JP3574905B2 - How to use solidified coal ash - Google Patents

How to use solidified coal ash Download PDF

Info

Publication number
JP3574905B2
JP3574905B2 JP25171694A JP25171694A JP3574905B2 JP 3574905 B2 JP3574905 B2 JP 3574905B2 JP 25171694 A JP25171694 A JP 25171694A JP 25171694 A JP25171694 A JP 25171694A JP 3574905 B2 JP3574905 B2 JP 3574905B2
Authority
JP
Japan
Prior art keywords
coal ash
solidified
water
granules
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25171694A
Other languages
Japanese (ja)
Other versions
JPH08113777A (en
Inventor
功二 須網
宏二 川崎
秀則 小寺
豊 長谷川
寛通 近藤
辰彦 柳瀬
雅彦 三浦
正典 尾関
孝 中村
正己 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Chubu Electric Power Co Inc
Original Assignee
Taisei Corp
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Chubu Electric Power Co Inc filed Critical Taisei Corp
Priority to JP25171694A priority Critical patent/JP3574905B2/en
Publication of JPH08113777A publication Critical patent/JPH08113777A/en
Application granted granted Critical
Publication of JP3574905B2 publication Critical patent/JP3574905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、産業廃棄物の石炭灰を有効利用して擁壁の裏込め材,盛土材,地質改良用砂代替材等の土質材料として使用する石炭灰固化物の利用方法に関する。
【0002】
【従来の技術】
近年、地盤や路盤の材料として使用される砂および砕石や砂利等のレキ材が不足しているため代替材料が要望されている。一方、主に電力産業から生まれる石炭灰はそのほとんどが埋立処分され、処分地の確保が困難になりつつある。また、埋立て材としてそのまま使用すると透水性が非常に悪く種々の弊害が生じている。
【0003】
【発明が解決しようとする課題】
以上の現状から産業廃棄物である前記石炭灰を有効利用することが出来れば埋立用地の確保の問題点や砕石,砂,砂利等の採掘に伴う環境破壊等の問題点が解決される。しかしながら、地盤および路盤の土質材料の代替品として利用する場合には製造が容易でコストが安いことは勿論必要であるが、土質材料としての十分な圧縮強度や透水性を有し、かつ取り扱い易いことが必要である。なお、従来でも石炭灰にセメントを混合した石炭灰固化物があったが、造粉物の強度や透水性に問題があり、軽量コンクリートの骨材や路盤材の一部にのみ用いられていたに過ぎない。
【0004】
本発明は、以上の従来の困難な事情を解決するために創案されたものであり、一般に使用されているドラム式や皿型の造粒機によって高能率で製作され、砕石,砂,砂利等の土質材料に必要な強度,透水性を十分に有し、軽量で取り扱いも容易であり、従って裏込め材として使用した時に土圧を軽減できる石炭灰固化物の利用方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、目的を達成するために、微粒子の石炭灰に重量で2[%]以上30[%]以下のセメントを主体とした結合物と必要に応じて水を混合したものを造粒機に投入し水を添加しながら所定の造粒よって形成された粒径50[mm]以下の粒状体又は該粒状体を破砕してなる石炭灰固化物を土質材料の代替品として使用するようにした石炭灰固化物の利用方法を特徴とするものである。なお、初期強度を必要とする場合には石膏を1[%]以上10[%]以下を併用する。セメント粉末等が2[%]未満ではペレットの強度が不十分であり、30[%]を超えると造粒されたペレットの穴が少なくなり、透水性,保水性が低下する。造粒機投入前に水を混合するのは発塵防止のためである。具体的に、前記石炭灰固化物は裏込め材又は盛土材或いはドレーン材乃至コンパクション材として使用される。なお、造粒機としてはドラム型又は皿型の物を使用する。
【0006】
【作用】
微粒子の石炭灰に適量のセメント粉末と必要に応じて水を混ぜたものを回転するドラム式の造粒機に投入する。この原料粉体は造粒機内で回転されながらドラム内に散水される水と接触し小粒状の球形体になり、かつ原料粉体が付着し次第に粒径を増し所定の粒径の球形体が造粒される。この球形体を養生硬化し、そのまま又は破砕して50[mm]以下に分級し石炭灰固化物9が製作される。この石炭灰固化物は砂やレキ材に較べて単位体積重量が小さく、かつ圧縮強度や透水性についても砂やレキ材と同等又はそれ以上の値を有するため、地盤および路盤の土質材料の代替品として使用され、例えば裏込め材として使用すれば土圧が小さく設計上有利である。更に盛土材およびドレーン材等として十分に利用される。本発明の石炭灰固化物は換言すれば、裏込め土圧が小さいのでコンクリート擁壁の厚みを薄く軽減することも出来る。
【0007】
【実施例】
以下、本発明の実施例を図面に基づき説明する。図1は本発明に係わる石炭灰固化物の造粒方法を説明するための造粒工程図、図2は本発明品と従来品の粒径と通過質量百分率との関係を示す線図、図3は本発明品と従来品の透水性を示す相関図、図4は土圧を測定するため擁壁の形式を示す断面図、図5は本発明品と従来品の擁壁の高さと土圧と関係を示す線図、図6乃至図12は本発明品の利用方法の具体例を示す断面図である。
【0008】
まず、図1により石炭灰固化物を転動造粒する造粒工程を説明する。まず、粒子サイズが1[mm]以下の石炭灰1と重量で2[%]以上30[%]以下のセメント粉末2とを混合し原料粉末3を作る。これを例えばドラム式造粒機のドラム内に供給する。原料粉末は散水4により生成し含水率の高い小粒の粒子が形成される。これに原料粉末3が付着し粒径が増大し、造粒機のドラム内で転動しながら圧縮され適宜粒径の造粒物6が形成される。この造粒物6を一定期間養生7により養生硬化した後、ペレットのまま又は破砕10とし分級8でふるい分けし粒径50[mm]以下のものに分級する。前記範囲外のものは戻され、原料粉末3と混合して再使用される。前記範囲に分級された造粒物6が石炭灰固化物9となる。
【0009】
前記説明において、散水4の比率が明確になっていないが、造粒物を得るための適正な水量である15[%]乃至25[%]を散布する。これは同時にセメントの理論水和必要量を満足すると共にペレット強度を保持し得る水セメント比を有するに必要な水量である。石炭灰1に混合するセメント粉末2の重量を2[%]から30[%]としたのは2[%]以下では固まりが不十分となり、30[%]以上では造粒物のペレット9の孔(間隙比)が少なくなり過ぎて透水性が小さくなるためである。また、石炭灰固化物の粒径を50[mm]以下としたのは、透水性と締め固め性を考慮して定めたものである。
【0010】
前記したように、微粒子の石炭灰1と重量で2[%]以上30[%]以下のセメント粉末2を混合した原料粉末3を造粒機内に投入する。これにより小粒の球形体が出来る。この球形体が散水され、含水率が高くなり、原料粉末3がこの球形体に付着し粒径が増大する。球形体はドラム内で回転することにより圧縮され、適当な硬度に固められ造粒物6となり造粒機の出口フードから排出され養生手段16側に送られる。以上により、前記の石炭灰固化物9が形成される。
【0011】
次に、本実施例の石炭灰固化物の物性について説明する。表1は以下の説明に使用される本実施例の石炭灰固化物と砕石との粒度調整方法,セメント配合率および用途を示した表である。
【0012】
【表1】

Figure 0003574905
【0013】
表1において石炭灰固化物はNO1−1,NO1−2,NO2−1,NO2−2,NO3−1,NO3−2の6種類のものからなる。これ等は粒度調整とセメント配合率の差により区別される。一方、NO4,NO5は石炭灰固化物に対する比較のために用意した試料でありNO4は切り込み砕石を示し、NO5は混合砕石からなり粒度調整されたものである。NO1とNO4は裏込め材としての性能を、NO2とNO3とNO5はドレーン材としての性能を室内試験によって評価したものである。
【0014】
図2は表1の材料の粒度分布を示したものである。横軸に粒径[mm]を示し、縦軸に通過質量百分率[%]を示した。なお、NO4はNO1に粒度分布を合わせるように、また、NO5はNO2に粒度分布を合わせるように粒度調整を行った。
【0015】
【表2】
Figure 0003574905
【0016】
表2は三軸試験結果における単位体積重量γと、内部摩擦角φと、粘着力cを通常の土圧の算定に用いる土質定数として示したものである。0.2乃至1.2EC(1.0EC=5.6cmkgf/cm)で締め固めされた石炭灰固化物のNO1−1とNO1−2とNO4の砕石と盛土とが比較されて示されている。なお、突固めによる土の締め固め試験方法は土質工学会基準JSF M 111−1990のP201に示され、土の圧密排水(CD)三軸圧縮試験方法はJSF T 524−1990のP373にそれぞれ掲載されている。表2に示すように、単位体積重量γは本実施例の造粒石炭灰は従来の砂や砕石に較べて小さく取り扱い易いことが分かる。また、内部摩擦角φは本実施例の造粒石炭灰はセメント配合率に関係なく盛土材に用いられるレキ材や砂と同等以上の値を示している。
【0017】
図3は締め固めエネルギ0.2乃至1.0ECで作成された供試体(表1に示す)の透水試験の結果を示すものであり、横軸に透水係数K15(cm/sec)を示し、縦軸に間隙比eを示したものである。なお、土の透水試験方法はJSF T 311−1990のP271に示されている。図示のように、セメント配合率が10[%]のNO2−2,NO3−2では締め固めエネルギが1.0ECであっても透水係数が10−3[cm/sec]を有することが示されている。従って、セメント粉末の混合比が2[%]以上30[%]以下のものでは締め固めエネルギを適宜に設定することにより土質材料として必要な透水性を得ることが出来る。
【0018】
図4は本実施例の造粒石炭灰NO1(表1)と粗骨材,砕石,砂利等のGravelとSand(砂)との土圧(Earth Pvessure)を比較するために想定した擁壁11の形式を示し、図示のように擁壁11は図4に示す寸法の台形状のものからなり供試体12が密接する。図5は横軸に擁壁30の高さ(Wall Height)をとり、縦軸に土圧(Earth Pressure)を示したものである。図示のように本実施例の造粒石炭灰はSand,Gravel等をすべて下廻り、土圧低減効果があることが分かる。
【0019】
以上のように本実施例の造粒石炭灰(石炭灰固化物)は単位体積重量も小さく、耐すべり性を表示する内部摩擦角も従来品と殆ど変りなく、透水率も同等であり土圧低減効果もあることから裏込め材や盛土材やドレーン材に適用される。図6乃至図12はその具体例を示すものである。
【0020】
図6は裏込め材13に本実施例を使用したものである。図7は道路の盛土14として、図8は鉄道盛土15として適用される。図9は家屋や高層ビル,工場等の設置される造成地盛土16に適用したものであり、図10は河川堤防17として、図11は海岸堤防18としてそれぞれ適用したものである。また、図12はサンドドレーン19に本実施例を適用した状態を示すものである。
【0021】
【発明の効果】
本発明によれば、次のような顕著な効果を奏する。
1)適正な強度と所定の透水係数を得ることが出来るため、裏込め材,盛土,ドレーン材乃至コンパクション材として広範囲に使用され、廃棄物を有効に利用することが出来る。
2)本発明の石炭灰固化物は一般の造粒機により簡単に製作されるため安価に実施出来る。
3)単位体積重量が小さく粉体でないため取り扱い易い。
4)産業廃棄物である石炭灰が大量に使用されるため捨て場も不要となり環境破壊の防止に大きく貢献する。
【図面の簡単な説明】
【図1】本発明に係わる石炭灰固化物の造粒方法を説明するための造粒工程図。
【図2】本発明品と従来品の粒径加積曲線を示す線図。
【図3】本発明品と従来品の透水性を示す相関図。
【図4】土圧測定用の擁壁の形式を示す断面図。
【図5】本発明品と従来品の土圧特性を示す線図。
【図6】裏込め材としての使用例を示す断面図。
【図7】道路盛土としての使用例を示す断面図。
【図8】鉄道盛土としての使用例を示す断面図。
【図9】造成地盛土としての使用例を示す断面図。
【図10】河川堤防としての使用例を示す断面図。
【図11】海岸堤防としての使用例を示す断面図。
【図12】サンドドレーンとしての使用例を示す断面図。
【符号の説明】
1 石炭灰
2 セメント粉末
3 原料粉末
4 散水
6 造粒物
7 分級
8 養生
9 ペレット
10 破砕
11 擁壁
12 供試体
13 裏込め材
14 道路盛土
15 鉄道盛土
16 造成地盛土
17 河川堤防
18 海岸堤防
19 サンドドレーン[0001]
[Industrial applications]
The present invention relates to a method for utilizing solidified coal ash used as a soil material such as a backfill material for a retaining wall, an embankment material, and a sand substitute for improving geological properties, by effectively utilizing coal ash of industrial waste.
[0002]
[Prior art]
In recent years, alternative materials have been demanded due to a shortage of sand and crushed stones and gravel materials used as ground and roadbed materials. On the other hand, coal ash mainly generated from the electric power industry is mostly landfilled, making it difficult to secure landfill sites. In addition, when used directly as a landfill material, the water permeability is very poor, causing various adverse effects.
[0003]
[Problems to be solved by the invention]
From the above situation, if the coal ash, which is industrial waste, can be effectively used, problems of securing landfill sites and problems of environmental destruction accompanying mining of crushed stone, sand, gravel and the like will be solved. However, when it is used as a substitute for the soil material of the ground and the roadbed, it is necessary not only to be easy to manufacture and to reduce the cost, but also to have sufficient compressive strength and water permeability as the soil material, and to be easy to handle. It is necessary. In the past, there was a coal ash solidified by mixing cement with coal ash, but there was a problem with the strength and water permeability of the powdered material, and it was only used for a part of lightweight concrete aggregate and roadbed material It's just
[0004]
The present invention has been made in order to solve the above-mentioned conventional difficult situation, and is manufactured with high efficiency by a commonly used drum type or dish type granulator, and is made of crushed stone, sand, gravel and the like. The purpose is to provide a method of using coal ash solidified material that has sufficient strength and water permeability required for soil materials, is lightweight and easy to handle, and can reduce earth pressure when used as backfill material And
[0005]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION In order to achieve the object, the present invention provides a granulator obtained by mixing fine coal ash with a binder mainly composed of cement of 2% to 30% by weight and water as required. And granules having a particle diameter of 50 [mm] or less formed by predetermined granulation while adding water and solidified coal ash obtained by crushing the granules are used as substitutes for soil materials. It is characterized by the method of using the solidified coal ash. In addition, when the initial strength is required, 1% or more and 10% or less of gypsum are used together. If the cement powder or the like is less than 2 [%], the strength of the pellet is insufficient, and if it exceeds 30 [%], holes in the granulated pellet are reduced, and the water permeability and water retention are reduced. The reason for mixing the water before putting in the granulator is to prevent dust generation. Specifically, the solidified coal ash is used as a backfill material, an embankment material, a drain material or a compaction material. In addition, a drum type or a dish type thing is used as a granulator.
[0006]
[Action]
A mixture of fine coal ash and an appropriate amount of cement powder and, if necessary, water is charged into a rotating drum type granulator. The raw material powder comes into contact with the water sprinkled in the drum while being rotated in the granulator, and forms a small spherical shape, and the particle size gradually increases as the raw material powder adheres, and a spherical shape having a predetermined particle size is formed. Granulated. The spherical body is cured and hardened, and is classified as it is or crushed to 50 [mm] or less to produce a solidified coal ash 9. This solidified coal ash has a lower unit volume weight than sand and wrought wood, and has compressive strength and water permeability equal to or higher than that of sand and wrought wood. When used as a backing material, for example, the earth pressure is small, which is advantageous in design. Further, it is sufficiently used as an embankment material and a drain material. In other words, the solidified coal ash of the present invention can reduce the thickness of the concrete retaining wall thinly because the backfill earth pressure is small.
[0007]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a granulation process diagram for explaining a method of granulating a coal ash solidified product according to the present invention, and FIG. 2 is a diagram showing the relationship between the particle size of the product of the present invention and the conventional product and the percentage of passing mass. 3 is a correlation diagram showing the water permeability of the product of the present invention and the conventional product, FIG. 4 is a cross-sectional view showing the type of retaining wall for measuring earth pressure, and FIG. 5 is the height and soil of the retaining wall of the present product and the conventional product. FIGS. 6 to 12 are sectional views showing a specific example of a method of using the product of the present invention.
[0008]
First, a granulation step of tumbling granulated coal ash will be described with reference to FIG. First, raw material powder 3 is prepared by mixing coal ash 1 having a particle size of 1 [mm] or less and cement powder 2 having a weight of 2 [%] to 30 [%]. This is supplied, for example, into the drum of a drum type granulator. The raw material powder is formed by the water spray 4, and small particles having a high water content are formed. The raw material powder 3 adheres to this, and the particle size increases, and is compressed while rolling in the drum of the granulator to form a granulated material 6 having an appropriate particle size. After the granulated material 6 is cured and cured by the curing 7 for a certain period of time, it is classified into a pellet having a particle size of 50 [mm] or less by sieving as a pellet or crushing 10 and classifying 8. Those outside the above range are returned, mixed with the raw material powder 3 and reused. The granulated material 6 classified into the above range becomes the solidified coal ash 9.
[0009]
In the above description, although the ratio of the water spray 4 is not clear, 15 [%] to 25 [%], which is an appropriate amount of water for obtaining granules, is sprayed. This is the amount of water required to simultaneously satisfy the theoretical hydration requirements of the cement and to have a water-cement ratio that can maintain pellet strength. When the weight of the cement powder 2 mixed with the coal ash 1 is changed from 2 [%] to 30 [%], if the weight is 2 [%] or less, the agglomeration becomes insufficient. This is because the pores (gap ratio) become too small and the water permeability becomes small. The reason why the particle size of the solidified coal ash is set to 50 [mm] or less is determined in consideration of water permeability and compaction properties.
[0010]
As described above, the raw material powder 3 obtained by mixing the fine coal ash 1 and the cement powder 2 having a weight of 2% to 30% by weight is charged into the granulator. This produces a small spherical body. The sphere is sprinkled with water to increase the water content, and the raw material powder 3 adheres to the sphere and the particle size increases. The spherical body is compressed by rotating in a drum, and is hardened to an appropriate hardness to form granules 6, which are discharged from the outlet hood of the granulator and sent to the curing means 16 side. Thus, the solidified coal ash 9 is formed.
[0011]
Next, the physical properties of the solidified coal ash of the present embodiment will be described. Table 1 is a table showing the method of adjusting the particle size of the solidified coal ash and the crushed stone, the cement mixing ratio, and the application used in the following description.
[0012]
[Table 1]
Figure 0003574905
[0013]
In Table 1, the solidified coal ash consists of six types: NO1-1, NO1-2, NO2-1, NO2-2, NO3-1, and NO3-2. These are distinguished by the difference between the particle size adjustment and the cement mixing ratio. On the other hand, NO4 and NO5 are samples prepared for comparison with the solidified coal ash, NO4 indicates cut crushed stones, and NO5 is made of mixed crushed stones and the particle size is adjusted. NO1 and NO4 evaluated the performance as a backfill material, and NO2, NO3 and NO5 evaluated the performance as a drain material by a laboratory test.
[0014]
FIG. 2 shows the particle size distribution of the materials in Table 1. The horizontal axis indicates the particle diameter [mm], and the vertical axis indicates the passing mass percentage [%]. The particle size of NO4 was adjusted to match the particle size distribution to NO1, and the particle size of NO5 was adjusted to match the particle size distribution to NO2.
[0015]
[Table 2]
Figure 0003574905
[0016]
Table 2 shows the unit volume weight γ, the internal friction angle φ, and the adhesive force c in the results of the triaxial test as soil constants used for calculation of ordinary earth pressure. NO1-1, NO1-2 and NO4 crushed coal ash compacted at 0.2 to 1.2 EC (1.0 EC = 5.6 cm kgf / cm 3 ) and embankment are shown in comparison. I have. The soil compaction test method by compaction is shown in P201 of JSF M 111-1990, and the soil compaction drainage (CD) triaxial compression test method is shown in P373 of JSF T 524-1990. Have been. As shown in Table 2, it can be seen that the unit weight γ of the granulated coal ash of this example is smaller than conventional sand or crushed stone and is easy to handle. Further, the internal friction angle φ shows a value equal to or more than that of the refractory material or sand used for the embankment material regardless of the cement mixing ratio of the granulated coal ash of the present embodiment.
[0017]
FIG. 3 shows a result of a water permeability test of a test piece (shown in Table 1) prepared with a compaction energy of 0.2 to 1.0 EC, and the horizontal axis shows a water permeability coefficient K15 (cm / sec). The vertical axis shows the gap ratio e. The soil permeability test method is shown in P271 of JSF T 311-1990. As shown in the figure, NO2-2 and NO3-2 having a cement mixing ratio of 10 [%] have a water permeability of 10 −3 [cm / sec] even if the compaction energy is 1.0 EC. ing. Therefore, when the mixing ratio of the cement powder is 2% or more and 30% or less, water permeability necessary as a soil material can be obtained by appropriately setting the compaction energy.
[0018]
FIG. 4 is a retaining wall 11 assumed for comparing the earth pressure (Earth Pessure) between the granulated coal ash NO1 (Table 1) of the present embodiment and Gravel and Sand (sand) of coarse aggregate, crushed stone, gravel and the like. As shown, the retaining wall 11 has a trapezoidal shape having the dimensions shown in FIG. FIG. 5 shows the height (Wall Height) of the retaining wall 30 on the horizontal axis, and shows the earth pressure on the vertical axis. As shown in the figure, the granulated coal ash of this embodiment is lower than Sand, Gravel and the like, and it can be seen that there is an effect of reducing the earth pressure.
[0019]
As described above, the granulated coal ash (solidified coal ash) of this example has a small unit volume weight, the internal friction angle indicating slip resistance is almost the same as the conventional product, the water permeability is the same, and the earth pressure is low. Since it has a reduction effect, it is applied to backfill materials, embankment materials and drain materials. 6 to 12 show specific examples.
[0020]
FIG. 6 shows the case where this embodiment is used for the backfill material 13. 7 is applied as a road embankment 14 and FIG. 8 is applied as a railway embankment 15. FIG. 9 shows an example in which the present invention is applied to an embankment 16 to be installed in a house, a high-rise building, a factory, and the like. FIG. 10 shows an example in which the present invention is applied to a river embankment 17 and FIG. FIG. 12 shows a state in which this embodiment is applied to the sand drain 19.
[0021]
【The invention's effect】
According to the present invention, the following remarkable effects are obtained.
1) Since an appropriate strength and a predetermined permeability can be obtained, it is widely used as a backfill material, an embankment, a drain material or a compaction material, and can effectively utilize waste.
2) The solidified coal ash of the present invention can be manufactured at low cost because it is easily manufactured by a general granulator.
3) It is easy to handle because it has a small unit weight and is not a powder.
4) Since coal ash, which is industrial waste, is used in large quantities, no dump site is required, which greatly contributes to the prevention of environmental destruction.
[Brief description of the drawings]
FIG. 1 is a granulation process diagram for explaining a method of granulating a solidified coal ash according to the present invention.
FIG. 2 is a diagram showing particle size accumulation curves of a product of the present invention and a conventional product.
FIG. 3 is a correlation diagram showing water permeability of a product of the present invention and a conventional product.
FIG. 4 is a sectional view showing a type of a retaining wall for earth pressure measurement.
FIG. 5 is a diagram showing earth pressure characteristics of a product of the present invention and a conventional product.
FIG. 6 is a sectional view showing an example of use as a backfill material.
FIG. 7 is a sectional view showing an example of use as a road embankment.
FIG. 8 is a sectional view showing an example of use as a railway embankment.
FIG. 9 is a sectional view showing an example of use as an embankment.
FIG. 10 is a sectional view showing an example of use as a river embankment.
FIG. 11 is a cross-sectional view showing an example of use as a coastal embankment.
FIG. 12 is a sectional view showing an example of use as a sand drain.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Coal ash 2 Cement powder 3 Raw material powder 4 Sprinkling 6 Granulated material 7 Classification 8 Curing 9 Pellet 10 Crushing 11 Retaining wall 12 Specimen 13 Backfilling material 14 Road embankment 15 Railway embankment 16 Construction embankment 17 River embankment 18 Coastal embankment 19 Sand drain

Claims (2)

微粒子の石炭灰に重量で2[%]以上30[%]以下のセメントを主体とした結合物と必要に応じて水を混合したものを造粒機に投入し、
重量で15[%]乃至25[%]となるように水を添加しながら所定の粒状に形成された粒径50[mm]以下の粒状体又は該粒状体を破砕してなる石炭灰固化物を、0.2乃至1.0EC(1.0EC=5.6cmkgf/cm3)で締め固めて裏込め又は盛土或いはドレーンを構築し、
透水係数を10-3[cm/sec]以上としたことを特徴とする、
石炭灰固化物の利用方法。
A mixture obtained by mixing a cement-based binder of 2% to 30% by weight with fine particles of coal ash and water as needed is charged into a granulator,
Granules having a particle size of 50 [mm] or less formed into predetermined granules while adding water so that the total weight becomes 15 [%] to 25 [%] , or coal ash solidified by crushing the granules The object is compacted at 0.2 to 1.0 EC (1.0 EC = 5.6 cm kgf / cm 3 ) to construct backfill or embankment or drain,
Characterized by having a water permeability of 10 −3 [cm / sec] or more,
How to use solidified coal ash.
微粒子の石炭灰に重量で2[%]以上30[%]以下のセメントを主体とした結合物と必要に応じて水を混合したものを造粒機に投入し、
重量で15[%]乃至25[%]となるように水を添加しながら所定の粒状に形成された粒径50[mm]以下の粒状体又は該粒状体を破砕してなる石炭灰固化物を、0.2乃至1.0EC(1.0EC=5.6cmkgf/cm3)で締め固めて裏込め又は盛土をおこない、
内部摩擦角Φを31〜43度、粘着力cを0.07〜0.40(tf/m2)としたことを特徴とする、
石炭灰固化物の利用方法。
A mixture obtained by mixing a cement-based binder of 2% to 30% by weight with fine particles of coal ash and water as needed is charged into a granulator,
Granules having a particle size of 50 [mm] or less formed into predetermined granules while adding water so that the total weight is 15 [%] to 25 [%] , or coal ash solidified by crushing the granules The material is compacted at 0.2 to 1.0 EC (1.0 EC = 5.6 cm kgf / cm 3 ) and backfilled or embanked.
Characterized in that the internal friction angle φ was 31 to 43 degrees and the adhesive force c was 0.07 to 0.40 (tf / m2).
How to use solidified coal ash.
JP25171694A 1994-10-18 1994-10-18 How to use solidified coal ash Expired - Fee Related JP3574905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25171694A JP3574905B2 (en) 1994-10-18 1994-10-18 How to use solidified coal ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25171694A JP3574905B2 (en) 1994-10-18 1994-10-18 How to use solidified coal ash

Publications (2)

Publication Number Publication Date
JPH08113777A JPH08113777A (en) 1996-05-07
JP3574905B2 true JP3574905B2 (en) 2004-10-06

Family

ID=17226931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25171694A Expired - Fee Related JP3574905B2 (en) 1994-10-18 1994-10-18 How to use solidified coal ash

Country Status (1)

Country Link
JP (1) JP3574905B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3780402B2 (en) * 2000-03-23 2006-05-31 日立造船株式会社 Detoxification method for incineration fly ash
JP3442052B2 (en) * 2001-01-15 2003-09-02 沖縄電力株式会社 Manufacturing method of processed coal ash product using gravity type mixing equipment
JP2002255619A (en) * 2001-02-27 2002-09-11 Taiheiyo Cement Corp Material for filling cavity
JP4965178B2 (en) * 2006-07-26 2012-07-04 Jx日鉱日石エネルギー株式会社 High porosity civil engineering / building materials and drainage drainage materials
JP4913193B2 (en) * 2009-10-07 2012-04-11 大永建設株式会社 Recycled ground material and manufacturing method thereof
WO2012090884A1 (en) 2010-12-28 2012-07-05 太平洋セメント株式会社 Cement admixture, cement additive and method for producing mixed cement
JP5843329B2 (en) * 2014-04-23 2016-01-13 株式会社大協組 Method for producing foamed hydrothermal solidified product using incinerated ash as the main raw material
CN106049517B (en) * 2016-06-16 2019-01-08 中国十九冶集团有限公司 High water level road construction method near a river
JP6803583B2 (en) * 2016-07-21 2020-12-23 中国電力株式会社 Soil conditioner, its manufacturing method and soil conditioner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068198B2 (en) * 1985-06-28 1994-02-02 水沢化学工業株式会社 Granulation method of coal ash
JPS62148356A (en) * 1985-12-20 1987-07-02 川崎重工業株式会社 Manufacture of solidified body made from coal ash
JPH03275134A (en) * 1990-03-23 1991-12-05 Nippon Jiryoku Senko Kk Utilization of coal ash
JPH05192568A (en) * 1992-01-17 1993-08-03 Taisei Corp Adsorptive material for polluted area, method for improving ground, method for preventing ground from pollution, method for reusing cement raw material and adsorptive material for polluted area
JPH05256092A (en) * 1992-03-10 1993-10-05 Taisei Corp Water permeable granulated composition used for backfilling
JP2552983B2 (en) * 1992-05-29 1996-11-13 三井建設株式会社 Method of using cementitious mixture containing fly ash

Also Published As

Publication number Publication date
JPH08113777A (en) 1996-05-07

Similar Documents

Publication Publication Date Title
Kumar et al. Uses of bottom ash in the replacement of fine aggregate for making concrete
CN102515631A (en) Baking-free gravel-shaped attapulgite fly ash ceramisites
JP5765125B2 (en) Simple paving material and simple paving method
JP3574905B2 (en) How to use solidified coal ash
Sivakumar et al. Influence of fly ash, bottom ash, and light expanded clay aggregate on concrete
CN111732356B (en) Low-toxicity phosphogypsum-based high-strength artificial aggregate and preparation method thereof
Abdulwahid Influences of different stone powders on pervious concrete strength
JP2012193079A (en) High strength porous concrete composition and high strength porous concrete cured body
CN112174602A (en) Mixture for concrete road base
CN110984065A (en) Hydraulic structure of red-bed soft rock
JPH03275134A (en) Utilization of coal ash
CN100458014C (en) Method for making civil work engineering structure layer using domestic incinerator slag
JP3446409B2 (en) Method for producing water-permeable ceramic block
JP3072423B2 (en) Manufacturing method of high-strength artificial aggregate
NL9400564A (en) Filler for concrete and similar building material.
JP4913193B2 (en) Recycled ground material and manufacturing method thereof
JP2002146709A (en) Water permeable base material utilizing reclaimed aggregate
CN102515813A (en) Burn-free spherical attapulgite fly ash ceramsite
JP2014001127A (en) Construction material composition and method for reducing amount of fluorine elution in the same
AU2020375359A1 (en) Production process of artificial aggregate from tailings from mining, artificial aggregate, concrete composition and use
JP3368498B2 (en) Ground improvement material and ground improvement method
JP2684353B2 (en) Water-permeable material with concrete aggregate as aggregate and method for producing the same
RU2806992C1 (en) Method for producing artificial aggregate from mining tailings, artificial aggregate, concrete composition and use
JP2552983B2 (en) Method of using cementitious mixture containing fly ash
JPH0393657A (en) Hydraulic paving material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040204

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees