JP3576440B2 - 光増幅器、ノード装置および光通信ネットワークシステム - Google Patents

光増幅器、ノード装置および光通信ネットワークシステム Download PDF

Info

Publication number
JP3576440B2
JP3576440B2 JP2000000507A JP2000000507A JP3576440B2 JP 3576440 B2 JP3576440 B2 JP 3576440B2 JP 2000000507 A JP2000000507 A JP 2000000507A JP 2000000507 A JP2000000507 A JP 2000000507A JP 3576440 B2 JP3576440 B2 JP 3576440B2
Authority
JP
Japan
Prior art keywords
optical
input
signal
splitter
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000000507A
Other languages
English (en)
Other versions
JP2001197010A (ja
Inventor
浩孝 小野
勝弘 島野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2000000507A priority Critical patent/JP3576440B2/ja
Publication of JP2001197010A publication Critical patent/JP2001197010A/ja
Application granted granted Critical
Publication of JP3576440B2 publication Critical patent/JP3576440B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • H04J14/02212Power control, e.g. to keep the total optical power constant by addition of a dummy signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • H04J14/02216Power control, e.g. to keep the total optical power constant by gain equalization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0272Transmission of OAMP information

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば波長多重(WDM)伝送技術を使用した光通信ネットワークシステムに使用され、複数の波長の異なる光信号を増幅する光増幅器、該光増幅器を使用したノード装置、および該ノード装置と光増幅器を光ファイバで複数接続して構成される光通信ネットワークシステムに関する。
【0002】
【従来の技術】
近年のインターネットに代表される爆発的な通信需要の増加と光通信システムの低コスト化の要求に伴って、一本の光ファイバに複数の相異なる波長の信号光を多重して伝送する波長多重(WDM)伝送方式が検討され、同方式を用いたシステムおよびネットワークが検討されている。更に、このWDM技術を用いて、単に伝送容量を増加させるだけでなく、ルーティングやリストレーションなどのネットワーク機能を実現するネットワーク(フォトニックネットワーク)が検討されている。このフォトニックネットワークにおける光通信システムでは、ノード間距離の差によるスパンロスの差異があるだけでなく、光ファイバへの接触、経年変化などによりスパンロスが変動したり、光パス切り替え、設備の増設・撤去、ノードの障害などによりチャネル数が変化する。
【0003】
このような状況下で使用される光増幅器には、このような変動・変化に対して一定の出力または利得を得るための制御が必要となる。このような光増幅器制御を行うためには、光増幅器内部で光信号の光パワーレベルを正確にモニタしなければならない。特に、光増幅器を多段に接続したシステムでは、上流側光増幅器で発生する自然放出増幅光(ASE)が信号に重畳されて送信されるので、ASEの影響を受けずに光パワーレベルをモニタすることが課題となる。
【0004】
図13は、従来の1波長による光通信システムの光増幅器の構成を示す図である。同図に示す1波長用の光増幅器では、特定の1波長の利得または出力光パワーレベルを一定に制御すればよく、後述のWDM伝送方式用の光増幅器のように広い波長帯域にわたって利得または光出力パワーレベルを一定にする必要がない。従って、励起パワーの制御のみで利得一定制御や、スパンロスの差異や変動による光増幅器入力光レベルの差異や変動を補償し出力光パワーレベル一定制御を行うことができる。
【0005】
入力光は光分岐器121により光パワーの一部が分岐され、バンドパスフィルタ131を通過し光検出器141で受光され、光パワーレベルがモニタされる。入力光には光信号の他に上流の光増幅器において発生するASEも含まれているが、バンドパスフィルタ131によりASEの大部分は図14に示すように除去される。このASE除去によって、光信号の入力パワーレベルがほとんど誤差なく検出できる。また、光分岐器121からの入力光は、光増幅器111で増幅され、この増幅された光出力信号は光分岐器122で一部が分岐されて、バンドパスフィルタ132を通って光検出器142に入力される。光検出器142は、出力の信号光パワーを検出して制御回路151に供給する。このような光パワーレベルの検出法を用いて、光増幅器の制御(利得制御または光出力パワーレベル制御)は次に示す方法により行う。
【0006】
(a)光検出器141,142により入出力の信号光パワーを検出して、光増幅器利得が一定になるように制御回路151によって光増幅部111の励起パワーを制御する。
【0007】
(b)光検出器142により出力の信号光パワーを検出して光増幅器出力が一定になるように制御回路151によって光増幅部111の励起パワーを制御する等の制御法によって行う。
【0008】
これらの場合、入出力モニタ点ではASEがバンドパスフィルタ131,132によって除去されているので、光増幅器制御誤差は小さく抑えられている。
【0009】
一方、WDM伝送方式を用いた光通信システムでは、波長の異なる複数チャネルが同時に伝送されるために、波長数(=チャネル数)変化に対してこれら複数波長の利得または光出力パワーレベルが一定となるように制御する必要がある。利得一定制御のみが必要なノード内後置増幅器は図13の構成で(a)の制御法でもある程度対応可能であるが、スパン毎の入力光パワーレベルの差異や変動を補償して出力光レベル一定制御を行う線形中継用光増幅器やノード内前置増幅器は図15に示す光増幅器構成を用いる。この光増幅器では、2つの光増幅部111,112間に光可変減衰器106を配置し、光増幅部111は利得一定制御、光増幅部112は利得一定制御または出力パワー一定制御を行うことによってチャネル数変動を補償し、入力光パワーレベルの差異や変動の補償は増幅部間の光可変減衰器106によって行う。このときに各波長の利得または出力光パワーが一定になるように制御する。なお、図15において、121〜124は光分岐器、141〜144は光検出器、151〜153は制御回路である。
【0010】
このような光増幅器の各光増幅部の制御では、1波長用光増幅器と異なり、バンドパスフィルタを使用して光パワーをモニタすることができない。すなわち、透過帯域が固定のバンドパスフィルタではある特定の波長(チャネル)の光パワーレベルしかモニタすることができず、故障等により光パワーをモニタしていた波長の光が光増幅器に入力されなくなると光増幅器の制御が不可能になる。また、透過帯域可変のバンドパスフィルタを用いた場合には、モニタ波長が光増幅器に入力しなくなった時に透過帯域を掃引してモニタ波長を探し出すが、フィルタの透過帯域の掃引速度は数十ms程度であり、光増幅器の高速制御(数ms以下)には対応できない。
【0011】
このような不具合を解決するWDM伝送方式用光増幅器の光パワーモニタ方式には、(1)アレイ型導波路格子(AWG)などの波長選択素子を用いて各チャネルの光パワーを個別にモニタする第1の方法、および(2)全光パワーをモニタして、監視制御チャネルから得られる波長数(チャネル数)で全光パワーを割る演算を行うことによって、1チャネル当たりの光パワーをモニタする第2の方法がある。
【0012】
第1の方法について、図16〜図18を参照して説明する。
【0013】
図16は、上流側光増幅器のASEの影響を抑えた従来のWDM伝送方式用光増幅器の構成を示すブロック図である。この光増幅器においては、光増幅部111および112は各々の入出力光の全光パワーをモニタすることにより利得一定制御を行って波長数変動を補償し、光増幅器出力光パワーレベルが一定となるように光増幅部間の光可変減衰器106の減衰量を調整し、入力光パワーレベルの差異や変動の補償を行う。光可変減衰器106の制御にはチャネル当たりの光パワーレベル情報が必要なので、入力パワーモニタ光の一部を光分岐器121,125により分岐し、分波器107、光検出器108a〜108n、検出制御回路109から波長数情報を得る。本構成では各波長の入力光パワーレベルを上流光増幅部111によるASEの影響を受けずに直接モニタできるが、制御回路153が波長数情報を得て全出力パワーを波長数で割る演算を行うために制御速度の低下を招くという問題が生じる。なお、図16において、122〜124は光分岐器、141〜144は光検出器、151〜153は制御回路である。
【0014】
図17に示す従来のWDM伝送方式用光増幅器は、図16に示した光増幅器が入力光パワーをモニタして波長数情報を得ていたのに対して、光増幅部112からの出力光パワーをモニタして波長数情報を得ている点が異なるものであり、その他の構成および作用は同じであり、同じ構成要素には同じ符号が付されている。すなわち、図17に示す光増幅器では、光可変減衰器106の制御には、光増幅器出力光パワーモニタ光の一部を分岐し、分波器171、光検出器108a〜108n、検出制御回路109によって各波長の光パワーレベルを直接モニタした値を用いる。このようにすることによって、図16のような波長数情報に基づく制御速度の低下は防ぐことができるが、入力パワーレベルモニタは本増幅器より上流側に位置する光増幅器で発生するASEの影響を受け、オペレーションにおいて故障点評定に次のような問題が生じる。光通信システムでは光増幅器の入力コネクタを抜去またはファイバ断により光増幅器入力信号がなくなった(信号断)の場合には、再び信号が復帰したときに光サージが発生しないように光増幅器をシャットダウンする(励起パワーをゼロに落とす)。光増幅器が多段に接続されたシステムでは、上流側に位置する光増幅器入力信号断で上流側光増幅器がシャットダウンしてもASEがなくなるまでには十数msから数十msの時間が掛かり、図17の構成の光増幅器では信号断から光増幅器が入力光パワーレベルモニタにより信号断を検出するまでには上記程度の時間が掛かる。一方、出力光を分波し各波長の出力光パワーレベルをASEの誤差なしに検出しているのでシャットダウンはすぐに行える。従って、光増幅器シャットダウンと信号断検出とにタイムラグがあるために、光増幅器は信号断でシャットダウンしたにも関わらず、オペレーション側では光増幅器の故障でシャットダウンしたと誤認してしまう。
【0015】
図18に示す従来の光増幅器は、図16および図17に示す光増幅器の両方を取り入れた構成のものであり、光増幅器の入出力光パワーモニタで各々の波長多重信号を分波してモニタすることにより、図16、図17の両光増幅器の欠点を補っているものであるが、入力光パワーレベルモニタ用の分波器107と出力光パワーレベルモニタ用の分波器171の2つの波長選択素子が必要となり、装置規模が増大している。なお、図18において、各構成要素は図16および図17に示すものと同じであり、同じ構成要素には同じ符号を付している。
【0016】
次に、上述した第2の方法、すなわち全光パワーをモニタして、監視制御チャネルから得られる波長数(チャネル数)で全光パワーを割る演算を行うことによって、1チャネル当たりの光パワーをモニタする方法では、検出した光パワー中に上流側光増幅器で発生するASE成分も含まれるので、検出誤差が大きくなったり、波長数が小さい時には波長数を実際よりも大きい数に誤認したりする。すなわち、波長数がゼロにもかかわらずASEのためにあたかも波長数が1以上あると誤認し光増幅器の励起パワーを止めないために、実際の波長数が1以上に復帰したときに光サージを発生させてしまう危険性がある。また波長数情報は監視制御チャネルの監視信号等から得ることとなるが、この情報の書き換えサイクルに起因する波長数情報遅延により光増幅器が誤作動する。
【0017】
【発明が解決しようとする課題】
上述したように、従来の光増幅器のうち図16に示した光増幅器では、波長数情報を得て、全光出力パワーを波長数で割る演算を行うため、制御速度が低下するという問題がある。
【0018】
また、図17に示す従来の光増幅器では、信号断の検出に時間がかかるとともに、光増幅器のシャットダウンはすぐに行うことができるというように信号断の検出と光増幅器のシャットダウンとにタイムラグがあるため、光増幅器は信号断でシャットダウンしたにも関わらず、オペレーション側では光増幅器の故障でシャットダウンしたと誤認してしまうという問題がある。
【0019】
更に、図18に示す従来の光増幅器は、入力光パワーレベルモニタ用と出力光パワーレベルモニタ用の2つの波長選択素子が必要となり、装置規模が増大し、非経済的であるという問題がある。
【0020】
また、全光パワーをモニタして、監視制御チャネルから得られる波長数(チャネル数)で全光パワーを割る演算を行うことによって、1チャネル当たりの光パワーをモニタする従来の方法では、検出した光パワー中に上流側光増幅器で発生するASE成分も含まれるので、検出誤差が大きくなったり、波長数が小さい時には波長数を実際よりも大きい数に誤認し、光サージを発生させたり、更には波長数情報の書き換えサイクルに起因する波長数情報遅延により光増幅器が誤動作するという問題もある。
【0021】
本発明は、上記に鑑みてなされたもので、その目的とするところは、装置規模を増大することなく、またASEの影響を受けずに波長多重信号の光パワーレベルを正確にモニタして確実に制御可能な光増幅器、ノード装置および光通信ネットワークシステムを提供することにある。
【0022】
【課題を解決するための手段】
上記目的を達成するため、請求項1記載の本発明は、複数の波長の異なる光信号を増幅する光増幅器であって、多重化された複数の波長の異なる入力光信号を分岐する第1の光分岐器と、この第1の光分岐器で分岐された一方の光信号を増幅する光増幅部と、この光増幅部で増幅された光信号を分岐し、この分岐された一方の光信号を光増幅器の出力光信号として出力する第2の光分岐器と、前記第1の光分岐器で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の入力分波信号として出力するとともに、前記第2の光分岐器で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の出力分波信号として出力する分波器と、前記分波器からの複数の入力分波信号をそれぞれ受け取り、各入力分波信号の光パワーを検出する第1の複数の光検出器と、前記分波器からの複数の出力分波信号をそれぞれ受け取り、各出力分波信号の光パワーを検出する第2の複数の光検出器と、前記第1の複数の光検出器からの各入力分波信号の光パワー情報を受け取り、入力光信号の各波長の光パワーレベル情報および波長数情報を検出する第1の検出制御回路と、前記第2の複数の光検出器からの各出力分波信号の光パワー情報を受け取り、出力光信号の各波長の光パワーレベル情報および波長数情報を検出する第2の検出制御回路と、前記第1の検出制御回路からの入力光信号の各波長の光パワーレベル情報および波長数情報、および第2の検出制御回路からの出力光信号の各波長の光パワーレベル情報および波長数情報に基づき前記光増幅部における各波長の利得が一定に保たれるように制御する制御回路とを有することを要旨とする。
【0023】
請求項1記載の本発明にあっては、入力光信号の分岐した光信号を各波長に分波して各入力分波信号の光パワーを検出し、各入力分波信号の光パワー情報から入力光信号の各波長の光パワーレベル情報および波長数情報を検出し、入力光信号を光増幅部で増幅した出力光信号を分岐した光信号を各波長に分波して各出力分波信号の光パワーを検出し、各出力分波信号の光パワー情報から出力光信号の各波長の光パワーレベル情報および波長数情報を検出し、これらの検出した入力光信号の各波長の光パワーレベル情報および波長数情報、および出力光信号の各波長の光パワーレベル情報および波長数情報に基づき光増幅部の励起源の発生するパワーを制御して、光増幅部における各波長の利得が一定に保たれるように制御するため、1つの分波器を使用して、入力光パワーレベルをモニタして光増幅器の制御を確実に行うことができ、装置規模を増大することなく、上流の光増幅器によって発生するASEの影響を受けない入力光パワーレベルモニタを行うことができる。
【0024】
また、請求項2記載の本発明は、複数の波長の異なる光信号を増幅する光増幅器であって、多重化された複数の波長の異なる入力光信号を分岐する第1の光分岐器と、この第1の光分岐器で分岐された一方の光信号を増幅する第1の光増幅部と、この第1の光増幅部で増幅された光信号を分岐する第2の光分岐器と、この第2の光分岐器で分岐された一方の光信号を減衰させる光可変減衰器と、この光可変減衰器からの減衰した光信号を分岐する第3の光分岐器と、この第3の光分岐器で分岐された一方の光信号を増幅する第2の光増幅部と、この第2の光増幅部で増幅された光信号を分岐し、この分岐された一方の光信号を光増幅器の出力光信号として出力する第4の光分岐器と、前記第1の光分岐器で分岐された他方の光信号を更に分岐する第5の光分岐器と、この第5の光分岐器で分岐された一方の光信号を受け取り、入力光信号の全入力光パワーを検出する第1の光検出器と、前記第2の光分岐器で分岐された他方の光信号を受け取り、第1の光増幅部からの全出力光パワーを検出する第2の光検出器と、前記第3の光分岐器で分岐された他方の光信号を受け取り、前記第2の光増幅部への全入力光パワーを検出する第3の光検出器と、前記第4の光分岐器で分岐された他方の光信号を更に分岐する第6の光分岐器と、この第6の光分岐器で分岐された一方の光信号を受け取り、前記第2の光増幅部からの全出力光パワーを検出する第4の光検出器と、前記第5の光分岐器で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の入力分波信号として出力するとともに、前記第6の光分岐器で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の出力分波信号として出力する分波器と、前記分波器からの複数の入力分波信号をそれぞれ受け取り、各入力分波信号の光パワーを検出する第5の複数の光検出器と、前記分波器からの複数の出力分波信号をそれぞれ受け取り、各出力分波信号の光パワーを検出する第6の複数の光検出器と、前記第5の複数の光検出器からの各入力分波信号の光パワー情報を受け取り、入力光信号の各波長の光パワーレベル情報および波長数情報を検出する第1の検出制御回路と、前記第6の複数の光検出器からの各出力分波信号の光パワー情報を受け取り、出力光信号の各波長の光パワーレベル情報および波長数情報を検出する第2の検出制御回路と、前記第1の検出制御回路からの入力光信号の各波長の光パワーレベル情報および波長数情報、前記第1の光検出器で検出した入力光信号の全入力光パワーおよび前記第2の光検出器で検出した第1の光増幅部からの全出力光パワーに基づき前記第1の光増幅部における各波長の利得が一定に保たれるように制御する第1の制御回路と、前記第2の検出制御回路からの出力光信号の各波長の光パワーレベル情報および波長数情報、前記第3の光検出器で検出した第2の光増幅部への全入力光パワーおよび前記第4の光検出器で検出した第2の光増幅部からの全出力光パワーに基づき前記第2の光増幅部における各波長の利得が一定に保たれるように制御する第2の制御回路と、前記第2の検出制御回路からの出力光信号の各波長の光パワーレベル情報および波長数情報に基づき前記第2の光増幅部の入力パワーの変化を補償するとともに各波長の出力パワーレベルが一定になるように前記光可変減衰器の減衰量を可変制御する第3の制御回路とを有することを要旨とする。
【0025】
請求項2記載の本発明にあっては、入力光信号の分岐した光信号を各波長に分波して各入力分波信号の光パワーを検出し、各入力分波信号の光パワー情報から入力光信号の各波長の光パワーレベル情報および波長数情報を検出し、入力光信号の全入力光パワーを検出し、第1の光増幅部からの全出力光パワーを検出し、これらの検出した入力光信号の各波長の光パワーレベル情報および波長数情報、入力光信号の全入力光パワーおよび第1の光増幅部からの全出力光パワーに基づき第1の光増幅部の励起源の発生するパワーを制御して、第1の光増幅部における各波長の利得が一定に保たれるように制御し、また第2の光増幅部への全入力光パワーを検出し、第2の光増幅部からの全出力光パワーを検出し、第2の光増幅部で増幅した出力光信号を各波長に分波して各出力分波信号の光パワーを検出し、各出力分波信号の光パワー情報から出力光信号の各波長の光パワーレベル情報および波長数情報を検出し、これらの検出した第2の光増幅部への全入力光パワー、第2の光増幅部からの全出力光パワーおよび出力光信号の各波長の光パワーレベル情報および波長数情報に基づき第2の光増幅部の励起源の発生するパワーを制御して、第2の光増幅部における各波長の利得が一定に保たれるように制御し、更に出力光信号の各波長の光パワーレベル情報および波長数情報に基づき第2の光増幅部の入力パワーの変化を補償するとともに各波長の出力パワーレベルが一定になるように光可変減衰器の減衰量を可変制御するため、1つの分波器を使用して、入力光パワーレベルをモニタして光増幅器の制御を確実に行うことができ、装置規模を増大することなく、上流の光増幅器によって発生するASEの影響を受けない入力光パワーレベルモニタを行うことができるとともに、入力光パワーレベルの差異や変動を補償して、光増幅器の出力を一定に保つことができる。
【0026】
更に、請求項3記載の本発明は、光通信ネットワークシステムの各ノードに使用され、各ノードにおいて光ファイバを介して入力される多重化された複数の波長の異なる光信号を増幅する前置光増幅器および該前置光増幅器の出力に接続され、前記前置光増幅器で増幅された光信号の分岐および挿入を含む処理を行う光分岐挿入装置を有するノード装置であって、前記前置光増幅器は、多重化された複数の波長の異なる入力光信号を分岐する第1の光分岐器と、この第1の光分岐器で分岐された一方の光信号を増幅する光増幅部と、この光増幅部で増幅された光信号を分岐する第2の光分岐器と、前記第1の光分岐器で分岐された他方の光信号を更に分岐する第3の光分岐器と、前記第3の光分岐器で分岐された一方の光信号を受け取り、入力光信号の全入力光パワーを検出する第1の光検出器と、前記第2の光分岐器で分岐された前記光増幅部からの出力光信号を受け取り、該出力光信号の全出力光パワーを検出する第2の光検出器とを有し、前記光分岐挿入装置が、前記第3の光分岐器で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の入力分波信号として出力するとともに、前記第2の光分岐器で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の出力分波信号として出力する分波器と、前記分波器からの複数の入力分波信号をそれぞれ受け取り、各入力分波信号の光パワーを検出する第3の複数の光検出器と、前記第3の複数の光検出器からの各入力分波信号の光パワー情報を受け取り、入力光信号の各波長の光パワーレベル情報および波長数情報を検出する検出制御回路と、前記分波器から出力される複数の出力分波信号を受け取り、光信号の分岐および挿入を含む処理を行う光分岐挿入部とを有し、前記前置光増幅器が、前記第1の光検出器で検出した入力光信号の全入力光パワー、前記第2の光検出器で検出した出力光信号の全出力光パワーおよび前記検出制御回路からの入力光信号の各波長の光パワーレベル情報および波長数情報に基づき前記光増幅部における各波長の利得が一定に保たれるように制御する制御回路とを更に有することを要旨とする。
【0027】
請求項3記載の本発明にあっては、入力光信号の分岐した光信号を各波長に分波して各入力分波信号の光パワーを検出し、各入力分波信号の光パワー情報から入力光信号の各波長の光パワーレベル情報および波長数情報を検出し、入力光信号の全入力光パワーを検出し、光増幅部からの全出力光パワーを検出し、これらの検出した入力光信号の各波長の光パワーレベル情報および波長数情報、入力光信号の全入力光パワーおよび光増幅部の全出力光パワーに基づき光増幅部の励起源の発生するパワーを制御して、光増幅部における各波長の利得が一定に保たれるように制御するため、1つの分波器を使用して、入力光パワーレベルをモニタして光増幅器の制御を確実に行うことができ、装置規模を増大することなく、上流の光増幅器によって発生するASEの影響を受けない入力光パワーレベルモニタを行うことができる。
【0028】
請求項4記載の本発明は、光通信ネットワークシステムの各ノードに使用され、各ノードにおいて光ファイバを介して入力される多重化された複数の波長の異なる光信号を増幅する前置光増幅器および該前置光増幅器の出力に接続され、前記前置光増幅器で増幅された光信号の分岐および挿入を含む処理を行う光分岐挿入装置を有するノード装置であって、前記前置光増幅器が、多重化された複数の波長の異なる入力光信号を分岐する第1の光分岐器と、この第1の光分岐器で分岐された一方の光信号を増幅する第1の光増幅部と、この第1の光増幅部で増幅された光信号を分岐する第2の光分岐器と、この第2の光分岐器で分岐された一方の光信号を減衰させる光可変減衰器と、この光可変減衰器からの減衰された光信号を分岐する第3の光分岐器と、この第3の光分岐器で分岐された一方の光信号を増幅する第2の光増幅部と、この第2の光増幅部で増幅された光信号を分岐する第4の光分岐器と、前記第1の光分岐器で分岐された他方の光信号を更に分岐する第5の光分岐器と、この第5の光分岐器で分岐された一方の光信号を受け取り、入力光信号の全入力光パワーを検出する第1の光検出器と、前記第2の光分岐器で分岐された他方の光信号を受け取り、第1の光増幅部からの全出力光パワーを検出する第2の光検出器と、前記第3の光分岐器で分岐された他方の光信号を受け取り、前記第2の光増幅部への全入力光パワーを検出する第3の光検出器と、前記第4の光分岐器で分岐された一方の光信号を受け取り、前記第2の光増幅部からの全出力光パワーを検出する第4の光検出器とを有し、前記光分岐挿入装置が、前記第5の光分岐器で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の入力分波信号として出力するとともに、前記第4の光分岐器で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の出力分波信号として出力する分波器と、前記分波器からの複数の入力分波信号をそれぞれ受け取り、各入力分波信号の光パワーを検出する第5の複数の光検出器と、前記第5の複数の光検出器からの各入力分波信号の光パワー情報を受け取り、入力光信号の各波長の光パワーレベル情報および波長数情報を検出する検出制御回路と、前記分波器から出力される複数の出力分波信号を受け取り、これにより第2の光増幅部の各波長の出力光パワーレベルをモニタして出力するとともに、光信号の分岐および挿入を含む処理を行う光分岐挿入部とを有し、前記前置光増幅器が、前記検出制御回路からの入力光信号の各波長の光パワーレベル情報および波長数情報、前記第1の光検出器で検出した入力光信号の全入力光パワーおよび前記第2の光検出器で検出した第1の光増幅部からの全出力光パワーに基づき前記第1の光増幅部における各波長の利得が一定に保たれるように制御する第1の制御回路と、前記検出制御回路からの入力光信号の各波長の光パワーレベル情報および波長数情報、前記第3の光検出器で検出した第2の光増幅部への全入力光パワーおよび前記第4の光検出器で検出した第2の光増幅部からの全出力光パワーに基づき前記第2の光増幅部における各波長の利得が一定に保たれるように制御する第2の制御回路と、前記光分岐挿入部からの第2の光増幅部の各波長の出力光パワーレベルおよび前記第3の光検出器からの第2の光増幅部への全入力光パワーに基づき前記第2の光増幅部の入力パワーの変化を補償するとともに各波長の出力パワーレベルが一定になるように前記光可変減衰器の減衰量を可変制御する第3の制御回路とを更に有することを要旨とする。
【0029】
請求項4記載の本発明にあっては、入力光信号の全入力光パワーを検出し、第1の光増幅部からの全出力光パワーを検出し、入力光信号の分岐した光信号を各波長に分波して各入力分波信号の光パワーを検出し、各入力分波信号の光パワー情報から入力光信号の各波長の光パワーレベル情報および波長数情報を検出し、これらの検出した入力光信号の全入力光パワー、第1の光増幅部の全出力光パワー、入力光信号の各波長の光パワーレベル情報および波長数情報に基づき第1の光増幅部の励起源の発生するパワーを制御して、第1の光増幅部における各波長の利得が一定に保たれるように制御し、また第2の光増幅部への全入力光パワーを検出し、第2の光増幅部からの全出力光パワーを検出し、入力光信号の各波長の光パワーレベル情報および波長数情報を検出し、これらの検出した第2の光増幅部の全入力光パワー、第2の光増幅部の全出力光パワー、入力光信号の各波長の光パワーレベル情報および波長数情報に基づき第2の光増幅部の励起源の発生するパワーを制御して、第2の光増幅部における各波長の利得が一定に保たれるように制御し、更に光分岐挿入部からの第2の光増幅部の各波長の出力光パワーレベルおよび第2の光増幅部への全入力光パワーに基づき第2の光増幅部の入力パワーの変化を補償するとともに各波長の出力パワーレベルが一定になるように光可変減衰器の減衰量を可変制御するため、1つの分波器を使用して、入力光パワーレベルをモニタして光増幅器の制御を確実に行うことができ、装置規模を増大することなく、上流の光増幅器によって発生するASEの影響を受けない入力光パワーレベルモニタを行うことができるとともに、入力光パワーレベルの差異や変動を補償して、光増幅器の出力を一定に保つことができる。
【0030】
また、請求項5記載の本発明は、光通信ネットワークシステムの各ノードに使用され、各ノードにおいて光ファイバを介して入力される多重化された複数の波長の異なる光信号に対して光信号の分岐および挿入を含む処理を行う光分岐挿入装置および該光分岐挿入装置の出力に接続され、該光分岐挿入装置からの光信号を増幅する後置光増幅器を有するノード装置であって、前記後置光増幅器が、前記光分岐挿入装置から出力される光信号を分岐する第1の光分岐器と、この第1の光分岐器で分岐された一方の光信号を増幅する光増幅部と、この光増幅部で増幅された光信号を分岐して出力する第2の光分岐器と、前記第1の光分岐器で分岐された他方の光信号を更に分岐する第3の光分岐器と、前記第3の光分岐器で分岐された一方の光信号を受け取り、前記光増幅部への入力光信号の全入力光パワーを検出する第1の光検出器と、前記第2の光分岐器で分岐された前記光増幅部からの出力光信号を受け取り、該出力光信号の全出力光パワーを検出する第2の光検出器とを有し、前記光分岐挿入装置が、光ファイバを介して入力される多重化された複数の波長の異なる光信号に対して分岐および挿入を含む処理を行う光分岐挿入部と、この光分岐挿入部から出力される光信号を受け取り、この光信号の各波長を合波して、入力光信号として前記後置光増幅器の前記第1の光分岐器に供給するとともに、前記第3の光分岐器で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の入力分波信号として出力する合分波器と、この合分波器からの複数の入力分波信号をそれぞれ受け取り、各入力分波信号の光パワーを検出する複数の光検出器と、この複数の光検出器からの各入力分波信号の光パワー情報を受け取り、入力光信号の各波長の光パワーレベル情報および波長数情報を検出する検出制御回路とを有し、前記後置光増幅器が、前記第1の光検出器で検出した入力光信号の全入力光パワー、前記第2の光検出器で検出した出力光信号の全出力光パワーおよび前記検出制御回路からの入力光信号の各波長の光パワーレベル情報および波長数情報に基づき前記光増幅部における各波長の利得が一定に保たれるように制御する制御回路を更に有することを要旨とする。
【0031】
請求項5記載の本発明にあっては、光分岐挿入部からの光信号の各波長を合分波器で合波して、後置光増幅器の入力光信号とし、この入力光信号を各波長に分波して、各入力分波信号の光パワーを検出して、入力光信号の各波長の光パワーレベル情報および波長数情報を検出し、後置光増幅器への入力光信号の全入力光パワーを検出し、後置光増幅器の出力光信号の全出力光パワーを検出し、これらの検出した入力光信号の各波長の光パワーレベル情報および波長数情報、入力光信号の全入力光パワー、出力光信号の全出力光パワーに基づき後置光増幅器の励起源の発生するパワーを制御し、後置光増幅器における各波長の利得が一定に保たれるように制御するため、1つの分波器を使用して、入力光パワーレベルをモニタして光増幅器の制御を確実に行うことができ、装置規模を増大することなく、上流の光増幅器によって発生するASEの影響を受けない入力光パワーレベルモニタを行うことができる。
【0032】
更に、請求項6記載の本発明は、複数のノード装置を光ファイバで直列接続して光伝送路を形成して、多重化された複数の波長の異なる光信号を伝送するとともに、各ノード装置の前後に線形中継用光増幅器を設けた光通信ネットワークシステムであって、前記ノード装置が、請求項3乃至5のいずれかに記載のノード装置であり、前記線形中継用光増幅器が、請求項1または2記載の光増幅器であることを要旨とする。
【0033】
請求項6記載の本発明にあっては、光通信ネットワークシステムを構成する各ノード装置が請求項3乃至5のいずれかに記載のノード装置であり、また線形中継用光増幅器が請求項1または2記載の光増幅器であるため、シャットダウンを短時間で完了し、光サージの発生が防止され、誤動作することなく安定した伝送特性を得ることができる。
【0034】
【発明の実施の形態】
以下、図面を用いて本発明の実施の形態を説明する。図1は、本発明の第1の実施形態に係る光増幅器の構成を示すブロック図である。
【0035】
同図に示す第1の実施形態の光増幅器は、多重化された複数の波長の異なる入力光信号を分岐する第1の光分岐器21と、この第1の光分岐器21で分岐された一方の光信号を増幅する光増幅部1と、この光増幅部1で増幅された光信号を分岐し、この分岐された一方の光信号を光増幅器の出力光信号として出力する第2の光分岐器22と、第1の光分岐器21で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の入力分波信号として出力するとともに、第2の光分岐器22で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の出力分波信号として出力する分波器7と、分波器7からの複数の入力分波信号をそれぞれ受け取り、各入力分波信号の光パワーを検出する第1の複数の光検出器8b1−16と、分波器7からの複数の出力分波信号をそれぞれ受け取り、各出力分波信号の光パワーを検出する第2の複数の光検出器8a1−16と、第1の複数の光検出器8b1−16からの各入力分波信号の光パワー情報を受け取り、入力光信号の各波長の光パワーレベル情報および波長数情報を検出する第1の検出制御回路91と、第2の複数の光検出器8a1−16からの各出力分波信号の光パワー情報を受け取り、出力光信号の各波長の光パワーレベル情報および波長数情報を検出する第2の検出制御回路92と、第1の複数の光検出器8b1−16からの入力光信号の各波長の光パワーレベル情報および波長数情報および第2の複数の光検出器8a1−16からの出力光信号の各波長の光パワーレベル情報および波長数情報に基づき光増幅部1における各波長の利得が一定に保たれるように制御する制御回路5とから構成されている。
【0036】
なお、分波器7は、詳細には図2に示すように構成されている。この分波器7は、17×17AWG(アレイ型導波路格子)を使用して構成されている。図2において、波長λ(1) とλ(2) ,λ(1) とλ(2) ,…λ(1) 16とλ(2) 16は、それぞれ同じ波長を示しているものであるが、モニタしている個所が異なるため、(1),(2)で区別している。
【0037】
光増幅部1の入力光パワーモニタのために光分岐器21で分岐された光信号は、分波器7のポート1−0に入射し、ポート2−1から2−16に分波されて、各波長毎に出射され、図1に示した第1の複数の光検出器8b1−16に入力される。また、光増幅部1の出力光パワーモニタのために光分岐器22で分岐された光信号は、分波器7のポート2−0に入射し、ポート1−1から1−16に分波されて、各波長毎に出射され、図1に示した第2の複数の光検出器8a1−16に入力される。
【0038】
各出射ポート1−1〜1−16および2−1〜2−16にそれぞれ接続されている第2の複数の光検出器8a1−16および第1の複数の光検出器8b1−16は、フォトダイオードで構成され、各波長の光パワーをモニタする。なお、波長数は、光通信ネットワークシステムが使用する波長数に依存するので、図2に示した分波器7が分波する波長数は16に限られるものではない。
【0039】
図1に示すように構成される光増幅器では、多重化された複数の波長の異なる入力光信号は、第1の光分岐器21で分岐され、一方は光増幅部1で増幅され、他方は分波器7に供給される。また、光増幅部1で増幅された光信号は、第2の光分岐器22で分岐されて、一方は出力され、他方は分波器7に供給される。
【0040】
分波器7は、第1の光分岐器21からの入力光信号と第2の光分岐器22からの出力光信号をそれぞれ入射ポート1−0および2−0から受け取ると、入力光信号および出力光信号をそれぞれ各波長に分波して、それぞれ複数の入力分波信号および複数の出力分波信号として出射ポート2−1〜2−16および出射ポート1−1〜1−16からそれぞれ出射する。分波器7の出射ポート2−1〜2−16から出射された複数の入力分波信号は、第1の複数の光検出器8b1−16で各入力分波信号の光パワーを検出され、第1の検出制御回路91に供給される。第1の検出制御回路91は、各入力分波信号の光パワー情報を受け取ると、入力光信号の各波長の光パワーレベル情報および波長数情報を検出して、制御回路5に供給する。また、分波器7の出射ポート1−1〜1−16から出射された複数の出力分波信号は、第2の複数の光検出器8a1−16で各出力分波信号の光パワーを検出され、第2の検出制御回路92に供給される。第2の検出制御回路92は、各出力分波信号の光パワー情報を受け取ると、出力光信号の各波長の光パワーレベル情報および波長数情報を検出して、制御回路5に供給する。
【0041】
制御回路5は、第1の検出制御回路91からの入力光信号の各波長の光パワーレベル情報および波長数情報および第2の検出制御回路92からの出力光信号の各波長の光パワーレベル情報および波長数情報に基づき、光増幅部1の励起源の発生するパワーを制御し、これにより光増幅部1における各波長の利得を一定に保つように制御する。
【0042】
上述したように、本実施形態では、1つの分波器7を用いて入力パワーレベルをモニタでき、装置規模を増大することなく、上流の光増幅器によって発生するASEの影響を受けない入力パワーモニタを行うことができる。
【0043】
図3は、本発明の第2の実施形態に係る光増幅器の構成を示すブロック図である。
【0044】
図3に示す第2の実施形態の光増幅器は、多重化された複数の波長の異なる入力光信号を分岐する第1の光分岐器21と、この第1の光分岐器21で分岐された一方の光信号を増幅する第1の光増幅部11と、この第1の光増幅部11で増幅された光信号を分岐する第2の光分岐器22と、この第2の光分岐器22で分岐された一方の光信号を減衰させる光可変減衰器6と、この光可変減衰器6からの減衰した光信号を分岐する第3の光分岐器23と、この第3の光分岐器23で分岐された一方の光信号を増幅する第2の光増幅部12と、この第2の光増幅部12で増幅された光信号を分岐し、この分岐された一方の光信号を光増幅器の出力光信号として出力する第4の光分岐器24と、第1の光分岐器21で分岐された他方の光信号を更に分岐する第5の光分岐器25と、この第5の光分岐器25で分岐された一方の光信号を受け取り、入力光信号の全入力光パワーを検出する第1の光検出器41と、第2の光分岐器22で分岐された他方の光信号を受け取り、第1の光増幅部11からの全出力光パワーを検出する第2の光検出器42と、第3の光分岐器23で分岐された他方の光信号を受け取り、第2の光増幅部12への全入力光パワーを検出する第3の光検出器43と、第4の光分岐器24で分岐された他方の光信号を更に分岐する第6の光分岐器26と、この第6の光分岐器26で分岐された一方の光信号を受け取り、第2の光増幅部12からの全出力光パワーを検出する第4の光検出器44と、第5の光分岐器25で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の入力分波信号として出力するとともに、第6の光分岐器26で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の出力分波信号として出力する分波器7と、この分波器7からの複数の入力分波信号をそれぞれ受け取り、各入力分波信号の光パワーを検出する第5の複数の光検出器8b1−16と、分波器7からの複数の出力分波信号をそれぞれ受け取り、各出力分波信号の光パワーを検出する第6の複数の光検出器8a1−16と、第5の複数の光検出器8b1−16からの各入力分波信号の光パワー情報を受け取り、入力光信号の各波長の光パワーレベル情報および波長数情報を検出する第1の検出制御回路91と、第6の複数の光検出器8a1−16からの各出力分波信号の光パワー情報を受け取り、出力光信号の各波長の光パワーレベル情報および波長数情報を検出する第2の検出制御回路92と、第1の検出制御回路91からの入力光信号の各波長の光パワーレベル情報および波長数情報、第1の光検出器41で検出した入力光信号の全入力光パワーおよび第2の光検出器42で検出した第1の光増幅部11からの全出力光パワーに基づき第1の光増幅部11における各波長の利得が一定に保たれるように制御する第1の制御回路51と、第2の検出制御回路92からの出力光信号の各波長の光パワーレベル情報および波長数情報、第3の光検出器43で検出した第2の光増幅部12への全入力光パワーおよび第4の光検出器44で検出した第2の光増幅部12からの全出力光パワーに基づき第2の光増幅部12における各波長の利得が一定に保たれるように制御する第2の制御回路52と、第2の検出制御回路92からの出力光信号の各波長の光パワーレベル情報および波長数情報に基づき第2の光増幅部12の入力パワーの変化を補償するとともに各波長の出力パワーレベルが一定になるように光可変減衰器6の減衰量を可変制御する第3の制御回路53とから構成されている。なお、分波器7は、図2に示したものと同じものを使用している。
【0045】
このように構成される光増幅器においては、多重化された複数の波長の異なる入力光信号は、第1の光分岐器21で分岐され、一方は第1の光増幅部11で増幅され、他方は第5の光分岐器25に供給される。また、第1の光増幅部11で増幅された光信号は、第2の光分岐器22で分岐されて、一方は光可変減衰器6に供給されて減衰され、第3の光分岐器23に供給される。第3の光分岐器23は、光可変減衰器6からの光信号を分岐し、一方を第2の光増幅部12に供給して増幅する。第2の光増幅部12で増幅された光信号は、第4の光分岐器24で分岐され、一方は光増幅器の出力信号として出力され、他方は第6の光分岐器26に供給される。
【0046】
第5の光分岐器25は、第1の光分岐器21からの光信号を分岐し、一方を第1の光検出器41に供給して、ここで入力光信号の全入力光パワーが検出されて第1の制御回路51に供給され、他方を分岐器7に供給する。また、第2の光分岐器22で分岐された他方の光信号である第1の光増幅部11からの出力光信号は、第2の光検出器42に供給され、ここで第1の光増幅部11からの全出力光パワーを検出され、この検出された全出力光パワーは第1の制御回路51に供給される。
【0047】
また、第3の光分岐器23で分岐された他方の光信号は、第3の光検出器43に供給され、ここで第2の光増幅部12への全入力光パワーが検出されて第2の制御回路52に供給される。更に、第6の光分岐器26で分岐された一方の光信号は、第4の光検出器44に供給され、ここで第2の光増幅部12からの全出力光パワーが検出されて第2の制御回路52に供給され、また他方の光信号は分波器7に供給される。
【0048】
分波器7は、第5の光分岐器25から入力光信号および第6の光分岐器26から出力光信号を供給されると、第5の光分岐器25からの入力光信号を各波長に分波して、複数の入力分波信号として出力するとともに、第6の光分岐器26からの出力光信号を各波長に分波して、複数の出力分波信号として出力する。
【0049】
分波器7からの複数の入力分波信号は、第5の複数の光検出器8b1−16に供給され、ここで各入力分波信号の光パワーが検出されて、第1の検出制御回路91に供給される。第1の検出制御回路91は、入力光信号の各波長の光パワーレベル情報および波長数情報を検出し、第1の制御回路51および第2の制御回路52に供給する。
【0050】
また、分波器7からの複数の出力分波信号は、第6の複数の光検出器8a1−16に供給され、ここで各出力分波信号の光パワーが検出されて、第2の検出制御回路92に供給される。第2の検出制御回路92は、出力光信号の各波長の光パワーレベル情報および波長数情報を検出し、第3の制御回路53に供給する。
【0051】
第1の制御回路51は、第1の光検出器41から入力光信号の全入力光パワー、第2の光検出器42からの第1の光増幅部11の全出力光パワー、および第1の検出制御回路91から入力光信号の各波長の光パワーレベル情報および波長数情報を受け取ると、これらの情報に基づき第1の光増幅部11の励起の発生するパワーを制御し、第1の光増幅部11における各波長の利得が一定に保たれるように制御する。また、このような制御において、第1の検出制御回路91で波長数ゼロが検出され、この情報が第1の制御回路51に供給されると、第1の制御回路51は、第1の光増幅部11の励起パワーをゼロに低減するように制御する。
【0052】
また、第2の制御回路52は、第3の光検出器43から第2の光増幅部12の全入力光パワー、第4の光検出器44から第2の光増幅部12の全出力光パワー、および第1の検出制御回路91から入力光信号の各波長の光パワーレベル情報および波長数情報を受け取ると、これらの情報に基づき第2の光増幅部12の励起の発生するパワーを制御し、第2の光増幅部12における各波長の利得が一定に保たれるように制御する。
【0053】
更に、第3の制御回路53は、第2の検出制御回路92から出力光信号の各波長の光パワーレベル情報および波長数情報を受け取ると、これらの情報に基づき第2の光増幅部12の入力パワーの変化を補償するとともに各波長の出力パワーレベルが一定になるように光可変減衰器6の減衰量を可変制御する。
【0054】
上述したように、本実施形態では、1つの分波器7を用いて入力パワーレベルをモニタでき、装置規模を増大することなく、上流の光増幅器によって発生するASEの影響を受けない入力パワーモニタを行うことができる。
【0055】
次に、図4を参照して、本発明の第3の実施形態に係るノード装置について説明する。同図に示す実施形態のノード装置は、例えば光通信ネットワークシステムの各ノードに使用され、各ノードにおいて光ファイバを介して入力される多重化された複数の波長の異なる光信号を増幅する前置光増幅器100および該前置光増幅器100の出力に接続され、前置光増幅器100で増幅された光信号の分岐および挿入を含む処理を行う光分岐挿入装置(以下、OADM装置と略称する)110から構成されている。
【0056】
前置光増幅器100、すなわちOADM用前置光増幅器100は、多重化された複数の波長の異なる入力光信号を分岐する第1の光分岐器21と、この第1の光分岐器21で分岐された一方の光信号を増幅する第1の光増幅部11と、この第1の光増幅部11で増幅された光信号を分岐する第2の光分岐器22と、この第2の光分岐器22で分岐された一方の光信号を減衰させる光可変減衰器6と、この光可変減衰器6からの減衰された光信号を分岐する第3の光分岐器23と、この第3の光分岐器23で分岐された一方の光信号を増幅する第2の光増幅部12と、この第2の光増幅部12で増幅された光信号を分岐する第4の光分岐器24と、第1の光分岐器21で分岐された他方の光信号を更に分岐する第5の光分岐器25と、この第5の光分岐器25で分岐された一方の光信号を受け取り、入力光信号の全入力光パワーを検出する第1の光検出器41と、第2の光分岐器22で分岐された他方の光信号を受け取り、第1の光増幅部11からの全出力光パワーを検出する第2の光検出器42と、第3の光分岐器23で分岐された他方の光信号を受け取り、第2の光増幅部12への全入力光パワーを検出する第3の光検出器43と、第4の光分岐器24で分岐された一方の光信号を受け取り、第2の光増幅部12からの全出力光パワーを検出する第4の光検出器44と、後述するOADM装置110の検出制御回路9から供給される入力光信号の各波長の光パワーレベル情報および波長数情報、第1の光検出器41で検出した入力光信号の全入力光パワーおよび第2の光検出器42で検出した第1の光増幅部11の全出力光パワーに基づき第1の光増幅部11の励起源の発生するパワーを制御し、これにより第1の光増幅部11における各波長の利得が一定に保たれるように制御する第1の制御回路51と、検出制御回路9から供給される入力光信号の各波長の光パワーレベル情報および波長数情報、第3の光検出器43で検出した第2の光増幅部12の全入力光パワーおよび第4の光検出器44で検出した第2の光増幅部12の全出力光パワーに基づき第2の光増幅部12の励起源の発生するパワーを制御し、これにより第2の光増幅部12における各波長の利得が一定に保たれるように制御する第2の制御回路52と、後述するOADM装置110の光部品/制御回路群120からの第2の光増幅部12の各波長の出力光パワーレベル情報および第3の光検出器43で検出した第2の光増幅部12の全入力光パワーに基づき第2の光増幅部12の入力パワーの変化を補償するとともに各波長の出力パワーレベルが一定になるように光可変減衰器6の減衰量を可変制御する第3の制御回路53とから構成されている。
【0057】
また、光分岐挿入装置110、すなわちOADM装置110は、前置光増幅器100の第5の光分岐器25で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の入力分波信号として出力するとともに、第4の光分岐器24で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の出力分波信号として出力する分波器7と、分波器7からの複数の入力分波信号をそれぞれ受け取り、各入力分波信号の光パワーを検出する第5の複数の光検出器8b1−16、この第5の複数の光検出器8b1−16からの各入力分波信号の光パワー情報を受け取り、入力光信号の各波長の光パワーレベル情報および波長数情報を検出する検出制御回路9と、分波器7から出力される複数の出力分波信号を受け取り、第2の光増幅部12の各波長の出力光パワーレベルをモニタし、この各波長の出力光パワーレベル情報を第3の制御回路53に供給するとともに、光信号の分岐および挿入を含む処理を行うOADM装置110内の光スイッチ、光可変減衰器、光検出器など光信号の分岐および挿入に必要な光部品群およびそれらの制御回路群からなる本発明の光分岐挿入部を構成する光部品/制御回路群120とから構成されている。なお、分波器7は、図2に示したものと同じものが使用される。
【0058】
次に、以上のように構成される第3の実施形態のノード装置の作用について説明する。
【0059】
図4に示すノード装置において、光通信ネットワークシステムの光ファイバから入力される多重化された複数の波長の異なる入力光信号は、前置光増幅器100の第1の光分岐器21に入力されて分岐され、一方の光信号は第1の光増幅部11で増幅されて、第2の光分岐器22に供給され、他方の光信号は第5の光分岐器25に供給されて、更に分岐され、この分岐された一方の光信号はOADM装置110の分波器7に入力され、他方の光信号は第1の光検出器41に供給され、この第1の光検出器41で入力光信号の全入力光パワーが検出され、第1の制御回路51に供給される。
【0060】
また、第1の光増幅部11で増幅された光信号は、第2の光分岐器22で分岐されると、その一方の光信号は光可変減衰器6で減衰され、第3の光分岐器23に供給され、第2の光分岐器22からの他方の光信号は第2の光検出器42に供給され、ここで第1の光増幅部11の全出力光パワーが検出され、光増幅部1の制御回路51に供給される。
【0061】
第3の光分岐器23は、光可変減衰器6から出力される光信号を分岐し、その一方の光信号は第2の光増幅部12で増幅されて、第4の光分岐器24に供給され、また第3の光分岐器23からの他方の光信号は第3の光検出器43に供給され、ここで第2の光増幅部12への全入力光パワーが検出されて、第2の制御回路52および第3の制御回路53に供給される。
【0062】
第4の光分岐器24は、第2の光増幅部12から出力される光信号を分岐し、その一方の光信号をOADM装置110の分波器7に供給し、他方の光信号を第4の光検出器44に供給し、ここで第2の光増幅部12の全出力光パワーが検出され、第2の制御回路52に供給される。
【0063】
OADM装置110の分波器7は、第5の光分岐器25からの入力光信号を供給されると、この入力光信号を各波長に分波して、複数の入力分波信号として出力し、この入力分波信号を第1の制御回路51および第2の制御回路52に供給するとともに、また第4の光分岐器24からの出力光信号を供給されると、この出力光信号を各波長に分波して、複数の出力分波信号として出力し、光部品/制御回路群120に供給する。光部品/制御回路群120は、この複数の出力分波信号を受け取り、第2の光増幅部12の各波長の出力光パワーレベルをモニタし、この各波長の出力光パワーレベル情報を第3の制御回路53に供給するとともに、光信号の分岐および挿入などの処理を行って出力する。
【0064】
前置光増幅器100の第1の制御回路51は、第1の光検出器41からの入力光信号の全入力光パワー、第2の光検出器42からの第1の光増幅部11の全出力光パワー、および検出制御回路9からの入力光信号の各波長の光パワーレベル情報および波長数情報を供給されると、これらの情報に基づき第1の光増幅部11の励起源の発生するパワーを制御し、これにより第1の光増幅部11における各波長の利得が一定に保たれるように制御する。
【0065】
また、第2の制御回路52は、第3の光検出器43からの第2の光増幅部12の全入力光パワー、第4の光検出器44からの第2の光増幅部12の全出力光パワー、および検出制御回路9からの入力光信号の各波長の光パワーレベル情報および波長数情報を供給されると、これらの情報に基づき第2の光増幅部12の励起源の発生するパワーを制御し、これにより第2の光増幅部12における各波長の利得が一定に保たれるように制御する。
【0066】
更に、第3の制御回路53は、第3の光検出器43からの第2の光増幅部12の全入力光パワーおよび光部品/制御回路群120からの第2の光増幅部12の各波長の出力光パワーレベルを供給されると、これらの情報に基づき第2の光増幅部12の入力パワーの変化を補償するとともに第2の光増幅部12の出力を一定に保つように光可変減衰器6の減衰量を可変制御する。
【0067】
上述したように、本実施形態のノード装置では、本発明の光増幅器をOADM装置110の前置光増幅器として使用できるとともに、1つの分波器7を用いて入力パワーレベルをモニタでき、装置規模を増大することなく、上流の光増幅器によって発生するASEの影響を受けない入力パワーモニタを行うことができる。
【0068】
図5は、本発明の第4の実施形態に係るノード装置の構成を示すブロック図である。同図に示すノード装置は、図4に示した第3の実施形態のノード装置においてOADM装置110に設けられていた検出制御回路9を前置光増幅器100に設けるように構成し、前置光増幅器の符号を101とし、OADM装置の符号を113と変更した点が異なるものであり、その他の構成および作用は同じであり、同じ構成要素には同じ符号が付されている。
【0069】
次に、図6を参照して、本発明の第5の実施形態に係るノード装置について説明する。同図に示す実施形態のノード装置は、図4に示したノード装置において入力パワーレベルの差異および変動は補償せず、各波長の利得一定制御のみを行うように簡略化したものであり、図4と同様に前置光増幅器210および該前置光増幅器210の出力に接続されている光分岐挿入装置(以下、OADM装置と略称する)211から構成されている。
【0070】
前置光増幅器210、すなわちOADM用前置光増幅器210は、多重化された複数の波長の異なる入力光信号を分岐する第1の光分岐器21と、この第1の光分岐器21で分岐された一方の光信号を増幅する光増幅部1と、この光増幅部1で増幅された光信号を分岐する第2の光分岐器22と、第1の光分岐器21で分岐された他方の光信号を更に分岐する第3の光分岐器23と、第3の光分岐器23で分岐された一方の光信号を受け取り、入力光信号の全入力光パワーを検出する第1の光検出器41と、第2の光分岐器22で分岐された光増幅部1からの出力光信号を受け取り、該出力光信号の全出力光パワーを検出する第2の光検出器42と、第1の光検出器41で検出した入力光信号の全入力光パワー、第2の光検出器42で検出した出力光信号の全出力光パワーおよび後述するOADM装置211の検出制御回路9からの入力光信号の各波長の光パワーレベル情報および波長数情報に基づき光増幅部1における各波長の利得が一定に保たれるように制御する制御回路5とから構成されている。
【0071】
また、光分岐挿入装置211、すなわちOADM装置211は、前置光増幅器210の第3の光分岐器23で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の入力分波信号として出力するとともに、第2の光分岐器22で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の出力分波信号として出力する分波器7と、この分波器7からの複数の入力分波信号をそれぞれ受け取り、各入力分波信号の光パワーを検出する第1の複数の光検出器8b1−16と、この第1の複数の光検出器8b1−16からの各入力分波信号の光パワー情報を受け取り、入力光信号の各波長の光パワーレベル情報および波長数情報を検出する検出制御回路9と、分波器7から出力される複数の出力分波信号を受け取り、光信号の分岐および挿入を含む処理を行う光分岐挿入部を構成する光部品/制御回路群120とから構成されている。
【0072】
以上のように構成される第5の実施形態のノード装置の作用について説明する。
【0073】
図6に示すノード装置において、光通信ネットワークシステムの光ファイバから入力される多重化された複数の波長の異なる入力光信号は、前置光増幅器210の第1の光分岐器21に入力されて分岐され、一方の光信号は光増幅部1で増幅されて、第2の光分岐器22に供給され、他方の光信号は第3の光分岐器23に供給されて、更に分岐され、この分岐された一方の光信号はOADM装置211の分波器7に入力され、他方の光信号は第1の光検出器41に供給され、この第1の光検出器41で入力光信号の全入力光パワーが検出され、制御回路5に供給される。
【0074】
また、光増幅部1で増幅された光信号は、第2の光分岐器22で分岐されると、この分岐された一方の光信号はOADM装置211の分波器7に供給され、また他方の光信号は、第2の光検出器42に供給され、ここで光増幅部1からの出力光信号の全出力光パワーを検出され、制御回路5に供給される。
【0075】
OADM装置211の分波器7は、第3の光分岐器3からの入力光信号を供給されると、この光信号を各波長に分波して、複数の入力分波信号として第3の複数の光検出器8b1−16に供給する。この第3の複数の光検出器8b1−16は、複数の入力分波信号をそれぞれ受け取り、各入力分波信号の光パワーを検出し、検出制御回路9に供給する。検出制御回路9は、入力光信号の各波長の光パワーレベル情報および波長数情報を検出し、制御回路5に供給する。また、分波器7は、第2の光分岐器22からの光信号を受け取ると、この光信号を各波長に分波して、複数の出力分波信号として光部品/制御回路群120に出力する。光部品/制御回路群120は、複数の出力分波信号を受け取り、光信号の分岐および挿入などの処理を行う。
【0076】
制御回路5は、第1の光検出器41から入力光信号の全入力光パワー、第2の光検出器22から出力光信号の全出力光パワーおよび検出制御回路9から入力光信号の各波長の光パワーレベル情報および波長数情報を供給されると、これらの情報に基づき光増幅部1の励起源の発生するパワーを制御し、光増幅部1における各波長の利得が一定に保たれるように制御する。
【0077】
上述したように、本実施形態のノード装置では、本発明の光増幅器をOADM装置211の前置光増幅器として使用できるとともに、1つの分波器7を用いて入力パワーレベルをモニタでき、装置規模を増大することなく、上流の光増幅器によって発生するASEの影響を受けない入力パワーモニタを行うことができる。
【0078】
図7は、本発明の第6の実施形態に係るノード装置の構成を示すブロック図である。同図に示すノード装置は、図6に示した第5の実施形態のノード装置においてOADM装置211に設けられていた検出制御回路9を前置光増幅器210に設けるように構成し、前置光増幅器の符号を212とし、OADM装置の符号を213と変更した点が異なるものであり、その他の構成および作用は同じであり、同じ構成要素には同じ符号が付されている。
【0079】
次に、図8を参照して、本発明の第7の実施形態に係るノード装置について説明する。同図に示した実施形態のノード装置は、図6、図7に示したノード装置において光増幅器を光分岐挿入装置の後に設けて、後置光増幅器313として構成し、この後置光増幅器の前置側に光分岐挿入装置(以下、OADM装置と略称する)311を設けるように構成したものである。
【0080】
後置光増幅器313、すなわちOADM用後置光増幅器313は、光分岐挿入装置311から出力される光信号を分岐する第1の光分岐器21と、この第1の光分岐器21で分岐された一方の光信号を増幅する光増幅部1と、この光増幅部1で増幅された光信号を分岐して出力する第2の光分岐器22と、第1の光分岐器21で分岐された他方の光信号を更に分岐する第3の光分岐器23と、この第3の光分岐器23で分岐された一方の光信号を受け取り、光増幅部1への入力光信号の全入力光パワーを検出する第1の光検出器41と、第2の光分岐器22で分岐された光増幅部1の出力光信号を受け取り、該出力光信号の全出力光パワーを検出する第2の光検出器42と、第1の光検出器41で検出した入力光信号の全入力光パワー、第2の光検出器42で検出した出力光信号の全出力光パワーおよびOADM装置311の後述する検出制御回路9からの入力光信号の各波長の光パワーレベル情報および波長数情報に基づき光増幅部1の励起源の発生するパワーを制御し、光増幅部1における各波長の利得が一定に保たれるように制御する制御回路5とから構成されている。
【0081】
また、光分岐挿入装置311、すなわちOADM装置311は、光ファイバを介して入力される多重化された複数の波長の異なる光信号に対して分岐および挿入を含む処理を行う光分岐挿入部を構成する光部品/制御回路群120と、この光部品/制御回路群120から出力される光信号を受け取り、この光信号の各波長を合波して、入力光信号として後置光増幅器313の第1の光分岐器21に供給するとともに、第3の光分岐器23で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の入力分波信号として出力する合分波器14と、この合分波器14からの複数の入力分波信号をそれぞれ受け取り、各入力分波信号の光パワーを検出する複数の光検出器8b1−16と、この複数の光検出器8b1−16からの各入力分波信号の光パワー情報を受け取り、入力光信号の各波長の光パワーレベル情報および波長数情報を検出する検出制御回路9とから構成されている。
【0082】
このように構成されるノード装置では、光通信ネットワークシステムを構成する光ファイバを介して入力される多重化された複数の波長の異なる光信号を光部品/制御回路群120で受け取り、該光信号に対して分岐および挿入を含む処理を行い、合分波器14に供給する。合分波器14は、光部品/制御回路群120からの光信号の各波長を合波して、入力光信号として後置光増幅器313の第1の光分岐器21に供給する。
【0083】
後置光増幅器313の第1の光分岐器21は、光分岐挿入装置311からの入力光信号を分岐し、この分岐した一方の光信号を光増幅部1に供給して増幅し、この増幅された光信号を第2の光分岐器22に供給するとともに、第1の光分岐器21で分岐された他方の光信号を第3の光分岐器23に供給する。第3の光分岐器23は、第1の光分岐器21からの光信号を更に分岐し、一方を第1の光検出器41に供給し、ここで光増幅部1への入力光信号の全入力光パワーを検出し、制御回路5に供給する。
【0084】
また、光増幅部1で増幅され、第2の光分岐器22に供給された光信号は、第2の光分岐器22で分岐されると、一方を出力するとともに、他方を第2の光検出器42に供給する。第2の光検出器42は、この光信号から光増幅部1の出力光信号の全出力光パワーを制御回路5に供給する。
【0085】
更に、第3の光分岐器23で分岐された光信号は、光分岐挿入装置311の合分波器14に供給されると、この光信号を各波長に分波して、複数の入力分波信号として出力し、複数の光検出器8b1−16に供給する。複数の光検出器8b1−16は、合分波器14から複数の入力分波信号を受け取ると、各入力分波信号の光パワーを検出し、検出制御回路9に供給する。検出制御回路9は、各入力分波信号の光パワー情報を受け取ると、入力光信号の各波長の光パワーレベル情報および波長数情報を検出し、後置光増幅器313の制御回路5に供給する。
【0086】
制御回路5は、第1の光検出器41から入力光信号の全入力光パワー、第2の光検出器42から出力光信号の全出力光パワーおよびOADM装置311の検出制御回路9から入力光信号の各波長の光パワーレベル情報および波長数情報を受け取ると、これらの情報に基づき光増幅部1の励起源の発生するパワーを制御し、光増幅部1における各波長の利得が一定に保たれるように制御する。
【0087】
上述したように、本発明の光増幅器はOADM装置の後置光増幅器として使用することができ、1つの分波器を用いて、入力パワーレベルをモニタすることができる。
【0088】
図9は、本発明の第8の実施形態に係るノード装置の構成を示すブロック図である。同図に示すノード装置は、図8に示した第7の実施形態のノード装置において後置光増幅器313に設けられていた検出制御回路9をOADM装置311に設けるように構成し、後置光増幅器の符号を315とし、OADM装置の符号を314と変更した点が異なるものであり、その他の構成および作用は同じであり、同じ構成要素には同じ符号が付されている。
【0089】
図10は、本発明の第9の実施形態に係る光通信ネットワークシステムを構成するOADMリングシステムの構成を示す図である。同図に示す光通信ネットワークシステムを構成するOADMリングシステムは、ノード装置をそれぞれ構成する複数のOADMノード15a〜15dを光ファイバで直列接続して光伝送路を形成して、多重化された複数の波長の異なる光信号を伝送するとともに、各ノード装置の前後に線形中継用光増幅器16a〜16hを設けて、全体として環状に構成したものである。
【0090】
このように構成されるOADMリングシステムにおいて、各OADMノード15a〜15dは、上述した図4〜図7に示した前置光増幅器とOADM装置からなるノード装置または図8〜図9に示したOADM装置と後置光増幅器からなるノード装置を使用することができるが、前置光増幅器およびOADM装置からなるノード装置、OADM装置および後置光増幅器からなるノード装置、または前置光増幅器、OADM装置および後置光増幅器からなるノード装置のような組み合わせのいずれで構成されてもよいものであり、また各線形中継用光増幅器は、図1、図3に示した光増幅器を使用することができる。
【0091】
このように構成されるOADMリングシステムである光通信ネットワークシステムにおいて、例えば図10のA点において光増幅器16gの入力コネクタを抜去した場合、光増幅器16hは、図11に残留波長の光出力過渡応答特性を示すように、従来技術に比較して、非常に短時間でシャットダウンを完了している。
【0092】
更に具体的に説明すると、従来はこのような光増幅器として図15に示すような構成の光増幅器を使用しているが、このような従来の光増幅器では、信号断によって上流の光増幅器から順次シャットダウンを行い、出力レベルをゼロに落としているが、残留ASEの影響で下流の光増幅器16hではシャットダウンに時間がかかっている。このようにシャットダウンに時間がかかると、数百μs以内に再び光増幅器16gの入力コネクタを挿入した場合には、光増幅器16hはシャットダウンしていないため、光サージを発生し、OADMノード15aの光受信器を破損させてしまうことになる。このような状況は保守者が素早くコネクタを抜去、挿入を行ったときに発生する。このような光サージは図17に示す構成の光増幅器で防御できるが、従来技術で説明したように故障点評点に問題を生じる。光増幅器の入力光パワーモニタ値がASEにより信号断を検出する前に光増幅器がシャットダウンしてしまうため、故障点評点を複雑にする問題が発生する。
【0093】
これに対して、本発明の光増幅器では、図11に示すように、約100μsで光増幅器16hのシャットダウンを完了しているため、上述したコネクタ操作を行っても光サージは発生しない。また、光増幅器で入力光パワーモニタ値から信号断を検出しているので、故障点評点に影響を及ぼさない。
【0094】
図12は、図10に示したOADMリングシステムのOADMノード15bの出力点Cで波長数切替を行い、波長数変動が起きた場合のOADMノード15cの前置光増幅器出力パワーの過渡応答を示す図である。この図において、従来の光増幅器は、図15で示した構成の光増幅器を用いているものであり、波長数変動(16→1)により波長数が小さくなったときに、上流の光増幅器のASEの影響を受けて波長数を実際より大きく見積もり、前置光増幅器の出力値が小さくなり、その結果としてOADMでの光出力パワーレベルが図12に示すように小さくなっている。
【0095】
これに対して、本発明の光増幅器を用いた場合には、約100μsの制御時間で安定した出力光パワーレベルが実現されている。
【0096】
上述したように、本発明の光増幅器を用いることにより、光増幅器部分の装置規模の拡大なく、各光増幅器に入力する波長数が変化しても、ASEの影響を受けずに光増幅器制御が確実に行われる安定した動作の光通信ネットワークシステムを構築することができる。
【0097】
なお、本実施形態では、光通信ネットワークシステムとして環状に構成したリングシステムについて説明しているが、本発明の光通信ネットワークシステムは環状である必要はないとともに、更に光クロスコネクト装置を使用したシステム、2点地間を結んだ(ポイント・トゥ・ポイント)WDM装置を使用したシステムでもよいものである。
【0098】
また、上述した各実施形態における各光増幅部の利得制御、光可変減衰器の制御の具体例は、一例であり、これに限定されるものでなく、制御回路が検出制御回路からの光パワーレベル情報や波長数情報を用いて、各光増幅部の励起源の発生パワーを制御するものであればよいものである。
【0099】
更に、上述した図4〜図9に示す実施形態では、OADM装置の前置または後置用の光増幅器として説明したが、本光増幅器が適用されるのはOADM装置用に限定されるものでなく、光クロスコネクト装置、WDM用の光チャネル終端装置などのWDM装置であればよいものである。
【0100】
【発明の効果】
以上説明したように、本発明によれば、入力光信号の分岐した光信号を各波長に分波して各入力分波信号の光パワーを検出し、各入力分波信号の光パワー情報から入力光信号の各波長の光パワーレベル情報および波長数情報を検出し、入力光信号を光増幅部で増幅した出力光信号を分岐した光信号を各波長に分波して各出力分波信号の光パワーを検出し、各出力分波信号の光パワー情報から出力光信号の各波長の光パワーレベル情報および波長数情報を検出し、これらの検出した入力光信号の各波長の光パワーレベル情報および波長数情報、および出力光信号の各波長の光パワーレベル情報および波長数情報に基づき光増幅部の励起源の発生するパワーを制御して、光増幅部における各波長の利得が一定に保たれるように制御するので、1つの分波器を使用して、入力光パワーレベルをモニタして光増幅器の制御を確実に行うことができ、装置規模を増大することなく、上流の光増幅器によって発生するASEの影響を受けない入力光パワーレベルモニタを行うことができる。
【0101】
また、本発明によれば、入力光信号の分波した光信号を各波長に分波して各入力分波信号の光パワーを検出し、各入力分波信号の光パワー情報から入力光信号の各波長の光パワーレベル情報および波長数情報を検出し、入力光信号の全入力光パワーを検出し、第1の光増幅部からの全出力光パワーを検出し、これらの検出した入力光信号の各波長の光パワーレベル情報および波長数情報、入力光信号の全入力光パワーおよび第1の光増幅部からの全出力光パワーに基づき第1の光増幅部の励起源の発生するパワーを制御して、第1の光増幅部における各波長の利得が一定に保たれるように制御し、また第2の光増幅部への全入力光パワーを検出し、第2の光増幅部からの全出力光パワーを検出し、第2の光増幅部で増幅した出力光信号を各波長に分波して各出力分波信号の光パワーを検出し、各出力分波信号の光パワー情報から出力光信号の各波長の光パワーレベル情報および波長数情報を検出し、これらの検出した第2の光増幅部への全入力光パワー、第2の光増幅部からの全出力光パワーおよび出力光信号の各波長の光パワーレベル情報および波長数情報に基づき第2の光増幅部の励起源の発生するパワーを制御して、第2の光増幅部における各波長の利得が一定に保たれるように制御し、更に出力光信号の各波長の光パワーレベル情報および波長数情報に基づき第2の光増幅部の入力パワーの変化を補償するとともに各波長の出力パワーレベルが一定になるように光可変減衰器の減衰量を可変制御するので、1つの分波器を使用して、入力光パワーレベルをモニタして光増幅器の制御を確実に行うことができ、装置規模を増大することなく、上流の光増幅器によって発生するASEの影響を受けない入力光パワーレベルモニタを行うことができるとともに、入力光パワーレベルの差異や変動を補償して、光増幅器の出力を一定に保つことができる。
【0102】
更に、本発明によれば、入力光信号の分岐した光信号を各波長に分波して各入力分波信号の光パワーを検出し、各入力分波信号の光パワー情報から入力光信号の各波長の光パワーレベル情報および波長数情報を検出し、入力光信号の全入力光パワーを検出し、光増幅部からの全出力光パワーを検出し、これらの検出した入力光信号の各波長の光パワーレベル情報および波長数情報、入力光信号の全入力光パワーおよび光増幅部の全出力光パワーに基づき光増幅部の励起源の発生するパワーを制御して、光増幅部における各波長の利得が一定に保たれるように制御するので、1つの分波器を使用して、入力光パワーレベルをモニタして光増幅器の制御を確実に行うことができ、装置規模を増大することなく、上流の光増幅器によって発生するASEの影響を受けない入力光パワーレベルモニタを行うことができる。
【0103】
本発明によれば、入力光信号の全入力光パワーを検出し、第1の光増幅部からの全出力光パワーを検出し、入力光信号の分岐した光信号を各波長に分波して各入力分波信号の光パワーを検出し、各入力分波信号の光パワー情報から入力光信号の各波長の光パワーレベル情報および波長数情報を検出し、これらの検出した入力光信号の全入力光パワー、第1の光増幅部の全出力光パワー、入力光信号の各波長の光パワーレベル情報および波長数情報に基づき第1の光増幅部の励起源の発生するパワーを制御して、第1の光増幅部における各波長の利得が一定に保たれるように制御し、また第2の光増幅部への全入力光パワーを検出し、第2の光増幅部からの全出力光パワーを検出し、入力光信号の各波長の光パワーレベル情報および波長数情報を検出し、これらの検出した第2の光増幅部の全入力光パワー、第2の光増幅部の全出力光パワー、入力光信号の各波長の光パワーレベル情報および波長数情報に基づき第2の光増幅部の励起源の発生するパワーを制御して、第2の光増幅部における各波長の利得が一定に保たれるように制御し、更に光分岐挿入部からの第2の光増幅部の各波長の出力光パワーレベルおよび第2の光増幅部への全入力光パワーに基づき第2の光増幅部の入力パワーの変化を補償するとともに各波長の出力パワーレベルが一定になるように光可変減衰器の減衰量を可変制御するので、1つの分波器を使用して、入力光パワーレベルをモニタして光増幅器の制御を確実に行うことができ、装置規模を増大することなく、上流の光増幅器によって発生するASEの影響を受けない入力光パワーレベルモニタを行うことができるとともに、入力光パワーレベルの差異や変動を補償して、光増幅器の出力を一定に保つことができる。
【0104】
また、本発明によれば、光分岐挿入部からの光信号の各波長を合分波器で合波して、後置光増幅器の入力光信号とし、この入力光信号を各波長に分波して、各入力分波信号の光パワーを検出して、入力光信号の各波長の光パワーレベル情報および波長数情報を検出し、後置光増幅器への入力光信号の全入力光パワーを検出し、後置光増幅器の出力光信号の全出力光パワーを検出し、これらの検出した入力光信号の各波長の光パワーレベル情報および波長数情報、入力光信号の全入力光パワー、出力光信号の全出力光パワーに基づき後置光増幅器の励起源の発生するパワーを制御し、後置光増幅器における各波長の利得が一定に保たれるように制御するので、1つの分波器を使用して、入力光パワーレベルをモニタして光増幅器の制御を確実に行うことができ、装置規模を増大することなく、上流の光増幅器によって発生するASEの影響を受けない入力光パワーレベルモニタを行うことができる。
【0105】
更に、本発明によれば、光通信ネットワークシステムを構成する各ノード装置が請求項3乃至5のいずれかに記載のノード装置であり、また線形中継用光増幅器が請求項1または2記載の光増幅器であるので、シャットダウンを短時間で完了し、光サージの発生が防止され、誤動作することなく安定した伝送特性を得ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る光増幅器の構成を示すブロック図である。
【図2】図1の光増幅器に使用されている分波器の詳細な構成を示す図である。
【図3】本発明の第2の実施形態に係る光増幅器の構成を示すブロック図である。
【図4】本発明の第3の実施形態に係るノード装置の構成を示すブロック図である。
【図5】本発明の第4の実施形態に係るノード装置の構成を示すブロック図である。
【図6】本発明の第5の実施形態に係るノード装置の構成を示すブロック図である。
【図7】本発明の第6の実施形態に係るノード装置の構成を示すブロック図である。
【図8】本発明の第7の実施形態に係るノード装置の構成を示すブロック図である。
【図9】本発明の第8の実施形態に係るノード装置の構成を示すブロック図である。
【図10】本発明の第9の実施形態に係る光通信ネットワークシステムを構成するOADMリングシステムの構成を示す図である。
【図11】図10に示したOADMリングシステムである光通信ネットワークシステムにおける残留波長の光出力過渡応答特性を示す図である。
【図12】図10に示したOADMリングシステムである光通信ネットワークシステムにおいて波長数変動が起きた場合のOADMノードの前置光増幅器出力パワーの過渡応答を示す図である。
【図13】従来の1波長用光増幅器の構成を示すブロック図である。
【図14】従来の1波長の光通信ネットワークシステムの光増幅器においてASEが除去される様子を説明するための図である。
【図15】従来のWDM伝送方式用の光増幅器の構成を示すブロック図である。
【図16】上流側光増幅器のASEの影響を抑えた従来のWDM伝送方式用光増幅器の構成を示すブロック図である。
【図17】従来のWDM伝送方式用光増幅器の別の構成を示すブロック図である。
【図18】従来のWDM伝送方式用光増幅器の更に別の構成を示すブロック図である。
【符号の説明】
1 光増幅部
11 第1の光増幅部
12 第2の光増幅部
21−26 光分岐器
41−44 光検出器
5,51−53 制御回路
7 分波器
14 合分波器
8a1−16,8b1−16 複数の光検出器
91,92 検出制御回路
120 光部品/制御回路群

Claims (6)

  1. 複数の波長の異なる光信号を増幅する光増幅器であって、
    多重化された複数の波長の異なる入力光信号を分岐する第1の光分岐器と、
    この第1の光分岐器で分岐された一方の光信号を増幅する光増幅部と、
    この光増幅部で増幅された光信号を分岐し、この分岐された一方の光信号を光増幅器の出力光信号として出力する第2の光分岐器と、
    前記第1の光分岐器で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の入力分波信号として出力するとともに、前記第2の光分岐器で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の出力分波信号として出力する分波器と、
    前記分波器からの複数の入力分波信号をそれぞれ受け取り、各入力分波信号の光パワーを検出する第1の複数の光検出器と、
    前記分波器からの複数の出力分波信号をそれぞれ受け取り、各出力分波信号の光パワーを検出する第2の複数の光検出器と、
    前記第1の複数の光検出器からの各入力分波信号の光パワー情報を受け取り、入力光信号の各波長の光パワーレベル情報および波長数情報を検出する第1の検出制御回路と、
    前記第2の複数の光検出器からの各出力分波信号の光パワー情報を受け取り、出力光信号の各波長の光パワーレベル情報および波長数情報を検出する第2の検出制御回路と、
    前記第1の検出制御回路からの入力光信号の各波長の光パワーレベル情報および波長数情報、および第2の検出制御回路からの出力光信号の各波長の光パワーレベル情報および波長数情報に基づき前記光増幅部における各波長の利得が一定に保たれるように制御する制御回路と
    を有することを特徴とする光増幅器。
  2. 複数の波長の異なる光信号を増幅する光増幅器であって、
    多重化された複数の波長の異なる入力光信号を分岐する第1の光分岐器と、
    この第1の光分岐器で分岐された一方の光信号を増幅する第1の光増幅部と、
    この第1の光増幅部で増幅された光信号を分岐する第2の光分岐器と、
    この第2の光分岐器で分岐された一方の光信号を減衰させる光可変減衰器と、
    この光可変減衰器からの減衰した光信号を分岐する第3の光分岐器と、
    この第3の光分岐器で分岐された一方の光信号を増幅する第2の光増幅部と、
    この第2の光増幅部で増幅された光信号を分岐し、この分岐された一方の光信号を光増幅器の出力光信号として出力する第4の光分岐器と、
    前記第1の光分岐器で分岐された他方の光信号を更に分岐する第5の光分岐器と、
    この第5の光分岐器で分岐された一方の光信号を受け取り、入力光信号の全入力光パワーを検出する第1の光検出器と、
    前記第2の光分岐器で分岐された他方の光信号を受け取り、第1の光増幅部からの全出力光パワーを検出する第2の光検出器と、
    前記第3の光分岐器で分岐された他方の光信号を受け取り、前記第2の光増幅部への全入力光パワーを検出する第3の光検出器と、
    前記第4の光分岐器で分岐された他方の光信号を更に分岐する第6の光分岐器と、
    この第6の光分岐器で分岐された一方の光信号を受け取り、前記第2の光増幅部からの全出力光パワーを検出する第4の光検出器と、
    前記第5の光分岐器で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の入力分波信号として出力するとともに、前記第6の光分岐器で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の出力分波信号として出力する分波器と、
    前記分波器からの複数の入力分波信号をそれぞれ受け取り、各入力分波信号の光パワーを検出する第5の複数の光検出器と、
    前記分波器からの複数の出力分波信号をそれぞれ受け取り、各出力分波信号の光パワーを検出する第6の複数の光検出器と、
    前記第5の複数の光検出器からの各入力分波信号の光パワー情報を受け取り、入力光信号の各波長の光パワーレベル情報および波長数情報を検出する第1の検出制御回路と、
    前記第6の複数の光検出器からの各出力分波信号の光パワー情報を受け取り、出力光信号の各波長の光パワーレベル情報および波長数情報を検出する第2の検出制御回路と、
    前記第1の検出制御回路からの入力光信号の各波長の光パワーレベル情報および波長数情報、前記第1の光検出器で検出した入力光信号の全入力光パワーおよび前記第2の光検出器で検出した第1の光増幅部からの全出力光パワーに基づき前記第1の光増幅部における各波長の利得が一定に保たれるように制御する第1の制御回路と、
    前記第2の検出制御回路からの出力光信号の各波長の光パワーレベル情報および波長数情報、前記第3の光検出器で検出した第2の光増幅部への全入力光パワーおよび前記第4の光検出器で検出した第2の光増幅部からの全出力光パワーに基づき前記第2の光増幅部における各波長の利得が一定に保たれるように制御する第2の制御回路と、
    前記第2の検出制御回路からの出力光信号の各波長の光パワーレベル情報および波長数情報に基づき前記第2の光増幅部の入力パワーの変化を補償するとともに各波長の出力パワーレベルが一定になるように前記光可変減衰器の減衰量を可変制御する第3の制御回路と
    を有することを特徴とする光増幅器。
  3. 光通信ネットワークシステムの各ノードに使用され、各ノードにおいて光ファイバを介して入力される多重化された複数の波長の異なる光信号を増幅する前置光増幅器および該前置光増幅器の出力に接続され、前記前置光増幅器で増幅された光信号の分岐および挿入を含む処理を行う光分岐挿入装置を有するノード装置であって、
    前記前置光増幅器は、
    多重化された複数の波長の異なる入力光信号を分岐する第1の光分岐器と、
    この第1の光分岐器で分岐された一方の光信号を増幅する光増幅部と、
    この光増幅部で増幅された光信号を分岐する第2の光分岐器と、
    前記第1の光分岐器で分岐された他方の光信号を更に分岐する第3の光分岐器と、
    前記第3の光分岐器で分岐された一方の光信号を受け取り、入力光信号の全入力光パワーを検出する第1の光検出器と、
    前記第2の光分岐器で分岐された前記光増幅部からの出力光信号を受け取り、該出力光信号の全出力光パワーを検出する第2の光検出器とを有し、
    前記光分岐挿入装置は、
    前記第3の光分岐器で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の入力分波信号として出力するとともに、前記第2の光分岐器で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の出力分波信号として出力する分波器と、
    前記分波器からの複数の入力分波信号をそれぞれ受け取り、各入力分波信号の光パワーを検出する第3の複数の光検出器と、
    前記第3の複数の光検出器からの各入力分波信号の光パワー情報を受け取り、入力光信号の各波長の光パワーレベル情報および波長数情報を検出する検出制御回路と、
    前記分波器から出力される複数の出力分波信号を受け取り、光信号の分岐および挿入を含む処理を行う光分岐挿入部とを有し、
    前記前置光増幅器は、
    前記第1の光検出器で検出した入力光信号の全入力光パワー、前記第2の光検出器で検出した出力光信号の全出力光パワーおよび前記検出制御回路からの入力光信号の各波長の光パワーレベル情報および波長数情報に基づき前記光増幅部における各波長の利得が一定に保たれるように制御する制御回路と
    を更に有することを特徴とするノード装置。
  4. 光通信ネットワークシステムの各ノードに使用され、各ノードにおいて光ファイバを介して入力される多重化された複数の波長の異なる光信号を増幅する前置光増幅器および該前置光増幅器の出力に接続され、前記前置光増幅器で増幅された光信号の分岐および挿入を含む処理を行う光分岐挿入装置を有するノード装置であって、
    前記前置光増幅器は、
    多重化された複数の波長の異なる入力光信号を分岐する第1の光分岐器と、
    この第1の光分岐器で分岐された一方の光信号を増幅する第1の光増幅部と、
    この第1の光増幅部で増幅された光信号を分岐する第2の光分岐器と、
    この第2の光分岐器で分岐された一方の光信号を減衰させる光可変減衰器と、
    この光可変減衰器からの減衰された光信号を分岐する第3の光分岐器と、
    この第3の光分岐器で分岐された一方の光信号を増幅する第2の光増幅部と、
    この第2の光増幅部で増幅された光信号を分岐する第4の光分岐器と、
    前記第1の光分岐器で分岐された他方の光信号を更に分岐する第5の光分岐器と、
    この第5の光分岐器で分岐された一方の光信号を受け取り、入力光信号の全入力光パワーを検出する第1の光検出器と、
    前記第2の光分岐器で分岐された他方の光信号を受け取り、第1の光増幅部からの全出力光パワーを検出する第2の光検出器と、
    前記第3の光分岐器で分岐された他方の光信号を受け取り、前記第2の光増幅部への全入力光パワーを検出する第3の光検出器と、
    前記第4の光分岐器で分岐された一方の光信号を受け取り、前記第2の光増幅部からの全出力光パワーを検出する第4の光検出器とを有し、
    前記光分岐挿入装置は、
    前記第5の光分岐器で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の入力分波信号として出力するとともに、前記第4の光分岐器で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の出力分波信号として出力する分波器と、
    前記分波器からの複数の入力分波信号をそれぞれ受け取り、各入力分波信号の光パワーを検出する第5の複数の光検出器と、
    前記第5の複数の光検出器からの各入力分波信号の光パワー情報を受け取り、入力光信号の各波長の光パワーレベル情報および波長数情報を検出する検出制御回路と、
    前記分波器から出力される複数の出力分波信号を受け取り、これにより第2の光増幅部の各波長の出力光パワーレベルをモニタして出力するとともに、光信号の分岐および挿入を含む処理を行う光分岐挿入部とを有し、
    前記前置光増幅器は、
    前記検出制御回路からの入力光信号の各波長の光パワーレベル情報および波長数情報、前記第1の光検出器で検出した入力光信号の全入力光パワーおよび前記第2の光検出器で検出した第1の光増幅部からの全出力光パワーに基づき前記第1の光増幅部における各波長の利得が一定に保たれるように制御する第1の制御回路と、
    前記検出制御回路からの入力光信号の各波長の光パワーレベル情報および波長数情報、前記第3の光検出器で検出した第2の光増幅部への全入力光パワーおよび前記第4の光検出器で検出した第2の光増幅部からの全出力光パワーに基づき前記第2の光増幅部における各波長の利得が一定に保たれるように制御する第2の制御回路と、
    前記光分岐挿入部からの第2の光増幅部の各波長の出力光パワーレベルおよび前記第3の光検出器からの第2の光増幅部への全入力光パワーに基づき前記第2の光増幅部の入力パワーの変化を補償するとともに各波長の出力パワーレベルが一定になるように前記光可変減衰器の減衰量を可変制御する第3の制御回路と
    を更に有することを特徴とするノード装置。
  5. 光通信ネットワークシステムの各ノードに使用され、各ノードにおいて光ファイバを介して入力される多重化された複数の波長の異なる光信号に対して光信号の分岐および挿入を含む処理を行う光分岐挿入装置および該光分岐挿入装置の出力に接続され、該光分岐挿入装置からの光信号を増幅する後置光増幅器を有するノード装置であって、
    前記後置光増幅器は、
    前記光分岐挿入装置から出力される光信号を分岐する第1の光分岐器と、
    この第1の光分岐器で分岐された一方の光信号を増幅する光増幅部と、
    この光増幅部で増幅された光信号を分岐して出力する第2の光分岐器と、
    前記第1の光分岐器で分岐された他方の光信号を更に分岐する第3の光分岐器と、
    前記第3の光分岐器で分岐された一方の光信号を受け取り、前記光増幅部への入力光信号の全入力光パワーを検出する第1の光検出器と、
    前記第2の光分岐器で分岐された前記光増幅部からの出力光信号を受け取り、該出力光信号の全出力光パワーを検出する第2の光検出器とを有し、
    前記光分岐挿入装置は、
    光ファイバを介して入力される多重化された複数の波長の異なる光信号に対して分岐および挿入を含む処理を行う光分岐挿入部と、
    この光分岐挿入部から出力される光信号を受け取り、この光信号の各波長を合波して、入力光信号として前記後置光増幅器の前記第1の光分岐器に供給するとともに、前記第3の光分岐器で分岐された他方の光信号を受け取り、この光信号を各波長に分波して、複数の入力分波信号として出力する合分波器と、
    この合分波器からの複数の入力分波信号をそれぞれ受け取り、各入力分波信号の光パワーを検出する複数の光検出器と、
    この複数の光検出器からの各入力分波信号の光パワー情報を受け取り、入力光信号の各波長の光パワーレベル情報および波長数情報を検出する検出制御回路とを有し、
    前記後置光増幅器は、
    前記第1の光検出器で検出した入力光信号の全入力光パワー、前記第2の光検出器で検出した出力光信号の全出力光パワーおよび前記検出制御回路からの入力光信号の各波長の光パワーレベル情報および波長数情報に基づき前記光増幅部における各波長の利得が一定に保たれるように制御する制御回路
    を更に有することを特徴とするノード装置。
  6. 複数のノード装置を光ファイバで直列接続して光伝送路を形成して、多重化された複数の波長の異なる光信号を伝送するとともに、各ノード装置の前後に線形中継用光増幅器を設けた光通信ネットワークシステムであって、
    前記ノード装置は、請求項3乃至5のいずれかに記載のノード装置であり、
    前記線形中継用光増幅器は、請求項1または2記載の光増幅器であること
    を特徴とする光通信ネットワークシステム。
JP2000000507A 2000-01-05 2000-01-05 光増幅器、ノード装置および光通信ネットワークシステム Expired - Fee Related JP3576440B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000000507A JP3576440B2 (ja) 2000-01-05 2000-01-05 光増幅器、ノード装置および光通信ネットワークシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000000507A JP3576440B2 (ja) 2000-01-05 2000-01-05 光増幅器、ノード装置および光通信ネットワークシステム

Publications (2)

Publication Number Publication Date
JP2001197010A JP2001197010A (ja) 2001-07-19
JP3576440B2 true JP3576440B2 (ja) 2004-10-13

Family

ID=18529851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000000507A Expired - Fee Related JP3576440B2 (ja) 2000-01-05 2000-01-05 光増幅器、ノード装置および光通信ネットワークシステム

Country Status (1)

Country Link
JP (1) JP3576440B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100605899B1 (ko) 2004-01-09 2006-08-02 삼성전자주식회사 파장 주입 방식을 사용한 파장분할 다중방식 자기치유수동형 광가입자망
JP2006196938A (ja) * 2005-01-11 2006-07-27 Kddi Corp 光ネットワークシステム
CN101449494B (zh) * 2006-05-25 2012-06-06 三菱电机株式会社 光中继装置以及光中继传输***
JP4806640B2 (ja) * 2007-01-12 2011-11-02 日本放送協会 光伝送装置
JP5002538B2 (ja) * 2008-06-05 2012-08-15 株式会社日立製作所 光分岐装置
JP5347363B2 (ja) * 2008-07-31 2013-11-20 富士通株式会社 Wdm光伝送システムおよびその制御方法
JP5617549B2 (ja) * 2010-11-12 2014-11-05 富士通オプティカルコンポーネンツ株式会社 光伝送装置及び光伝送方法
JP6366257B2 (ja) * 2013-11-15 2018-08-01 三菱電機株式会社 光増幅装置、光通信システムおよび光増幅方法

Also Published As

Publication number Publication date
JP2001197010A (ja) 2001-07-19

Similar Documents

Publication Publication Date Title
JP5708794B2 (ja) Oadm機能をもつ分岐装置及び波長多重光ネットワークシステム並びにその方法
CA2789653C (en) Flexible branching unit and system including the same
JP4920489B2 (ja) 光分岐挿入装置
US6842562B2 (en) Optical add/drop node and method
JP6617404B2 (ja) スイッチャブル光アンプ及び光伝送装置
US9166679B2 (en) Optical amplification apparatus, method for controlling same, optical receiver station, and optical transmission system
JP4908079B2 (ja) 光伝送装置および光分岐挿入装置
WO2012053320A1 (ja) 励起光分配装置、励起光分配方法、光増幅システム及びノード装置
JP5887698B2 (ja) 光合分岐装置及び光合分岐方法
JP2008278182A (ja) 信号光を転送するノードの制御装置
JP6455297B2 (ja) 光増幅器、光伝送装置、及び光中継装置
JP3576440B2 (ja) 光増幅器、ノード装置および光通信ネットワークシステム
JP2001119351A (ja) 複数帯域光増幅器
EP1240736B1 (en) Per-channel optical amplification using saturation mode
US11128380B2 (en) Signal light interruption detection device, optical amplifier, optical wavelength multiplex transmission device, and optical wavelength multiplex transmission system
JPH09274206A (ja) 光増幅装置および線形中継光増幅伝送装置
JP4246644B2 (ja) 光受信器及び光伝送装置
JP2000174701A (ja) 光切替回路
JP2004274113A (ja) 波長多重光伝送システムおよび光信号伝送制御方法
JP6537285B2 (ja) 光伝送装置、光伝送路の正常性判定方法、及び波長多重光通信システム
JP5617510B2 (ja) 光ノード及び光通信方法
JP2000312185A (ja) 波長多重光伝送用光中継増幅器およびこれを用いた波長多重光伝送装置
JP3885390B2 (ja) 光伝送監視装置および光伝送システム
JPH10336118A (ja) 光直接増幅器
US20040109686A1 (en) Architecture for metropolitan dense wavelength division multiplex network with all-optical reference node

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees