JP3573991B2 - Steel pipe sheet pile and connecting structure of steel pipe sheet pile - Google Patents

Steel pipe sheet pile and connecting structure of steel pipe sheet pile Download PDF

Info

Publication number
JP3573991B2
JP3573991B2 JP02480799A JP2480799A JP3573991B2 JP 3573991 B2 JP3573991 B2 JP 3573991B2 JP 02480799 A JP02480799 A JP 02480799A JP 2480799 A JP2480799 A JP 2480799A JP 3573991 B2 JP3573991 B2 JP 3573991B2
Authority
JP
Japan
Prior art keywords
steel pipe
sheet pile
circular
circular steel
pipe sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02480799A
Other languages
Japanese (ja)
Other versions
JP2000220135A (en
Inventor
浩弥 大久保
修身 橋本
毅 石澤
夕一 辰見
広志 風間
滋 中嶋
昌宏 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Obayashi Corp
Shimizu Corp
Original Assignee
JFE Steel Corp
Obayashi Corp
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Obayashi Corp, Shimizu Corp filed Critical JFE Steel Corp
Priority to JP02480799A priority Critical patent/JP3573991B2/en
Publication of JP2000220135A publication Critical patent/JP2000220135A/en
Application granted granted Critical
Publication of JP3573991B2 publication Critical patent/JP3573991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、継手構造に特徴を有する鋼管矢板、及びその鋼管矢板同士の連結構造に係り、特に大規模な鋼管矢板基礎に有効な鋼管矢板及び鋼管矢板の連結構造に関する。
【0002】
【従来の技術】
今日、鋼管矢板基礎は、橋梁基礎のひとつとして欠くことの出来ないものとなっている。この鋼管矢板基礎は、例えば図11に示すように、隣接する鋼管矢板50の継ぎ手部同士を互いに嵌合連結しながら、複数の鋼管矢板50を、平面視で円形、小判形、矩形などの閉鎖形状になるように地盤中に打設し、その閉鎖形状の内部空間に頂版コンクリート51を施工して構築される。
【0003】
上記鋼管矢板50の継手部材としては、図12に示すように、通常、P−P型継手部材が採用される。この継手部材は、鋼管矢板本管52より小径の円形鋼管53からなり、その円形鋼管53は、上記鋼管矢板本管52の外面にフレア溶接で取り付けられると共に、管軸方向に沿って延びる嵌合用のスリット53aが設けられている。
【0004】
そして、施工にあたっては、各鋼管矢板50について、その円形鋼管53を、隣接する鋼管矢板50の円形鋼管53に嵌合させながら地盤中に打設し、継手部における嵌合部の内部空間内の土砂を掘削、排土、洗浄した後、その空間内にモルタル54を充填して鋼管矢板50同士を連結して、閉鎖形状を形成する。
一般に、P−P型継手部材に用いる円形鋼管53には、外径が165.2mm、板厚が11mm(もしくは9mm)で、内外面に突起などの凹凸がないものが使用されている。一方、充填するモルタル54としては、圧縮強度200kgf /cm程度のものが使用されている。
【0005】
ここで、鋼管矢板基礎に水平方向の外力が作用した場合、継手部に上下方向のせん断力が作用する。このせん断力が継手のせん断耐力より大きくなると、継手部のずれ変形が急増し、鋼管矢板基礎全体の曲げ剛性低下の度合いも大きくなる。
鋼管矢板基礎全体の曲げ剛性を増加させるための方法としては、継手部自体のせん断耐力を向上したり、鋼管矢板50の本数を増やす方法が考えられる。
【0006】
このとき、大きな外力が作用することが予想される大規模橋梁基礎において基礎全体の曲げ剛性を増加させる場合に、鋼管矢板50の本数を増やす方法を採用すると、基礎の規模が過大になるため、不経済な基礎となる。そのため、基礎の規模が過大にならない範囲で、曲げ剛性を増加させるためには、大きなせん断耐力を有する継手部材を用いる必要があった。
【0007】
継手自体のせん断耐力を向上させる方法としては、例えば、文献1(片山 他:鋼管矢板基礎工法における最近の研究開発、基礎工、1993年11月)や、文献2(片山 他:鋼管矢板基礎における高耐力継手の実験的研究、土木学会第49回年次学術講演会、1994年9月)に記載されている方法がある。
これらの文献に記載されている第1の対策は、P−P型継手部材の円形鋼管53の内面に対して多数の突起を設けるものであって、その突起の効果によって円形鋼管53とモルタル54との付着強度を増加させて継手のせん断耐力を向上させるものである。ちなみに、外径がl65.2mmφで板厚が9mmの鋼管53の内面に突起を設けて、モルタル54(充填材)として圧縮強度が240kgf /cmのものを使用した継手を対象に実験を行った結果、単位継手部材長当たり105tf/mのせん断耐力であった。
【0008】
また、上記文献に記載されている継手のせん断耐力を向上させる第2の対策は、継手部材を構成する円形鋼管53の径を大きくする方法であって、径を大きくすることで鋼管53とモルタル54との付着面積を増加させて、継手のせん断耐力を向上させるものである。ちなみに、鋼管53として外径が216.3mmφで板厚が11mmのもの(内面に突起などの凹凸はない)、モルタル54として圧縮強度が240kgf /cmのものを使用した継手を対象に実験を行った結果、単位継手部材長当たり44tf/mのせん断耐力であった。
【0009】
【発明が解決しようとする課題】
上述の2つの対策を組み合わせることによって、継手部のせん断耐力をさらに向上させることができる。
しかし、本発明者らが調査・研究したところ、円形鋼管53の内面に多数の突起を設けて、さらに円形鋼管径のみを大きくしていった場合に、所定の鋼管径以上となると鋼管とモルタル54との付着切れが発生する前にも拘わらず継手のせん断耐力が低下することを見出した。すなわち、従来の方法にあっては、鋼管矢板基礎の大規模化に併せて、せん断耐力を向上させるために鋼管径を大径化することになるが、円形鋼管53の鋼管径を大きくしていった場合、せん断耐力の増大効果は前記円形鋼管53の径が所定値に達したところで飽和し、さらに径を大きくしていくと逆にせん断耐力は低下することが分かった。
【0010】
上記理由は、鋼管径が大径化すると、鋼管53とモルタル54との付着切れが発生する前に、円形鋼管53を構成する鋼部材が降伏耐力に至り、所定以上の鋼管径では、鋼部材の耐力によって継手部材のせん断耐力が決まるためと推定される。
また、上述のように、P−P型継手部材のせん断耐力は、一般には、鋼管53表面とモルタル54との粘着力および摩擦力からなる付着強度に依存していると考えられている。この付着は容易に切れるため、P−P型継手部材は、鋼管矢板基礎で経済的な大規模橋梁基礎を建設するための継手部材としては不適切とされていた。ちなみに、従来のP−P型継手部材のせん断耐力は、単位継手部材長当たり25〜35tf/m程度であった。
【0011】
本発明は、このような点に着目してなされたもので、継手部の降伏耐力を高めることで、継手部のせん断耐力を著しく向上させた鋼管矢板、及び、大規模な鋼管矢板基礎に好適な鋼管矢板の連結構造を提供することを課題としている。
【0012】
【課題を解決するための手段】
上記課題を解決するために、本発明のうち請求項1に記載の発明は、鋼管矢板本管の外面に対し、その鋼管矢板本管と軸を平行にして継手部材を構成する円形鋼管が取り付けられ、その円形鋼管には、軸方向に延びるスリットが形成されている鋼管矢板において、上記円形鋼管の内面に凹凸を設けると共に、上記円形鋼管における上記鋼管矢板本管への取付け部から上記スリット位置まで円周方向に延びる2つの円弧のうち、円弧長が長い側の当該円形鋼管の外面と、上記本管外面とを、上下方向のせん断力が伝達可能に補強部材で連結し、その補強部材は、円弧長が長い側の当該円形鋼管の外面と上記本管外面との間の上下方向のせん断耐力が向上するように、管軸方向に沿って連続して若しくは断続的に設けられたことを特徴とする鋼管矢板を提供するものである。
【0013】
ここで、上記2つの円弧のうち、円弧長が短い側の当該円形鋼管の外面と、上記鋼管矢板本管の外面についても補強部材で連結されていることが好ましい。
次に、請求項2に記載した発明は、鋼管矢板基礎を構築するための鋼管矢板同士の連結構造であって、請求項1に記載の鋼管矢板を使用して、隣接する鋼管矢板の円形鋼管同士を嵌合させると共に当該円形鋼管内に充填材を充填することを特徴とする鋼管矢板の連結構造を提供するものである。
【0014】
次に、本発明の作用について説明する。
継手のせん断耐力を向上させる方法としては、上記文献1及び文献2で提案されているように、円形鋼管の内面に突起を設ける方法と、鋼管径を大きくする方法とがあり、この2つの方法を組み合わせることによって、せん断耐力をさらに向上させることが期待できる。
【0015】
しかしながら、本発明者がこの技術の効果を室内実験で確認したところ、鋼管径を大きくしていくと、ある径まではせん断耐力が増加するものの、それ以降は逆に低下することが判明した(図10の黒丸を参照)。すなわち、継手のせん断耐力を向上させるために、円形鋼管内面に突起を設け且つ円形鋼管径を拡大しても、必ずしもせん断耐力の向上に結び付くわけではなく、継手部材のせん断耐力向上を確実に達成するためには、鋼部材の降伏耐力を増加させる必要があるとの知見を得た。
【0016】
さらに、上記鋼管径の拡大にともなうせん断耐力の低下ついて、円形鋼管のうちどの部位が先に降伏するか調査したところ、図13に示すように、平面視で、円形鋼管2における鋼管矢板本管への取付け部7とスリット2a位置との間に形成される2つの円弧のうち、円弧長が長い側の一部(図13中B部分)が降伏していることが判明した。つまり、所定径以上では、この円弧部分の鋼部の降伏耐力によって継手部材のせん断耐力が決まる。なお、図13中、Pは入力されたせん断力の方向を指す。
【0017】
そして、円形鋼管2の径が大きくなるほど、取付け部7とスリット2a位置間の距離Lが大きくなって、同一のせん断耐力Pを負荷したときの前記B部分の鋼は降伏しやすくなり、継手部材のせん断力は低下するものと考えられる。
以上のことから、請求項1の発明では、円形鋼管内面に凹凸を設けてモルタル等の充填材と円形鋼管との間の付着強度を高める。さらに、継ぎ手部材を構成する円形鋼管の径が大きくなる程、継手部材の鋼管のせん断耐力が低下することに着目し、せん断耐力が小さくなる上記円弧長が長い側の円形鋼管外面と鋼管矢板本管との間を補強部材で連結して、せん断耐力を向上させる。
【0018】
なお、円形鋼管の径は、要求される円形鋼管矢板基礎の規模に応じて適宜,決定すればよい。
ここで、円弧長の長い側に補強部材を設けると共に円弧長の短い側にも補強部材を設けることが好ましい。円弧長の短い側の補強部材は、円形鋼管のせん断耐力の向上には何ら寄与しない。しかし、従来よりも著しく大きなせん断耐力を継手に期待する場合、継手部材としての円形鋼管と鋼管矢板本管との間でそのせん断力を伝達させるには、本管と円形鋼管との接触位置でのフレア溶接では作業効率などの面で現実的でないことがある。このことから、請求項1の発明における補強部材による円形鋼管の降伏耐力の向上に加えて、左右にバランス良く補強部材を設けることで、当該左右の補強部材が円形鋼管と鋼管矢板本管との間でのせん断伝達部材として働き、伝達する荷重の分散化を図ることができるようになる。
【0019】
なお、せん断力は、略管軸方向に作用するので、管軸方向に沿って補強部材を設けることで、有効に補強することができる。
【0020】
【発明の実施の形態】
次に、本発明の第1の実施形態を図面を参照しつつ説明する。
まず、本実施形態の鋼管矢板Aを説明すると、図1に示すように、鋼管矢板本管1の外面に、鋼管矢板本管1より小径の円形鋼管2がフレア溶接で取り付けられる。この円形鋼管2には、管軸方向に沿って嵌合用のスリット2aが設けられている。なお、図1では、継手部材である円形鋼管2を1つしか図示していないが、反対側にも存在する。
【0021】
上記円形鋼管2の内面2dには、図2に示すような、複数個のチェッカー状の突起3が全面に渡って設けられることで、当該内面2dに凹凸が形成されて、円形鋼管2と充填材との付着強度の向上が図られている。
また、上記円形鋼管2における鋼管矢板本管1への取付け部7とスリット2aとの間に形成される二つの円弧2b,2cのうち円弧長が長い側2bにおいて、当該円形鋼管2外面の2e位置と鋼管矢板本管1の1a位置とが補強部材4で連結されている。
【0022】
上記補強部材4は、平板状の鋼板からなり、上記円形鋼管2の軸と平行に上下に延びて上下方向全面に渡って、上記円形鋼管2外面と鋼管矢板本管1との間を連結している。なお、補強部材4の固定は、溶接等で行う。
なお、上記円形鋼管2の径は、対象とする鋼管矢板基礎の規模に応じて決定される。
【0023】
そして、従来と同様に、各鋼管矢板Aについて、図3に示すように、スリット2aを介して、その円形鋼管2を、隣接する鋼管矢板Aの円形鋼管2に嵌合させながら地盤中に打設し、続けて、継手部における嵌合部の内部空間内の土砂を掘削、排土、洗浄した後、その空間内にモルタル5を充填して鋼管矢板A同士を連結する。これを目的とする閉鎖形状の位置に沿って実施する。さらに、構築した閉鎖形状の内部空間に頂版コンクリートを施工して鋼管矢板基礎とする。
【0024】
上記のような継手部構造を持った鋼管矢板Aを使用すると、継手に対して、充填されたモルタル5との付着強度が向上すると共に、鋼管矢板Aの継手部のせん断耐力を、従来のP−P型継手部材に比べて、著しく向上させることができる。その結果、基礎の規模の大型化に併せて円形鋼管2の径を拡大しても、鋼管矢板基礎全体の曲げ剛性を、従来に比べて大きく増加させることができるため、以前は適用が困難であった大規模橋梁基礎にも、鋼管矢板基礎の適用が可能となる。
【0025】
ここで、上記補強部材4は、平板状に限定されない。例えば、図4に示すような横断面L字状の部材であっても良いし、図5に示すようなチャンネル材であっても良い。ただし、加工性などを考慮すると板状が最も望ましい。
また、図3において、円形鋼管外面と補強部材の連結位置2eと、嵌合相手の円形鋼管のスリット2aとの距離L1がなるべく小さくなるようにする方が好ましい。
【0026】
また、円形鋼管2の内面2dに設ける突起3の形態もチェッカー状の形態に限定されるものではなく、例えば、展開図である図6に示すような、複数個のスパイラル状のものや、展開図である図7に示すような管軸方向に垂直な複数個のリング状に近い模様を形成するようにしても良い。
また、充填材としてモルタル5を例示しているが、充填材はモルタル5に限定されるものではなく、例えば、コンクリートなどであっても所定の圧縮強度が発揮されるものであれば良い。
【0027】
また、本実施形態では、補強部材4を管軸方向に沿って連続して設けているが、補強部材4を、管軸方向に沿って、図8に示すように所定間隔毎に断続的に設けてもよい。なお、連続して設ける場合であっても、1枚の鋼材である必要はない。
次に、第2の実施形態を図面を参照しつつ説明する。なお、第1の実施形態 と同様な部材等については、同一の符号を付して説明し、その詳細は省略する。
【0028】
本実施形態の鋼管矢板Aの基本構成は、上記第1の実施形態と同様な構成であるが、図9に示すように、円形鋼管2における円弧長が短い側2cにも上記補強部材4と同様な第2の補強部材6を配設した点のみが異なる。
これによって、左右の補強部材4,6が、円形鋼管2と鋼管矢板本管1との間でのせん断伝達部材として働き、伝達する荷重の分散化を図ることができるようになる。
【0029】
他の作用・効果は、上記第1の実施形態と同様である。
【0030】
【実施例】
図12に示す鋼管矢板で円形鋼管53の内面に図2に示す突起を設けてある場合において、円形鋼管2の径とせん断耐力との関係を調査したところ、図10に示すような結果が得られた。図10中○印及ぶ●印がその結果である。
この実験例は、鋼管板厚を12mmとし、円形鋼管2の材料降伏強度を2400kgf /cmとして、充填するモルタル5として圧縮強度を200kgf /cmものを使用し、円形鋼管2の外径のみをパラメータとして継手部材のせん断耐力を評価したものである。実験ケ一スは、円形鋼管2の外径が165.2mm、216.3mm、241.8mm、318.5mm、355.6mm、406.4mm、457.2mm、508mm、558.8mmの9ケースである。
【0031】
この例では、円形鋼管2の外径が406.4mm以下までは付着切れが先行したが、457.2mm以上では付着切れが発生する前に、円形鋼管2における円弧長の長い部分2bの鋼部材が降伏耐力に至り、この鋼部材の耐力によって継手部材のせん断耐力が決まった。また、図10から分かるように、付着切れが先行する406.4mmまでは、円形鋼管2径の拡大とともにせん断耐力が増加したものの、この406.4mmをピークに、これより径が大きくなって鋼部材の耐力によって継手部材のせん断耐力が決まる領域になると、円形鋼管2の外径の拡大とともにせん断耐力は低下した。
【0032】
また、本発明に基づいて、図3及び図8に示すように、円弧長の長い側2bに連続的若しくは断続的に板状部材(補強部材4)を配置した場合についても評価した。その評価した実験の結果を、図10に併せて示している。
なお、これらの場合においても、円形鋼管53の内面には図2に示す突起が設けてある。
【0033】
板状の補強部材4を管軸方向に連続的に配した試験体では、457.2mm、508mm 558.8mmの3ケースとも円形鋼管2とモルタル5との付着切れが先行し、円形鋼管2径の拡大とともにせん断耐力が増加した。板状の補強部材4を取り付け場合の最大せん断耐力は、取り付けない場合の1.32倍(=406tf/307tf)であり、せん断耐力が著しく増加した。図10中、□印がその結果である。
【0034】
また、板状の補強部材4を管軸方向に断続的に配した試験体でも、457.2mm、508mmの2ケースで円形鋼管2とモルタル5との付着切れが先行し、断続的にではあるが板状の補強部材4を取り付けたことで、最大せん断耐力が取り付けない場合の1.20倍(=369tf/307tf)にまで増大した。図10中、△印及び▲印がその結果である。
【0035】
【発明の効果】
以上述べたように、本発明を採用すると、鋼管矢板の継手部のせん断耐力を、従来のP−P型継手部材に比べて、著しく向上させることができるという効果がある。
そして、請求項2に記載の鋼管矢板の連結構造を採用することで、鋼管矢板基礎全体の曲げ剛性を、従来に比べて大きく増加させることができるため、以前は適用が困難であった大規模橋梁基礎へも、鋼管矢板基礎の適用が可能になるという効果がある。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る鋼管矢板を示す図であって、(a)は平面図を、(b)は側面図をそれぞれ示している。
【図2】本発明の第1の実施の形態に係る円形鋼管内面に形成する凹凸模様の例を示す図である。
【図3】本発明の第1の実施の形態に係る鋼管矢板同士の連結を示す図であって、(a)は平面図を、(b)は側面図をそれぞれ示している。
【図4】本発明の第1の実施の形態に係る補強部材の別の例を示す平面図である。
【図5】本発明の第1の実施の形態に係る補強部材の別の例を示す平面図である。
【図6】本発明の第1の実施の形態に係る円形鋼管内面に形成する凹凸模様の別の例を示す図である。
【図7】本発明の第1の実施の形態に係る円形鋼管内面に形成する凹凸模様の別の例を示す図である。
【図8】本発明の第1の実施の形態に係る補強部材の別の配設例を示す図であって、(a)は平面図を、(b)は側面図をそれぞれ示している。
【図9】本発明の第2の実施の形態に係る鋼管矢板を示す図であって、(a)は平面図を、(b)は側面図をそれぞれ示している。
【図10】鋼管外径とせん断耐力の関係を示す図である。
【図11】鋼管矢板基礎の例を示す図である。
【図12】従来の鋼管矢板の連結を示す図である。
【図13】降伏する部分を示す図であって、(a)は平面図を、(b)は側面図をそれぞれ示している。
【符号の説明】
A 鋼管矢板
1 鋼管矢板本管
2 円形鋼管(継手部材)
2a スリット
2b,2c 円弧
2d 内面
3 突起
4 補強部材
5 モルタル(充填材)
6 補強部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steel pipe sheet pile characterized by a joint structure and a connection structure between the steel pipe sheet piles, and more particularly to a steel pipe sheet pile and a connection structure for a steel pipe sheet pile that are effective for a large-scale steel pipe sheet pile foundation.
[0002]
[Prior art]
Today, steel sheet pile foundations are indispensable as one of the bridge foundations. As shown in FIG. 11, for example, this steel pipe sheet pile foundation closes a plurality of steel pipe sheet piles 50 in a circular, oval, rectangular or the like in plan view while fitting and connecting joints of adjacent steel pipe piles 50 to each other. It is cast into the ground so as to have a shape, and the top slab concrete 51 is constructed in the closed internal space.
[0003]
As a joint member of the steel pipe sheet pile 50, a PP joint member is usually adopted as shown in FIG. This joint member is composed of a circular steel pipe 53 having a smaller diameter than the steel pipe sheet pile main pipe 52. The circular steel pipe 53 is attached to the outer surface of the steel pipe sheet pile main pipe 52 by flare welding, and extends along the pipe axis direction. Is provided.
[0004]
Then, in the construction, for each steel pipe sheet pile 50, the circular steel pipe 53 is driven into the ground while being fitted to the circular steel pipe 53 of the adjacent steel pipe sheet pile 50, and the inside of the internal space of the fitting portion in the joint portion is formed. After excavating, discharging and washing the earth and sand, the space is filled with mortar 54 and the steel pipe sheet piles 50 are connected to each other to form a closed shape.
Generally, the circular steel pipe 53 used for the PP joint member has an outer diameter of 165.2 mm, a plate thickness of 11 mm (or 9 mm), and has no irregularities such as protrusions on the inner and outer surfaces. On the other hand, as the mortar 54 to be filled, one having a compressive strength of about 200 kgf / cm 2 is used.
[0005]
Here, when a horizontal external force acts on the steel sheet pile foundation, a vertical shear force acts on the joint portion. If this shearing force is larger than the shearing strength of the joint, the shear deformation of the joint portion increases rapidly, and the degree of reduction in bending rigidity of the entire steel sheet pile foundation also increases.
As a method for increasing the bending rigidity of the entire steel pipe sheet pile foundation, a method of improving the shear strength of the joint portion itself or increasing the number of the steel pipe sheet piles 50 can be considered.
[0006]
At this time, when increasing the bending rigidity of the entire foundation in a large-scale bridge foundation where a large external force is expected to act, if the method of increasing the number of steel pipe sheet piles 50 is employed, the scale of the foundation becomes excessively large. It is an uneconomic basis. Therefore, it is necessary to use a joint member having a large shear strength in order to increase the bending rigidity in a range where the scale of the foundation does not become excessive.
[0007]
As a method for improving the shear strength of the joint itself, for example, Reference 1 (Katayama et al .: Recent research and development in steel pipe sheet pile foundation method, foundation work, November 1993) and Reference 2 (Katayama et al .: Steel pipe sheet pile foundation method) Experimental Research on High Strength Joints, 49th Annual Scientific Meeting of the Japan Society of Civil Engineers, September 1994).
The first measure described in these documents is to provide a large number of protrusions on the inner surface of the circular steel pipe 53 of the PP joint member, and the circular steel pipe 53 and the mortar 54 are provided by the effect of the protrusions. To improve the shear strength of the joint. Incidentally, an experiment was conducted on a joint using a mortar 54 (filler) having a compressive strength of 240 kgf / cm 2 by providing a projection on the inner surface of a steel pipe 53 having an outer diameter of 165.2 mmφ and a plate thickness of 9 mm. As a result, the shear strength was 105 tf / m per unit joint member length.
[0008]
A second measure for improving the shear strength of the joint described in the above-mentioned document is a method of increasing the diameter of the circular steel pipe 53 constituting the joint member. This is to increase the area of adhesion to the joint 54 and improve the shear strength of the joint. Incidentally, an experiment was conducted on a joint using a steel pipe 53 having an outer diameter of 216.3 mmφ and a plate thickness of 11 mm (there are no irregularities such as protrusions on the inner surface) and a mortar 54 having a compressive strength of 240 kgf / cm 2. As a result, the shear strength was 44 tf / m per unit joint member length.
[0009]
[Problems to be solved by the invention]
By combining the above two measures, the shear strength of the joint portion can be further improved.
However, the present inventors have investigated and studied that when a large number of protrusions are provided on the inner surface of the circular steel pipe 53 and only the diameter of the circular steel pipe is further increased, the steel pipe and the mortar become larger than a predetermined steel pipe diameter. It has been found that the shear strength of the joint is reduced even before the breakage of the bond with 54 occurs. In other words, in the conventional method, the diameter of the steel pipe is increased in order to improve the shear strength in accordance with the increase in the scale of the steel sheet pile foundation, but the diameter of the circular steel pipe 53 is increased. In this case, it was found that the effect of increasing the shear strength was saturated when the diameter of the circular steel pipe 53 reached a predetermined value, and that the shear strength decreased when the diameter was further increased.
[0010]
The reason is that when the diameter of the steel pipe is increased, the steel member constituting the circular steel pipe 53 reaches the yield strength before the breakage of the adhesion between the steel pipe 53 and the mortar 54 occurs. It is presumed that the shear strength of the joint member is determined by the strength of the joint member.
In addition, as described above, it is generally considered that the shear strength of the PP joint member depends on the adhesive strength between the surface of the steel pipe 53 and the mortar 54, which is the adhesive strength and the frictional force. Since this adhesion was easily broken, the PP joint member was considered unsuitable as a joint member for constructing an economical large-scale bridge foundation with a steel pipe sheet pile foundation. Incidentally, the shear strength of the conventional PP joint member was about 25 to 35 tf / m per unit joint member length.
[0011]
The present invention has been made by paying attention to such a point, and by improving the yield strength of the joint portion, a steel pipe sheet pile in which the shear strength of the joint part has been significantly improved, and is suitable for a large-scale steel pipe sheet pile foundation. It is an object of the present invention to provide a connection structure for a steel pipe sheet pile.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention according to claim 1 of the present invention is characterized in that a circular steel pipe constituting a joint member with an axis parallel to the steel sheet pile main is attached to the outer surface of the steel pipe sheet pile main. In the steel pipe sheet pile in which the slit extending in the axial direction is formed, the circular steel pipe is provided with irregularities on the inner surface of the circular steel pipe, and the slit position of the circular steel pipe from the attachment portion to the steel pipe sheet pile main pipe. The outer surface of the circular steel pipe having the longer arc length of the two arcs extending in the circumferential direction to the outer surface of the main pipe and the outer surface of the main pipe are connected by a reinforcing member so that a vertical shear force can be transmitted. Is provided continuously or intermittently along the pipe axis direction so as to improve the shear strength in the vertical direction between the outer surface of the circular steel pipe having the longer arc length and the outer face of the main pipe. Steel pipe characterized by There is provided a plate.
[0013]
Here, it is preferable that, of the two arcs, the outer surface of the circular steel pipe having the shorter arc length and the outer surface of the steel pipe sheet pile main pipe are also connected by a reinforcing member.
Next, the invention described in claim 2 is a connection structure between steel pipe sheet piles for constructing a steel pipe sheet pile foundation, and using the steel pipe sheet pile according to claim 1, a circular steel pipe of an adjacent steel pipe sheet pile. Another object of the present invention is to provide a connection structure of steel pipe sheet piles, wherein the steel pipe sheet piles are fitted together and a filler is filled in the circular steel pipe.
[0014]
Next, the operation of the present invention will be described.
As a method for improving the shear strength of a joint, there are a method of providing a projection on the inner surface of a circular steel pipe and a method of increasing the diameter of the steel pipe as proposed in the above-mentioned Documents 1 and 2, and these two methods. It can be expected that the shear strength will be further improved by combining.
[0015]
However, the present inventor has confirmed the effect of this technique in a laboratory experiment, and found that as the diameter of the steel pipe is increased, the shear strength increases up to a certain diameter, but decreases after that ( (See the black circle in FIG. 10). That is, even if a projection is provided on the inner surface of the circular steel pipe and the diameter of the circular steel pipe is increased in order to improve the shear strength of the joint, it does not necessarily lead to the improvement of the shear strength, and the improvement of the shear strength of the joint member is surely achieved. In order to do so, it has been found that it is necessary to increase the yield strength of steel members.
[0016]
Further, regarding the reduction of the shear strength with the increase in the diameter of the steel pipe, it was investigated which part of the circular steel pipe yielded first, and as shown in FIG. It has been found that, of the two arcs formed between the mounting portion 7 and the slit 2a, a portion (the portion B in FIG. 13) on the longer arc side is yielded. That is, when the diameter is equal to or larger than the predetermined diameter, the shear strength of the joint member is determined by the yield strength of the steel portion in the arc portion. In FIG. 13, P indicates the direction of the input shear force.
[0017]
And, as the diameter of the circular steel pipe 2 increases, the distance L between the mounting portion 7 and the position of the slit 2a increases, and the steel in the portion B when the same shear strength P is applied tends to yield, and the joint member Is considered to decrease.
As described above, according to the first aspect of the present invention, irregularities are provided on the inner surface of the circular steel pipe to increase the adhesive strength between the filler such as mortar and the circular steel pipe. Furthermore, focusing on the fact that as the diameter of the circular steel pipe forming the joint member increases, the shear strength of the steel pipe of the joint member decreases, the outer circumferential surface of the circular steel pipe on the side where the arc length is longer and the shear strength of the steel pipe of the joint member decreases. The pipe is connected to the pipe by a reinforcing member to improve the shear strength.
[0018]
Note that the diameter of the circular steel pipe may be appropriately determined according to the required scale of the circular steel sheet pile foundation.
Here, it is preferable that the reinforcing member is provided on the long side of the arc length and the reinforcing member is also provided on the short side of the arc length. The reinforcing member having the shorter arc length does not contribute to the improvement of the shear strength of the circular steel pipe. However, if the joint is expected to have significantly higher shear strength than before, the shear force must be transmitted between the circular steel pipe as the joint member and the steel sheet pile main pipe at the contact position between the main pipe and the circular steel pipe. May not be practical in terms of work efficiency and the like. From this, in addition to the improvement of the yield strength of the circular steel pipe by the reinforcing member according to the first aspect of the present invention, by providing the reinforcing members on the left and right sides in a well-balanced manner, the left and right reinforcing members are connected to the circular steel pipe and the steel sheet pile main pipe. It acts as a shear transmission member between the members, and the load to be transmitted can be dispersed.
[0019]
Since the shearing force acts substantially in the pipe axis direction, the reinforcing member can be effectively reinforced by providing a reinforcing member along the pipe axis direction.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, a first embodiment of the present invention will be described with reference to the drawings.
First, the steel pipe sheet pile A of the present embodiment will be described. As shown in FIG. 1, a circular steel pipe 2 smaller in diameter than the steel pipe sheet pile main pipe 1 is attached to the outer surface of the steel pipe sheet pile main pipe 1 by flare welding. The circular steel pipe 2 is provided with a slit 2a for fitting along the pipe axis direction. In FIG. 1, only one circular steel pipe 2 as a joint member is shown, but it is also present on the opposite side.
[0021]
As shown in FIG. 2, a plurality of checker-like projections 3 are provided on the entire inner surface 2 d of the circular steel pipe 2, so that irregularities are formed on the inner surface 2 d and the circular steel pipe 2 is filled. The improvement of the adhesive strength with the material is achieved.
Also, of the two circular arcs 2b, 2c formed between the slit 2a and the mounting part 7 of the circular steel pipe 2 to the steel sheet pile main pipe 1, on the long side 2b of the circular arc length, 2e of the outer surface of the circular steel pipe 2 The position and the position 1a of the steel sheet pile main pipe 1 are connected by a reinforcing member 4.
[0022]
The reinforcing member 4 is made of a flat steel plate, extends vertically in parallel with the axis of the circular steel pipe 2 and connects the outer surface of the circular steel pipe 2 and the steel sheet pile main pipe 1 over the entire vertical surface. ing. The fixing of the reinforcing member 4 is performed by welding or the like.
The diameter of the circular steel pipe 2 is determined according to the scale of the target steel pipe sheet pile foundation.
[0023]
Then, as in the prior art, for each steel sheet pile A, as shown in FIG. 3, the circular steel pipe 2 is punched into the ground while being fitted to the circular steel pipe 2 of the adjacent steel pipe sheet pile A through the slit 2a. Then, after excavating, discharging, and cleaning the earth and sand in the internal space of the fitting portion in the joint portion, the space is filled with mortar 5 to connect the steel pipe sheet piles A to each other. This is performed along the position of the closed shape intended. Furthermore, top slab concrete is constructed in the constructed internal space of the closed shape to make the steel pipe sheet pile foundation.
[0024]
When the steel pipe sheet pile A having the above-described joint structure is used, the adhesive strength between the joint and the filled mortar 5 is improved, and the shear strength of the joint part of the steel pipe sheet pile A is reduced by the conventional P. -It can be significantly improved as compared with a P-type joint member. As a result, even if the diameter of the circular steel pipe 2 is increased in accordance with the enlargement of the scale of the foundation, the bending rigidity of the entire steel sheet pile foundation can be greatly increased as compared with the conventional steel pipe pile foundation. The steel pipe sheet pile foundation can also be applied to the existing large-scale bridge foundation.
[0025]
Here, the reinforcing member 4 is not limited to a flat plate shape. For example, an L-shaped member as shown in FIG. 4 may be used, or a channel material as shown in FIG. 5 may be used. However, a plate shape is most desirable in consideration of workability and the like.
In FIG. 3, it is preferable that the distance L1 between the connection position 2e between the outer surface of the circular steel pipe and the reinforcing member and the slit 2a of the fitting circular steel pipe be as small as possible.
[0026]
Further, the form of the protrusion 3 provided on the inner surface 2d of the circular steel pipe 2 is not limited to the checker-like form. For example, as shown in FIG. A plurality of ring-shaped patterns perpendicular to the tube axis direction as shown in FIG. 7 may be formed.
In addition, although the mortar 5 is illustrated as the filler, the filler is not limited to the mortar 5 and may be, for example, concrete as long as it can exert a predetermined compressive strength.
[0027]
Further, in the present embodiment, the reinforcing members 4 are provided continuously along the pipe axis direction, but the reinforcing members 4 are intermittently provided at predetermined intervals along the pipe axis direction as shown in FIG. It may be provided. In addition, even if it is provided continuously, it is not necessary to use one steel material.
Next, a second embodiment will be described with reference to the drawings. The same members and the like as those in the first embodiment are described with the same reference numerals, and the details are omitted.
[0028]
The basic configuration of the steel pipe sheet pile A of the present embodiment is the same as that of the first embodiment, but as shown in FIG. 9, the reinforcing member 4 is also provided on the side 2c of the circular steel pipe 2 where the arc length is short. The only difference is that a similar second reinforcing member 6 is provided.
Thus, the left and right reinforcing members 4 and 6 function as a shear transmission member between the circular steel pipe 2 and the steel pipe sheet pile main pipe 1, and the transmitted load can be dispersed.
[0029]
Other functions and effects are the same as those of the first embodiment.
[0030]
【Example】
When the projections shown in FIG. 2 were provided on the inner surface of the circular steel pipe 53 with the steel pipe sheet pile shown in FIG. 12, the relationship between the diameter of the circular steel pipe 2 and the shear strength was investigated, and the results shown in FIG. 10 were obtained. Was done. In FIG. 10, the circles and the circles indicate the results.
In this experimental example, the thickness of the steel pipe was 12 mm, the material yield strength of the circular steel pipe 2 was 2400 kgf / cm 2 , and the mortar 5 to be filled had a compressive strength of 200 kgf / cm 2 and only the outer diameter of the circular steel pipe 2 was used. Is used to evaluate the shear strength of the joint member. The experimental cases were nine cases in which the outer diameter of the circular steel pipe 2 was 165.2 mm, 216.3 mm, 241.8 mm, 318.5 mm, 355.6 mm, 406.4 mm, 457.2 mm, 508 mm, and 558.8 mm. is there.
[0031]
In this example, before the outer diameter of the circular steel pipe 2 becomes 406.4 mm or less, the adhesion breakage precedes, but when the outer diameter is 457.2 mm or more, the steel member of the long circular arc portion 2 b of the circular steel pipe 2 before the occurrence of the adhesion breakage. Reached the yield strength, and the shear strength of the joint member was determined by the strength of the steel member. Also, as can be seen from FIG. 10, up to 406.4 mm, at which adhesion breakage precedes, although the shear strength increased with the expansion of the diameter of the circular steel pipe 2, the diameter increased from this 406.4 mm peak, and the steel became larger. When the shear strength of the joint member was determined by the strength of the member, the shear strength decreased as the outer diameter of the circular steel pipe 2 increased.
[0032]
Further, based on the present invention, as shown in FIGS. 3 and 8, a case where a plate-like member (reinforcing member 4) was continuously or intermittently arranged on the long side 2b having an arc length was also evaluated. The result of the evaluated experiment is also shown in FIG.
In these cases, the projections shown in FIG. 2 are provided on the inner surface of the circular steel pipe 53.
[0033]
In the test body in which the plate-shaped reinforcing members 4 are continuously arranged in the pipe axis direction, in all of the three cases of 457.2 mm, 508 mm and 558.8 mm, the adhesion of the circular steel pipe 2 and the mortar 5 has preceded, and the diameter of the circular steel pipe 2 The shear strength increased with the expansion of. The maximum shear strength when the plate-shaped reinforcing member 4 was attached was 1.32 times (= 406 tf / 307 tf) when the plate-like reinforcing member 4 was not attached, and the shear strength was significantly increased. In FIG. 10, the result is indicated by a square mark.
[0034]
Further, even in a test body in which the plate-shaped reinforcing member 4 is intermittently arranged in the pipe axis direction, the adhesion between the circular steel pipe 2 and the mortar 5 precedes in two cases of 457.2 mm and 508 mm, and is intermittent. By attaching the plate-shaped reinforcing member 4, the maximum shear strength increased to 1.20 times (= 369 tf / 307 tf) when not attached. In FIG. 10, the marks Δ and ▲ indicate the results.
[0035]
【The invention's effect】
As described above, when the present invention is employed, there is an effect that the shear strength of the joint portion of the steel pipe sheet pile can be significantly improved as compared with the conventional PP-type joint member.
By adopting the steel pipe sheet pile connecting structure according to claim 2, the bending rigidity of the entire steel pipe sheet pile foundation can be greatly increased as compared with the conventional steel pipe sheet pile foundation. There is also an effect that a steel pipe sheet pile foundation can be applied to a bridge foundation.
[Brief description of the drawings]
FIG. 1 is a view showing a steel pipe sheet pile according to a first embodiment of the present invention, wherein (a) shows a plan view and (b) shows a side view.
FIG. 2 is a diagram showing an example of a concavo-convex pattern formed on the inner surface of the circular steel pipe according to the first embodiment of the present invention.
3A and 3B are diagrams showing the connection between steel pipe sheet piles according to the first embodiment of the present invention, wherein FIG. 3A is a plan view and FIG. 3B is a side view.
FIG. 4 is a plan view showing another example of the reinforcing member according to the first embodiment of the present invention.
FIG. 5 is a plan view showing another example of the reinforcing member according to the first embodiment of the present invention.
FIG. 6 is a diagram showing another example of the concavo-convex pattern formed on the inner surface of the circular steel pipe according to the first embodiment of the present invention.
FIG. 7 is a view showing another example of the concavo-convex pattern formed on the inner surface of the circular steel pipe according to the first embodiment of the present invention.
FIGS. 8A and 8B are diagrams showing another example of the arrangement of the reinforcing members according to the first embodiment of the present invention, wherein FIG. 8A is a plan view and FIG. 8B is a side view.
FIG. 9 is a view showing a steel pipe sheet pile according to a second embodiment of the present invention, wherein (a) shows a plan view and (b) shows a side view.
FIG. 10 is a diagram showing the relationship between the outer diameter of a steel pipe and the shear strength.
FIG. 11 is a diagram showing an example of a steel pipe sheet pile foundation.
FIG. 12 is a view showing connection of a conventional steel pipe sheet pile.
FIGS. 13A and 13B are views showing a yielding portion, wherein FIG. 13A is a plan view and FIG. 13B is a side view.
[Explanation of symbols]
A steel pipe sheet pile 1 steel pipe sheet pile main pipe 2 circular steel pipe (joint member)
2a Slit 2b, 2c Arc 2d Inner surface 3 Projection 4 Reinforcement member 5 Mortar (filler)
6 Reinforcement members

Claims (2)

鋼管矢板本管の外面に対し、その鋼管矢板本管と軸を平行にして継手部材を構成する円形鋼管が取り付けられ、その円形鋼管には、軸方向に延びるスリットが形成されている鋼管矢板において、
上記円形鋼管の内面に凹凸を設けると共に、上記円形鋼管における上記鋼管矢板本管への取付け部から上記スリット位置まで円周方向に延びる2つの円弧のうち、円弧長が長い側の当該円形鋼管の外面と、上記本管外面とを、上下方向のせん断力が伝達可能に補強部材で連結し、
その補強部材は、円弧長が長い側の当該円形鋼管の外面と上記本管外面との間の上下方向のせん断耐力が向上するように、管軸方向に沿って連続して若しくは断続的に設けられたことを特徴とする鋼管矢板。
On the outer surface of the steel sheet pile main pipe, a circular steel pipe constituting a joint member with the steel pipe sheet pile main axis parallel to the axis is attached, and the circular steel pipe has an axially extending slit formed in the steel pipe sheet pile. ,
Among the two circular arcs extending in the circumferential direction from the mounting portion of the circular steel pipe to the steel sheet pile main pipe and extending in the circumferential direction from the mounting portion of the circular steel pipe to the slit position, the circular steel pipe having the longer arc length is used. An outer surface and the outer surface of the main pipe are connected by a reinforcing member so that a vertical shear force can be transmitted ,
The reinforcing member is provided continuously or intermittently along the pipe axis direction so as to improve the shear strength in the vertical direction between the outer surface of the circular steel pipe having the longer arc length and the outer face of the main pipe. Steel pipe sheet pile characterized by being done.
鋼管矢板基礎を構築するための鋼管矢板同士の連結構造であって、請求項1に記載の鋼管矢板を使用して、隣接する鋼管矢板の円形鋼管同士を嵌合させると共に当該円形鋼管内に充填材を充填することを特徴とする鋼管矢板の連結構造。A steel pipe sheet pile connection structure for constructing a steel pipe sheet pile foundation, wherein the steel pipe sheet piles according to claim 1 are used to fit circular steel pipes of adjacent steel pipe sheet piles together and to fill the circular steel pipes. A connection structure for steel pipe sheet piles characterized by filling with materials.
JP02480799A 1999-02-02 1999-02-02 Steel pipe sheet pile and connecting structure of steel pipe sheet pile Expired - Fee Related JP3573991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02480799A JP3573991B2 (en) 1999-02-02 1999-02-02 Steel pipe sheet pile and connecting structure of steel pipe sheet pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02480799A JP3573991B2 (en) 1999-02-02 1999-02-02 Steel pipe sheet pile and connecting structure of steel pipe sheet pile

Publications (2)

Publication Number Publication Date
JP2000220135A JP2000220135A (en) 2000-08-08
JP3573991B2 true JP3573991B2 (en) 2004-10-06

Family

ID=12148476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02480799A Expired - Fee Related JP3573991B2 (en) 1999-02-02 1999-02-02 Steel pipe sheet pile and connecting structure of steel pipe sheet pile

Country Status (1)

Country Link
JP (1) JP3573991B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4231429B2 (en) * 2003-02-19 2009-02-25 新日本製鐵株式会社 Connection structure for deformed wall components
JP2014020129A (en) * 2012-07-19 2014-02-03 Nippon Steel & Sumitomo Metal Steel sheet pile and steel sheet pile wall body
CN111877313A (en) * 2020-08-03 2020-11-03 李梦媛 Pile foundation pit fore shaft steel pipe

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755404Y2 (en) * 1977-11-24 1982-11-30
JPH0250428U (en) * 1988-09-30 1990-04-09
JPH03125831U (en) * 1990-03-30 1991-12-19

Also Published As

Publication number Publication date
JP2000220135A (en) 2000-08-08

Similar Documents

Publication Publication Date Title
EP2672012B1 (en) A mono-pile type foundation structure for connecting steel pipe pile and steel sleeve pipe
WO2011132489A1 (en) Combined steel sheet piling wall
JP2009249885A (en) Method, structure and member for reinforcing existing steel sheet pile
JP3573991B2 (en) Steel pipe sheet pile and connecting structure of steel pipe sheet pile
JP2007162452A (en) Segment for tunnel and its manufacturing method
JPH07317087A (en) Connecting structure of wall made of steel and reinforced concrete floor slab
JP7156347B2 (en) Joint structure of steel wall and reinforced concrete floor slab
JP6477586B2 (en) Steel sheet pile wall
JP4028928B2 (en) Segment structure
JP2000220152A (en) Pile head construction for steel pipe pile
JP2004353337A (en) Joint member and joint structure for steel pipe sheet pile
JP4041232B2 (en) Steel segment
JP3826348B2 (en) Construction method of composite wall with mountain retaining core and underground outer wall
JPH06280251A (en) Steel member for underground continuous wall
JP2007051500A (en) Joint structure of column and pile
JP5970211B2 (en) Strengthening structure of existing piles
JPH08109631A (en) Underground wall
JP2001003354A (en) Steel pipe sheet pile and connecting structure of steel pipe sheet pile
JP6871493B2 (en) Pile head reinforcement structure
JP4916485B2 (en) Steel pipe sheet pile joint structure, steel pipe sheet pile foundation and steel pipe sheet pile connection method
KR200230738Y1 (en) The pile of obstructing water by using the concrete pile construct having the grout space
JP2000355933A (en) Steel pipe sheet pile and connection structure therefor
JP3574003B2 (en) Steel pipe sheet pile and connecting structure of steel pipe sheet pile
JP6925091B1 (en) Box culvert
JP2004027775A (en) Wide-flange shape steel pile for temporary work

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees