施形態に係わる光記憶装置の概略構造を示す断面図である。なお、図1と同一部分には同一符号を付して、その詳しい説明は省略する。
【0020】
本実施形態は、先に説明した第1の実施形態における光記憶素子を複数個集積化したものである。即ち、前記図1に示した素子がInP基板31上に複数個集積化され、各々に対してフォトディテクタ16が設けられている。
【0021】
このような構成であれば、個々の素子は第1の実施形態と同様に、記録光の照射に続くリフレッシュ光の照射により記録光を保持し、制御光の照射により記録光を放出する。従って読み出しを行うと、記憶されている素子のみからディテクタ16に出力が得られる。
【0022】
なお、本発明は上述した実施形態に限定されるものではない。実施形態では半導体材料を用いて素子を構成したが、従来用いられている原子蒸気や有機材料を用いても従来に優る良好な記憶動作が得られる。また、実施形態では動作波長を1500nm付近に設定したが、他の波長領域でも良い。また、実施形態では量子井戸のサブバンド間で擬2準位系を形成したが、擬2準位系に限らず2準位系を有する構造に適用することもできる。その他、本発明の要旨を逸脱しない範囲で、種々変形して実施することができる。
【0023】
【発明の効果】
以上詳述したように本発明によれば、2準位系若しくは擬2準位系において場と結合できる光のモードの数を0と1の間で変化させる手段と、系に1回若しくは複数回連続するπ/2パルス記録光を照射する手段と、系に記録光に引き続きπパルスリフレッシュ光を1回若しくは複数回照射する手段とを設けることにより、従来得られなかった高性能の光記憶素子を簡易な構成で実現することができる。その結果、光情報処理システムに用いる光素子を低コストで得られるのみならず、その信頼性は高く、本発明の有用性は絶大である。
【図面の簡単な説明】
【図1】第1の実施形態に係わる光記憶装置の概略構造を示す断面図。
【図2】信号光を記憶,保持,読み出しする際のパルスのタイミング図。
【図3】第2の実施形態に係わる光記憶装置の概略構造を示す断面図。
【図4】本発明の動作原理を説明するための図。
【符号の説明】
11…InAlAsバッファ層
12…AlAs障壁層
13…InGaAs井戸層
14…InAlAsキャップ層
15…GaAs/AlAsブラッグ反射鏡
16…フォトディテクタ
31…InP基板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical semiconductor device, and more particularly, to an optical storage device that can hold data for a long time and can read and write at high speed.
[0002]
[Prior art]
In recent years, with the development of long-distance, large-capacity optical communication systems, large-capacity optical switching systems and optical information processing systems have become necessary. In addition, research on the realization of optical computers is also active. In such a system, not only an optical switch and an optical logic operation element but also an optical storage device are required. Techniques for storing and extracting light are difficult, and there are only studies on those that circulate in optical fibers, hole burning memories, photon echoes, and the like.
[0003]
However, this type of conventional optical storage device has the following problems. That is, when the optical fiber is circulated in the optical fiber, the device is large and the operation is unstable. Further, when a hole burning memory or a photon echo is used, there is a disadvantage that a special material such as a metal vapor, a dye, a rare earth element or the like must be used for the recording medium, or that the apparatus does not operate unless the temperature is low.
[0004]
[Problems to be solved by the invention]
As described above, in the conventional hole burning memory and the photon echo, there is a problem that the operation is not performed unless a special material is used or the temperature is low. In addition, the method of confining light by orbiting in an optical fiber requires a very large device and has poor stability.
[0005]
The present invention has been made in consideration of the above circumstances, and has as its object to realize a completely new optical system that can be realized with a practical material and with a simple configuration, and has excellent stability and high performance. A storage device is provided.
[0006]
[Means for Solving the Problems]
(Constitution)
In order to solve the above problems, the present invention employs the following configuration.
That is, according to the present invention, in an optical storage device utilizing light confinement and radiation, the number of light modes that can be coupled to a field in a two-level system or a quasi-two-level system is set to 0 (a state in which light cannot be emitted from the system). 1 (a state in which light can be emitted from the system); a means for irradiating the system with π / 2 pulse recording light once or plural times continuously; and a π pulse following the recording light on the system. Means for irradiating refresh light once or a plurality of times.
[0007]
Here, preferred embodiments of the present invention include the following.
(1) As a means for reducing the number of light modes to 0, a cavity is formed minutely on the order of the wavelength of light and the effect of the cavity QED (quantum electromagnetic effect) is used.
(2) As a means for setting the number of light modes to one, the system is irradiated with control light.
(3) A quantum well structure is sandwiched between Bragg reflectors to form a pseudo-two-level system between quantum well subbands.
(Action)
According to the present invention, there is provided means for changing the number of light modes that can be combined by the system in a two-level system or a quasi-two-level system between 0 and 1, and a π / 2 pulse recording light and a subsequent π / 2 pulse recording light are provided. Means for irradiating pulse refresh light are provided, which has an important meaning. This will be described below with reference to FIG.
[0008]
FIG. 4 shows u, v, and w, which are components of a Bloch vector, on a coordinate axis. u, v, and w mean the in-phase dipole moment, the quadrature-phase dipole moment, and the difference between the population of the upper level and the population of the lower level, respectively.
[0009]
Now, when a π / 2 pulse recording beam is incident on a system (two-level system or pseudo-two-level system) (a), the state of the system becomes a state in which the probability of being in the upper level is equal to the probability of being in the lower level. (B). Then, phase diffusion occurs with time. Here, when the π pulse is continuously incident, the vector is inverted as shown in the figure (c), and the vector that has been separated after a certain time completely matches (d).
[0010]
Usually at this time, emission of light occurs, known as an echo pulse or superradiance. Conventionally, even for materials that take a short time to emit this light or that take a long time to emit light in principle, the phase shift accumulates over time and the vectors completely match after inversion. In some cases, effective light was not emitted. For this reason, only a small portion of metal vapor or organic material can be used to retain the memory for a long time.
[0011]
In the present invention, the number of light modes that the system can couple in a two-level system or a quasi-two-level system is set to 0, that is, the light cannot be emitted from the system. This can be realized by using the effect of a so-called cavity QED in which the size of the resonator is reduced to the order of the wavelength of light. Therefore, when the system attempts to emit light, it is not actually emitted, and the vector undergoes phase diffusion again (e).
[0012]
Here, when the refresh light of the π pulse is continuously irradiated, the vector is inverted again (f), and the vector that has been separated after a certain time completely matches (g). By irradiating the π-pulse refresh light a plurality of times and repeating the inversion operation, not only can the light energy be stored in the system for a long time, but also the vector generated almost every time a slight phase shift occurs. It can be resolved by the pull-in phenomenon that occurs when they match. Therefore, a material having a short relaxation time such as a semiconductor can be used as a memory material.
[0013]
If the number of light modes that can be combined by the system at a desired time is changed from 0 to 1 by irradiation with control light, for example, light can be emitted to the outside (h).
As described above, according to the present invention, a means for changing the number of light modes that can be coupled to a field between 0 and 1 in a two-level system or a quasi-two-level system is provided. By providing a means for irradiating the system with the subsequent π pulse refresh light, a change in the system caused by π / 2 pulse irradiation can be maintained for a long time, and a stable storage operation can be performed.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
(1st Embodiment)
FIG. 1 is a sectional view showing a schematic structure of the optical storage device according to the first embodiment of the present invention.
[0015]
After forming an InAlAs buffer layer 11 on an InP substrate (not shown), a quantum well structure composed of an AlAs barrier layer (thickness 3 nm) 12 and an InGaAs well layer (thickness 1 nm) 13 is formed by metal organic chemical vapor deposition (MOCVD). Formed. The well layer 13 was doped with 2.0 × 10 19 cm −3 of Si. Further, the InAlAs cap layer 14 was continuously grown.
[0016]
Next, after removing the InP substrate, Bragg reflectors 15 made of GaAs / AlAs were formed directly above and below the quantum well structure by a direct bonding method. Here, a quasi-two-level system is formed between the subbands of the quantum well.
[0017]
This sample was cooled to a low temperature of 4.2K and operated as an optical storage element. First, femtosecond π / 2 pulse recording light in a wavelength band of 1500 nm was generated using a NaCl color center laser, and the sample was irradiated with the recording light. Subsequently, femtosecond π refresh light was repeatedly applied at intervals of 1 picosecond. No light emission from the system was seen. This is understood to be because the system could not be coupled to the field due to the effect of the cavity QED.
[0018]
A few minutes later, light for controlling the cavity QED effect (for example, a sub-picosecond pulse in the 1300 nm wavelength band) was incident on the Bragg reflector portion, and light emission from the system was confirmed by the photodetector 16. This is presumably because the control light changed the refractive index of the Bragg reflecting mirror 15 to cause coupling between the system and the field. In this way, it was confirmed that the femtosecond π / 2 pulse recording light that first entered was actually held.
[0019]
FIG. 2 is an example of a pulse timing chart when storing a plurality of signals. After continuously irradiating the signal light (π / 2 pulse) twice so as to form a pattern of “1010”, the refresh light (π pulse) is irradiated at regular intervals. At this time, the frequencies of the two signal light pulses are slightly different from each other. By irradiating control light when reading is necessary, output light is obtained twice according to “1010”.
(Second embodiment)
FIG. 3 is a sectional view showing a schematic structure of an optical storage device according to the second embodiment of the present invention. The same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
[0020]
In the present embodiment, a plurality of optical storage elements according to the first embodiment described above are integrated. That is, a plurality of the elements shown in FIG. 1 are integrated on an InP substrate 31, and a photodetector 16 is provided for each of them.
[0021]
With such a configuration, the individual elements hold the recording light by the irradiation of the refresh light subsequent to the irradiation of the recording light, and emit the recording light by the irradiation of the control light, as in the first embodiment. Therefore, when reading is performed, an output is obtained to the detector 16 only from the stored elements.
[0022]
Note that the present invention is not limited to the embodiment described above. In the embodiment, the element is formed by using a semiconductor material. However, even when a conventionally used atomic vapor or an organic material is used, a better memory operation than the conventional one can be obtained. In the embodiment, the operating wavelength is set at around 1500 nm, but may be in another wavelength region. In the embodiment, the pseudo-two-level system is formed between the subbands of the quantum well. However, the present invention is not limited to the pseudo-two-level system and can be applied to a structure having a two-level system. In addition, various modifications can be made without departing from the scope of the present invention.
[0023]
【The invention's effect】
As described in detail above, according to the present invention, means for changing the number of light modes that can be coupled to a field between 0 and 1 in a two-level system or a quasi-two-level system; By providing a means for irradiating π / 2 pulse recording light successively twice and a means for irradiating π pulse refresh light once or a plurality of times subsequent to the recording light in the system, a high-performance optical storage which could not be obtained conventionally. The element can be realized with a simple configuration. As a result, not only can the optical element used in the optical information processing system be obtained at low cost, but also its reliability is high, and the usefulness of the present invention is enormous.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a schematic structure of an optical storage device according to a first embodiment.
FIG. 2 is a timing chart of pulses when storing, holding, and reading out signal light.
FIG. 3 is a sectional view showing a schematic structure of an optical storage device according to a second embodiment.
FIG. 4 is a diagram for explaining the operation principle of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... InAlAs buffer layer 12 ... AlAs barrier layer 13 ... InGaAs well layer 14 ... InAlAs cap layer 15 ... GaAs / AlAs Bragg reflector 16 ... photodetector 31 ... InP substrate

Claims (4)

2準位系若しくは擬2準位系において、場と結合できる光のモードの数を0と1の間で変化させる手段と、
前記系に1回若しくは複数回連続するπ/2パルス記録光を照射する手段と、前記系に前記記録光に引き続きπパルスリフレッシュ光を1回若しくは複数回照射する手段と、
を具備してなることを特徴とする光記憶装置。
Means for changing between 0 and 1 the number of modes of light that can be coupled to a field in a two-level system or a quasi-two-level system;
Means for irradiating the system with π / 2 pulse recording light that is continuous one or more times, means for irradiating the system with π pulse refresh light once or more times subsequent to the recording light,
An optical storage device comprising:
光のモードの数を0にする手段として、共振器を光の波長オーダ程度に微小に形成してキャビティQEDの効果(量子電磁気学的効果)を利用することを特徴とする請求項1記載の光記憶装置。2. The method according to claim 1, wherein the means for reducing the number of light modes to zero uses a cavity QED effect (quantum electromagnetic effect) by forming a resonator minutely on the order of the wavelength of light. Optical storage device. 光のモードの数を1にする手段として、系に制御光を照射することを特徴とする請求項1記載の光記憶装置。2. The optical storage device according to claim 1, wherein the system is irradiated with control light as means for setting the number of light modes to one. 量子井戸構造をブラッグ反射鏡で挟み、量子井戸のサブバンド間で擬2準位系を形成することを特徴とする請求項1記載の光記憶装置。2. The optical storage device according to claim 1, wherein the quantum well structure is sandwiched between Bragg reflectors to form a pseudo-two-level system between subbands of the quantum well.
JP03210596A 1996-02-20 1996-02-20 Optical storage device Expired - Lifetime JP3576681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03210596A JP3576681B2 (en) 1996-02-20 1996-02-20 Optical storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03210596A JP3576681B2 (en) 1996-02-20 1996-02-20 Optical storage device

Publications (2)

Publication Number Publication Date
JPH09232525A JPH09232525A (en) 1997-09-05
JP3576681B2 true JP3576681B2 (en) 2004-10-13

Family

ID=12349628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03210596A Expired - Lifetime JP3576681B2 (en) 1996-02-20 1996-02-20 Optical storage device

Country Status (1)

Country Link
JP (1) JP3576681B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4738627B2 (en) * 2001-04-25 2011-08-03 三菱電機株式会社 Surface type optical-optical switch

Also Published As

Publication number Publication date
JPH09232525A (en) 1997-09-05

Similar Documents

Publication Publication Date Title
US6597721B1 (en) Micro-laser
Jewell et al. Lasing characteristics of GaAs microresonators
US5228001A (en) Optical random access memory
US3896420A (en) Frequency selective optical memory
US4459682A (en) Time domain data storage
US4701030A (en) Thermal stable optical logic element
US5210637A (en) High speed light modulation
US5325224A (en) Time-multiplexed, optically-addressed, gigabit optical crossbar switch
Lenth et al. Gated spectral hole-burning for frequency domain optical recording
WO2008045810A1 (en) Photonic devices based on vertical-cavity semiconductor optical amplifiers
US5349593A (en) Optical regenerator using bistable fabry-perot interferometer
Sahlén et al. Optical bistability and gating in metalorganic vapor phase epitaxy grown GaAs etalons operating in reflection
EP1317035A1 (en) Optical pulse generator
US6967765B2 (en) Active optical system for changing the wavelength of an image
JP3576681B2 (en) Optical storage device
JP2724270B2 (en) Light switch
JPH0738058B2 (en) Optical device
JPS61500995A (en) Laser controlled by multilayer heterostructure
EP0527551B1 (en) Methods of varying optical properties, optical devices, information recording media and information recording methods and apparatus
Jayaraman Extended tuning range semiconductor lasers with sampled gratings
EP0265260B1 (en) Method for erasing a recording in a memory using a photochemical hole burning material
Li et al. Optical static random access memory cell using an integrated semiconductor ring laser
EP0349741A2 (en) Semiconductor device enhanced for optical interaction
Tang et al. Enhanced TOAD performance by negative frequency-detuned signal and control picosecond optical pulses
JP3455575B2 (en) Optical semiconductor device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6