JP3573047B2 - Manufacturing method of stainless steel sheet with excellent flatness after etching - Google Patents

Manufacturing method of stainless steel sheet with excellent flatness after etching Download PDF

Info

Publication number
JP3573047B2
JP3573047B2 JP2000033420A JP2000033420A JP3573047B2 JP 3573047 B2 JP3573047 B2 JP 3573047B2 JP 2000033420 A JP2000033420 A JP 2000033420A JP 2000033420 A JP2000033420 A JP 2000033420A JP 3573047 B2 JP3573047 B2 JP 3573047B2
Authority
JP
Japan
Prior art keywords
etching
tension
flatness
steel sheet
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000033420A
Other languages
Japanese (ja)
Other versions
JP2001226718A (en
Inventor
利行 奥井
賢一 御所窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000033420A priority Critical patent/JP3573047B2/en
Publication of JP2001226718A publication Critical patent/JP2001226718A/en
Application granted granted Critical
Publication of JP3573047B2 publication Critical patent/JP3573047B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エッチングによって目的部品の形状を作製するために使用されるステンレス鋼帯、詳しくはエッチング後の平坦性に優れた高強度オーステナイト系ステンレス鋼板の製造方法に関する。
【0002】
【従来の技術】
最近の電子機器や精密機器に用いられる部材は、軽量化または寸法精度などの要求が厳しくなり、それらの素材にもより高い強度特性および平坦性のよいことが強く求められている。また、これら部材の一部には、はんだ、接着剤または塗料などとの密着性を改善すること、意匠性を付与することのために、表面の一部または全面にエッチングによって粗さを与える加工が施される場合がある。これらの素材、特に高強度材料としては、冷間圧延オーステナイト系ステンレス鋼板が用いられることが多い。
【0003】
冷間圧延オーステナイト系ステンレス鋼板は、仕上げ冷間圧延での加工率を変えることによって、材料の加工硬化現象を利用して強度レベルを調整(調質圧延)することができる。しかし、通常の冷間圧延設備を使用して製造されたステンレス鋼帯では、十分な平坦性が得られず、特に寸法精度の厳格な部品用素材としては使用できないことが多い。そこで、冷間圧延の後にテンションレベラ矯正またはテンションアニーリング処理を行い、平坦性を改善している。
【0004】
一般に、冷間圧延の後にテンションレベラ設備によって矯正処理を施したステンレス鋼帯は、高い張力を負荷された状態で曲げ、曲げ戻しの繰り返し加工を受けるために、その板厚方向の表面近傍に大きな残留応力が発生する。この様な鋼帯から切り出された鋼板は、表面をエッチングして板厚を減ずると、残留応力のバランスが崩れて、鋼板に反りを生じる。
【0005】
鋼板の表面をエッチングすることによって装飾シートを製造する方法として、例えば特公平4−69229号公報には、冷間圧延後の鋼板に降伏点以下の張力を与えながら材料の軟化温度以下の温度で張力付与焼鈍、いわゆるテンションアニーリングを施す方法が開示されている。このテンションアニーリング法は、高強度ステンレス鋼板の平坦度を矯正するとともに内在する残留応力を低減させる手段として用いられている。しかし、テンションアニーリング法の実施には、複雑な専用の加熱設備を準備する必要がある。
【0006】
【発明が解決しようとする課題】
本発明の目的は、上記のような専用の設備(テンションアニーリング炉)を必要とせず、簡便な方法によって、エッチング後の平坦性に優れた高強度オーステナイト系ステンレス鋼板を製造する方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、ステンレス鋼板をエッチングした後に発生する「反り」が平坦性を悪化させており、これは鋼板の残留応力が原因であると予想し、種々製造条件を変えたステンレス鋼板について、残留応力を調査した。その結果、冷間圧延条件およびテンションレベラによる矯正条件を調整した後、冷間圧延材の0.2%耐力以下に相当する張力を付与し、さらに低温焼鈍を施せば残留応力が低減できることを見いだし、本発明を完成した。
【0008】
本発明の要旨は、下記に示すステンレス鋼板の製造方法にある。
【0009】
焼鈍されたオーステナイト系ステンレス冷延鋼帯を厚さの減少率で5%以上の加工率で冷間圧延した後、伸び率を0.08%以上としてテンションレベラにより矯正し、続いて冷間圧延材の0.2%耐力の0.7〜1.0倍に相当する張力を付与し、さらに材料温度を700〜800℃として焼鈍処理することを特徴とするエッチング後の平坦性に優れたステンレス鋼板の製造方法。
【0010】
【発明の実施の形態】
本発明の製造方法に使用する冷間圧延オーステナイト系ステンレス鋼帯は、一般的な方法で製造できる。すなわち、造塊法または連続鋳造法によって製造された鋼片を、熱間圧延によって鋼帯とした後に、軟化焼鈍、酸洗、冷間圧延を繰り返して所定の板厚とする。
【0011】
上記の方法で得られた冷間圧延オーステナイト系ステンレス鋼帯を焼鈍処理した後、本発明ではさらに冷間圧延を行う。この冷間圧延は、所望の材料強度を付与するために実施するものであり、所望の強度に応じて冷間加工率が変えられる。ここで、冷間加工を利用してJIS G4313に規定されたバネ用ステンレス鋼帯相当の高強度材料を得るためには、少なくとも5%以上の加工率を必要とする。なお、加工率の上限は特に規定しないが、後に成形加工を必要とする場合は延性を確保する目的から50%程度とするのが望ましい。
【0012】
冷間圧延後のオーステナイト系ステンレス鋼帯は、ふち波または中伸びなどの平坦性を阻害する要因が含まれている。これを除去するために、テンションレベラ設備による矯正を施す。ここで、テンションレベラ設備とは、鋼帯をローラー設備に通して鋼帯に一定の張力を付与した状態で2回以上の曲げ、曲げ戻しを行う設備である。
【0013】
本発明では、テンションレベラ設備による矯正条件を伸び率が0.08%以上(すなわち、ある区間における鋼板の長さが0.08%以上長くなる)とした。伸び率が0.08%未満では、平坦性を矯正する効果が充分に得られない。伸び率の上限は、特に定めないが、伸び率が過大になると材料が破断する恐れがあるため、ふち波、中伸びなどの平坦性を矯正できるだけの水準(およそ1.0%まで)とするのが望ましい。
【0014】
ふち波、中伸びなどの平坦性を評価するには、急峻度が用いられる。急峻度とは、鋼板の長手方向に発生する波状の形態から算出される値であり、図4に示すように波高さをh、波長をLとしたとき、(h/L)×100(%)で表される値の最大値である。本発明では、急峻度を1.0%以下、望ましくは0.5%以下とするのが望ましい。この値は、特に寸法精度の厳格な部材用の素材に要求されるふち波、中伸びなどの平坦度に相当する。
【0015】
次に、本発明では、テンションレベラ通板後の鋼帯に、冷間圧延材の0.2%耐力以下の張力を常温で付与する(以下、これを「張力付与」と記載する)を行う。これは、テンションレベラ通板によって発生した材料に内在する残留応力を低減してエッチング後の平坦性を改善するためである。この際に使用する設備は、鋼板の巻き戻しリールと巻き取りリールとの間に鋼帯を把持して張力をかけられる一対のブライドルロールをもつ装置であればよい。テンションレベラ装置を用いる場合は、一対のブライドルロールの間に存在する曲げロールを鋼帯から全て開放すればよい。
【0016】
通板中の鋼帯に付与する張力は、冷間圧延材の0.2%耐力の70%未満に相当する張力では、残留応力の低減効果が得られない。また、鋼帯に付与する張力が0.2%耐力に相当する張力を超えると、通板中に破断する恐れがある。したがって、鋼帯に付与する張力は、冷間圧延材の0.2%耐力の70%以上から0.2%耐力までに相当する張力、すなわち0.2%耐力の0.7〜1.0倍が適当である。
【0017】
図1は、張力付与時の鋼帯に付与する張力とエッチング後の反り曲率との関係を示す図である。この図は、焼鈍した板厚0.294mmのSUS 304ステンレス冷延鋼帯に冷間圧延(加工率32%)およびテンションレベラによる矯正(伸び率0.5%)を施して作製した板厚0.200mmの鋼帯(0.2%耐力は1180MPa)を用い、鋼帯に付与する張力を応力に換算して0から1215MPaまで変化させて張力付与を行い、得られた鋼帯から切り出した鋼板をハーフエッチングした後、平坦性を調査した結果である。
【0018】
ハーフエッチングおよび平坦性の評価は、図2に示す方法で行った。
【0019】
図2は、ハーフエッチングの方法および平坦性の評価方法を説明するための模式図である。まず、図2(a)に示すように、長さL、幅Bおよび厚さtの鋼板1の片側表面(図では下側)にエッチングを防止するレジストマスク2を塗布する。次に、レジストマスク2を塗布した鋼板1を塩化第二鉄の溶液に浸漬し、板厚tが1/2になるまでエッチング(ハーフエッチング)を行う。ハーフエッチングを行った鋼板1−1は、残留応力が存在すると図2(b)に示すように湾曲する。さらに、レジストマスク2を除去すると鋼板1−1の残留応力による湾曲(反り)が生じる。この反りの形状を円弧とみなし、図2(c)に示すように弦の長さLおよび反り量hを測定して、下記式によって曲率半径rを計算した。
r=0.5h{1+L /(4・h )}
ハーフエッチング後の反り曲率(ρ=1/r)は、エッチング前の鋼板に内在する残留応力の大きさに対応する。
【0020】
図1から明らかなように、張力付与時の張力が応力に換算して冷間圧延材の0.2%耐力の0.7倍未満(825MPa)を超えると、反り曲率(ρ)は張力が増加するにしたがって低下する。張力が材料の0.2%耐力(1180MPa)と一致すると、反り曲率はほぼ0(零)となる。
【0021】
本発明では、張力付与通板を施して低減した鋼帯の残留応力をさらに相乗的に大幅に低減し、エッチング後の反りを減らすため、低温焼鈍を実施する。張力付与通板と低温焼鈍との組み合わせ効果によって残留応力が大幅に低減する。このための設備としては、通常の連続光輝焼鈍設備を使用することができる。この処理は、材料温度を700〜800℃とする。処理温度が700℃未満では、残留応力の低減効果が充分に得られない。また、800℃を超えると材料が軟化して強度特性を低下する。なお、焼鈍時間は30秒から10分程度が望ましい。低温焼鈍の保持時間が30秒未満では、鋼板の面内の均一な残留応力を低減する効果が十分得られない。しかし、保持時間が10分を超えると材料が軟化して強度特性が低下するおそれがある。低温焼鈍処理には、残留応力を低減させるほかにばね限界値の改善および再加熱による寸法変化を抑止する効果もある。
【0022】
特に寸法精度の厳格な部材に用いられるオーステナイト系ステンレス鋼板は、エッチング後の平坦性を保証するためには、ハーフエッチング後の反り曲率が0.0030mm−1以下であればよい。
【0023】
図3は、低温焼鈍温度とエッチング後の反り曲率との関係を示す図である。
【0024】
この図は、次のような処理を行ったSUS 304鋼板をハーフエッチングした後、平坦性および材料硬度を調査した結果である。すなわち、焼鈍した板厚0.294mmのSUS 304ステンレス冷延鋼帯に冷間圧延(加工率32%)およびテンションレベラ(伸び率0.5%)を施して製作した板厚0.200mmの鋼帯(0.2%耐力は1180MPa)を用い、鋼帯に付与する張力を応力に換算して1110MPaに相当する張力を付与した。その後、材料の温度を550℃から825℃までの間で種々の温度に1分間保持する低温焼鈍処理を施した。なお、ハーフエッチング後の平坦性は、前述の反り曲率で評価した。
【0025】
図3から明らかなように、材料の処理温度が550〜650℃の範囲で材料の硬さが処理前の硬さよりも高いのは、この温度域は時効による硬化が生じる範囲であり硬度が高くなったためである。エッチング後の反り曲率は、処理温度の上昇に伴って低下する。焼鈍処理温度を700℃以上とすれば反り曲率が0.0030mm−1以下となり、平坦性が良好となる。しかし、800℃を超えると材料硬度が急激に低下する。このため、本発明では低温焼鈍温度を700〜800℃とした。この温度範囲は、材料内部に転位として内在する加工歪みが消滅するいわゆる回復現象が有効に働く範囲であり、また材料が再結晶現象により軟化し始める温度よりも低い温度範囲にあることが別途試験により確認された。
【0026】
【実施例】
JIS G4313に規定されているSUS 304およびSUS 301の焼鈍されたステンレス鋼帯(板厚が0.220mm、0.217mm、0.183mmおよび0.179mm)を表1に示す冷間圧延率で圧延し、板厚が0.15mmの鋼帯を得た。これらの鋼帯についてJIS Z2244に規定されるビッカース硬度測定によって強度特性を、またJIS Z2241に規定される引張試験によって材料の0.2%耐力を測定した。それらの測定結果を表1に付記した。
【0027】
【表1】

Figure 0003573047
【0028】
冷間圧延後の鋼帯に対して、表2に示す各々の条件でテンションレベラによる矯正、張力付与および低温焼鈍を実施した。ここで張力付与通板のための設備は、通常のテンションレベラ設備を使用して全てのレベラロールを開放し、鋼帯とレベラロールとの接触がない状態とした。また、低温焼鈍のための設備は、加熱炉の炉長が9mの連続光輝焼鈍設備を使用した。低温焼鈍の通板速度は、8m/分とした。
【0029】
【表2】
Figure 0003573047
【0030】
得られた鋼帯から幅が650mm、長さが1200mmの鋼板を切り出し、その鋼板について、ふち波、中伸びなどの平坦性を前述の急峻度によって評価した。また、エッチング後の平坦性の評価は、幅が10mm、長さが100mmの鋼板を切り出し、その鋼板についてハーフエッチング後の反り曲率を測定した。さらに鋼板のビッカース硬度を測定した。それぞれの結果を表2に付記した。
【0031】
表2から明らかなように、本発明の方法によって製造された鋼板(試験番号1〜6)では、急峻度が0.4〜0.8%の範囲にあり、ふち波、中伸び等の平坦性が良好である。また、ハーフエッチング後の反り曲率が0.0016〜0.0021(mm−1)の範囲にあり、エッチング後の平坦性が共に良好である。さらに、低温焼鈍後の硬さがビッカース硬度で309〜430にあり、焼鈍による強度特性の低下も見られない。
【0032】
これに対して比較例の試験番号7〜9の鋼板は、低温焼鈍処理を施さない例である。いずれもハーフエッチング後の反り曲率は0.0094〜0.037(mm−1)の範囲にあり、エッチング後の平坦性に劣るものである。
【0033】
試験番号10の鋼板は、張力付与通板を施さなかった鋼板であり、ハーフエッチング後の反り曲率は0.0094(mm−1)と大きく、エッチング後の平坦性に劣るものである。
【0034】
試験番号11および12の鋼板は、張力付与通板の張力が鋼板の0.2%耐力の0.54倍および0.50倍と小さく、ハーフエッチング後の反り曲率は0.0076および0.0072(mm−1)と大きく、エッチング後の平坦性に劣るものである。
【0035】
試験番号13の鋼板は、焼鈍処理温度が680℃と低いため、ハーフエッチング後の反り曲率は0.0052(mm−1)と大きく、エッチング後の平坦性に劣るものである。
【0036】
試験番号14の鋼板は、焼鈍処理温度が820℃と高いため、鋼板の硬さがビッカース硬度で266と低くなった。
【0037】
試験番号15および16の鋼板は、テンションレベラ矯正を施さなかった例であり、急峻度が1.7%および1.3%と大きく、平坦性に劣るものである。
【0038】
【発明の効果】
本発明の方法は、冷間圧延条件、テンションレベラ条件、張力付加通板条件および低温焼鈍条件を規定することにより、エッチング後の平坦性に優れた高強度オーステナイトステンレス鋼板を製造することができる。この方法には、専用のテンションアンニーリング設備を必要とせず、ステンレス鋼を製造する通常のテンションレベラ設備および連続光輝焼鈍炉があれば実施することができる。
【図面の簡単な説明】
【図1】張力付与通板時に鋼板に付加した引張応力とハーフエッチング後の鋼板の反り曲率との関係を示す図である。
【図2】ハーフエッチングの方法および平坦性の評価方法を説明するための模式図である。
【図3】低温焼鈍時の材料温度とハーフエッチング後の鋼板の反り曲率との関係を示す図である。
【図4】鋼板に発生する平坦度を評価する急峻度を計算する方法を説明するための図である。
【符号の説明】
1.低温焼鈍された鋼板 1−1.エッチングされた鋼板
2.レジスト皮膜[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of manufacturing a stainless steel strip used for forming a shape of a target component by etching, and more particularly to a method of manufacturing a high-strength austenitic stainless steel sheet having excellent flatness after etching.
[0002]
[Prior art]
In recent years, members used for electronic devices and precision devices have strict requirements for weight reduction, dimensional accuracy, and the like, and higher strength characteristics and better flatness of these materials are also strongly required. In addition, in order to improve the adhesion with solder, an adhesive or a paint, or to impart a design, a part of the surface or a part of the entire surface is roughened by etching. May be applied. As these materials, particularly high-strength materials, cold-rolled austenitic stainless steel sheets are often used.
[0003]
The strength level of the cold-rolled austenitic stainless steel sheet can be adjusted (temper rolling) by changing the working ratio in the finish cold rolling to utilize the work hardening phenomenon of the material. However, a stainless steel strip manufactured using ordinary cold rolling equipment cannot obtain sufficient flatness and cannot be used as a material for parts with particularly strict dimensional accuracy. Therefore, after the cold rolling, a tension leveler straightening or a tension annealing treatment is performed to improve the flatness.
[0004]
In general, a stainless steel strip that has been subjected to a straightening treatment by a tension leveler after cold rolling is bent under a state of being applied with a high tension, and is subjected to repeated bending and unwinding. Residual stress occurs. When the surface of a steel sheet cut from such a steel strip is etched to reduce the thickness, the balance of the residual stress is lost, and the steel sheet is warped.
[0005]
As a method of manufacturing a decorative sheet by etching the surface of a steel sheet, for example, Japanese Patent Publication No. 4-69229 discloses a method of applying a tension below the yield point to a steel sheet after cold rolling at a temperature below the softening temperature of the material. A method of performing tension imparting annealing, so-called tension annealing, is disclosed. This tension annealing method is used as a means for correcting the flatness of a high-strength stainless steel plate and reducing the residual stress existing therein. However, the implementation of the tension annealing method requires preparation of a complicated dedicated heating facility.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a high-strength austenitic stainless steel sheet having excellent flatness after etching by a simple method without requiring the dedicated equipment (tension annealing furnace) as described above. It is in.
[0007]
[Means for Solving the Problems]
The present inventors have found that `` warpage '' generated after etching a stainless steel sheet deteriorates the flatness, which is presumed to be due to residual stress of the steel sheet, and for a stainless steel sheet with various manufacturing conditions changed, The residual stress was investigated. As a result, it has been found that, after adjusting the cold rolling conditions and the straightening conditions by the tension leveler, applying a tension equivalent to 0.2% proof stress or less of the cold-rolled material and further performing low-temperature annealing can reduce the residual stress. Thus, the present invention has been completed.
[0008]
The gist of the present invention resides in a method for manufacturing a stainless steel sheet described below.
[0009]
After cold-rolling the annealed austenitic stainless steel cold-rolled steel strip at a reduction rate of 5% or more in thickness reduction rate, the elongation rate is adjusted to 0.08% or more and straightened by a tension leveler, and then cold-rolled. Stainless steel with excellent flatness after etching, characterized by applying a tension equivalent to 0.7 to 1.0 times the 0.2% proof stress of the material and annealing at a material temperature of 700 to 800 ° C. Steel plate manufacturing method.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The cold-rolled austenitic stainless steel strip used in the production method of the present invention can be produced by a general method. That is, after a steel slab produced by the ingot-making method or the continuous casting method is formed into a steel strip by hot rolling, soft annealing, pickling and cold rolling are repeated to obtain a predetermined thickness.
[0011]
After annealing the cold-rolled austenitic stainless steel strip obtained by the above method, the present invention further performs cold rolling. This cold rolling is performed in order to impart a desired material strength, and the cold working ratio is changed according to the desired strength. Here, in order to obtain a high-strength material equivalent to a stainless steel strip for a spring specified in JIS G4313 by using cold working, a working rate of at least 5% or more is required. Although the upper limit of the working ratio is not particularly defined, it is desirable to set the upper limit to about 50% in order to secure the ductility when forming work is required later.
[0012]
The austenitic stainless steel strip after cold rolling includes factors that impair flatness, such as edge waves and middle elongation. In order to remove this, straightening by a tension leveler facility is performed. Here, the tension leveler equipment is an equipment that performs bending and bending back twice or more while applying a constant tension to the steel strip by passing the steel strip through roller equipment.
[0013]
In the present invention, the straightening condition by the tension leveler equipment is set such that the elongation percentage is 0.08% or more (that is, the length of the steel sheet in a certain section is increased by 0.08% or more). If the elongation is less than 0.08%, the effect of correcting flatness cannot be sufficiently obtained. The upper limit of the elongation is not particularly defined, but if the elongation is excessive, the material may be broken. Therefore, the upper limit of the elongation is set to a level (up to about 1.0%) that can correct flatness such as edge wave and middle elongation. It is desirable.
[0014]
Steepness is used to evaluate flatness such as edge waves and middle elongation. The steepness is a value calculated from a wave-like form generated in the longitudinal direction of the steel sheet. As shown in FIG. 4, when the wave height is h and the wavelength is L, (h / L) × 100 (%) ) Is the maximum value. In the present invention, the steepness is desirably 1.0% or less, desirably 0.5% or less. This value corresponds to flatness such as edge wave and middle elongation required for a material for a member having strict dimensional accuracy.
[0015]
Next, in the present invention, a tension equal to or lower than 0.2% proof stress of the cold-rolled material is applied to the steel strip after passing the tension leveler at room temperature (hereinafter, this is referred to as “tension application”). . This is because the residual stress existing in the material generated by the tension leveler passing plate is reduced to improve the flatness after etching. The equipment used at this time may be an apparatus having a pair of bridle rolls that can grip the steel strip and apply tension between the steel sheet rewind reel and the take-up reel. When a tension leveler is used, all the bending rolls existing between the pair of bridle rolls may be released from the steel strip.
[0016]
If the tension applied to the steel strip during threading is less than 70% of the 0.2% proof stress of the cold-rolled material, the effect of reducing the residual stress cannot be obtained. Further, when the tension applied to the steel strip exceeds the tension corresponding to 0.2% proof stress, there is a possibility that the steel strip may break during threading. Accordingly, the tension applied to the steel strip is a tension corresponding to 70% or more of the 0.2% proof stress of the cold-rolled material to 0.2% proof stress, that is, 0.7 to 1.0% of the 0.2% proof stress. Double is appropriate.
[0017]
FIG. 1 is a diagram showing the relationship between the tension applied to the steel strip when applying tension and the curvature after etching. This figure shows that the annealed SUS 304 stainless cold rolled steel strip having a thickness of 0.294 mm is subjected to cold rolling (working rate 32%) and straightening by a tension leveler (elongation rate 0.5%). A steel strip cut from the obtained steel strip using a 200 mm steel strip (0.2% proof stress is 1180 MPa), converting the tension applied to the steel strip into stress and changing it from 0 to 1215 MPa. Is a result of investigating flatness after half-etching.
[0018]
The half-etching and the evaluation of the flatness were performed by the method shown in FIG.
[0019]
FIG. 2 is a schematic diagram for explaining a half-etching method and a flatness evaluation method. First, as shown in FIG. 2A, a resist mask 2 for preventing etching is applied to one surface (the lower side in the figure) of a steel plate 1 having a length L, a width B and a thickness t. Next, the steel sheet 1 coated with the resist mask 2 is immersed in a solution of ferric chloride, and etching (half etching) is performed until the sheet thickness t becomes 1 /. The half-etched steel sheet 1-1 bends as shown in FIG. 2B if there is residual stress. Further, when the resist mask 2 is removed, a curvature (warpage) occurs due to the residual stress of the steel plate 1-1. The shape of the warp was regarded as a circular arc, and the chord length L 1 and the amount of warp h 1 were measured as shown in FIG. 2C, and the radius of curvature r was calculated by the following equation.
r = 0.5h 1 {1 + L 1 2 / (4 · h 1 2)}
The warpage curvature (ρ = 1 / r) after half-etching corresponds to the magnitude of the residual stress inherent in the steel sheet before etching.
[0020]
As is clear from FIG. 1, when the tension at the time of applying tension exceeds 0.7 times (825 MPa) the 0.2% proof stress of the cold-rolled material in terms of stress, the warpage curvature (ρ) becomes smaller. It decreases as it increases. When the tension matches the 0.2% proof stress (1180 MPa) of the material, the warpage curvature becomes almost 0 (zero).
[0021]
In the present invention, low-temperature annealing is performed in order to further significantly reduce the residual stress of the steel strip, which has been reduced by applying the tension passing plate, and to reduce the warpage after etching. Residual stress is greatly reduced by the combined effect of the tension imparting plate and the low-temperature annealing. As equipment for this purpose, ordinary continuous bright annealing equipment can be used. In this process, the material temperature is set to 700 to 800 ° C. If the processing temperature is lower than 700 ° C., the effect of reducing the residual stress cannot be sufficiently obtained. On the other hand, when the temperature exceeds 800 ° C., the material is softened and the strength characteristics are deteriorated. The annealing time is desirably about 30 seconds to 10 minutes. If the holding time of the low-temperature annealing is less than 30 seconds, the effect of reducing the in-plane uniform residual stress of the steel sheet cannot be sufficiently obtained. However, if the holding time exceeds 10 minutes, the material may be softened and the strength properties may be reduced. The low-temperature annealing treatment has an effect of improving the spring limit value and suppressing a dimensional change due to reheating, in addition to reducing the residual stress.
[0022]
In particular, an austenitic stainless steel sheet used for a member having strict dimensional accuracy needs to have a warp curvature after half etching of 0.0030 mm -1 or less in order to guarantee flatness after etching.
[0023]
FIG. 3 is a diagram showing the relationship between the low-temperature annealing temperature and the curvature after etching.
[0024]
This figure shows the results of examining flatness and material hardness after half-etching a SUS 304 steel plate that has been subjected to the following processing. That is, a 0.200 mm thick steel plate manufactured by subjecting an annealed SUS 304 stainless cold rolled steel strip having a thickness of 0.294 mm to cold rolling (working rate 32%) and tension leveler (elongation rate 0.5%). Using a band (0.2% proof stress is 1180 MPa), a tension equivalent to 1110 MPa was applied by converting the tension applied to the steel band into stress. Thereafter, a low-temperature annealing treatment for maintaining the material at various temperatures between 550 ° C. and 825 ° C. for one minute was performed. In addition, the flatness after half etching was evaluated by the above-mentioned curvature.
[0025]
As is clear from FIG. 3, the reason that the hardness of the material is higher than the hardness before the processing when the processing temperature of the material is 550 to 650 ° C. is in this temperature range where the hardening due to aging occurs and the hardness is high. Because it became. The curvature after etching decreases as the processing temperature increases. When the annealing temperature is 700 ° C. or higher, the warpage curvature becomes 0.0030 mm −1 or less, and the flatness is improved. However, when the temperature exceeds 800 ° C., the material hardness sharply decreases. Therefore, in the present invention, the low-temperature annealing temperature is set to 700 to 800 ° C. This temperature range is a range in which the so-called recovery phenomenon in which the processing strain inherent as dislocations in the material disappears works effectively, and it is separately tested that the temperature is lower than the temperature at which the material begins to soften due to the recrystallization phenomenon. Confirmed by
[0026]
【Example】
SUS 304 and SUS 301 annealed stainless steel strips (thicknesses of 0.220 mm, 0.217 mm, 0.183 mm and 0.179 mm) specified in JIS G4313 are rolled at the cold rolling rates shown in Table 1. Then, a steel strip having a thickness of 0.15 mm was obtained. The strength characteristics of these steel strips were measured by Vickers hardness measurement specified in JIS Z2244, and the 0.2% proof stress of the material was measured by a tensile test specified in JIS Z2241. The measurement results are shown in Table 1.
[0027]
[Table 1]
Figure 0003573047
[0028]
The steel strip after the cold rolling was subjected to straightening, tension application and low-temperature annealing by a tension leveler under the respective conditions shown in Table 2. Here, as the equipment for passing the tension applying plate, all the leveler rolls were opened using a normal tension leveler equipment, so that the steel strip and the leveler roll did not come into contact with each other. As the equipment for low-temperature annealing, a continuous bright annealing equipment with a heating furnace length of 9 m was used. The passing speed of the low-temperature annealing was 8 m / min.
[0029]
[Table 2]
Figure 0003573047
[0030]
A steel plate having a width of 650 mm and a length of 1200 mm was cut out from the obtained steel strip, and the flatness such as edge wave and middle elongation of the steel sheet was evaluated by the steepness described above. For evaluation of flatness after etching, a steel plate having a width of 10 mm and a length of 100 mm was cut out, and the warp curvature after half-etching was measured for the steel plate. Further, the Vickers hardness of the steel sheet was measured. Table 2 shows the results.
[0031]
As is clear from Table 2, in the steel sheets manufactured by the method of the present invention (test numbers 1 to 6), the steepness is in the range of 0.4 to 0.8%, and flatness such as edge wave and middle elongation is obtained. The properties are good. The warp curvature after half etching is in the range of 0.0016 to 0.0021 (mm -1 ), and the flatness after etching is both good. Furthermore, the hardness after low-temperature annealing is Vickers hardness of 309 to 430, and no decrease in strength characteristics due to annealing is observed.
[0032]
On the other hand, the steel sheets of the test numbers 7 to 9 of the comparative examples are examples in which the low-temperature annealing treatment is not performed. In any case, the warp curvature after half etching is in the range of 0.0094 to 0.037 (mm -1 ), and the flatness after etching is poor.
[0033]
The steel sheet of Test No. 10 is a steel sheet that has not been subjected to tension imparting passing, has a large warpage curvature after half-etching of 0.0094 (mm −1 ), and is inferior in flatness after etching.
[0034]
In the steel plates of Test Nos. 11 and 12, the tension of the tension-applied passing plate was as small as 0.54 times and 0.50 times the 0.2% proof stress of the steel plate, and the warpage curvature after half etching was 0.0076 and 0.0072. (Mm −1 ), which is inferior in flatness after etching.
[0035]
Since the steel sheet of Test No. 13 has a low annealing temperature of 680 ° C., the warp curvature after half-etching is as large as 0.0052 (mm −1 ), which is inferior in flatness after etching.
[0036]
Since the steel sheet of Test No. 14 had a high annealing temperature of 820 ° C., the steel sheet had a low Vickers hardness of 266.
[0037]
The steel sheets of Test Nos. 15 and 16 are examples in which the tension leveler correction was not performed, and the steepness was as large as 1.7% and 1.3%, and the flatness was poor.
[0038]
【The invention's effect】
The method of the present invention can produce a high-strength austenitic stainless steel sheet excellent in flatness after etching by specifying the conditions of cold rolling, tension leveler conditions, tension passing condition, and low-temperature annealing condition. This method does not require a special tension annealing equipment, and can be carried out by using a usual tension leveler equipment for producing stainless steel and a continuous bright annealing furnace.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between a tensile stress applied to a steel sheet during tension application and a warp curvature of the steel sheet after half-etching.
FIG. 2 is a schematic diagram for explaining a half-etching method and a flatness evaluation method.
FIG. 3 is a diagram showing the relationship between the material temperature during low-temperature annealing and the curvature of the steel sheet after half-etching.
FIG. 4 is a diagram for explaining a method of calculating a steepness for evaluating flatness generated in a steel plate.
[Explanation of symbols]
1. Low-temperature annealed steel plate 1-1. 1. etched steel plate Resist film

Claims (1)

焼鈍されたオーステナイト系ステンレス冷延鋼帯を厚さの減少率で5%以上の加工率で冷間圧延した後、伸び率を0.08%以上としてテンションレベラによる矯正を行い、その後前記冷間圧延材の0.2%耐力の0.7〜1.0倍に相当する張力を付与し、さらに材料温度を700〜800℃として焼鈍処理することを特徴とするエッチング後の平坦性に優れたステンレス鋼板の製造方法。After cold-rolling the annealed austenitic stainless steel cold-rolled steel strip at a reduction rate of 5% or more in thickness reduction rate, the elongation rate is set to 0.08% or more, and straightening by a tension leveler is performed. A flatness after etching characterized by applying a tension equivalent to 0.7 to 1.0 times the 0.2% proof stress of the rolled material and further performing an annealing treatment at a material temperature of 700 to 800 ° C. Manufacturing method of stainless steel sheet.
JP2000033420A 2000-02-10 2000-02-10 Manufacturing method of stainless steel sheet with excellent flatness after etching Expired - Fee Related JP3573047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000033420A JP3573047B2 (en) 2000-02-10 2000-02-10 Manufacturing method of stainless steel sheet with excellent flatness after etching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000033420A JP3573047B2 (en) 2000-02-10 2000-02-10 Manufacturing method of stainless steel sheet with excellent flatness after etching

Publications (2)

Publication Number Publication Date
JP2001226718A JP2001226718A (en) 2001-08-21
JP3573047B2 true JP3573047B2 (en) 2004-10-06

Family

ID=18557909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000033420A Expired - Fee Related JP3573047B2 (en) 2000-02-10 2000-02-10 Manufacturing method of stainless steel sheet with excellent flatness after etching

Country Status (1)

Country Link
JP (1) JP3573047B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4475352B2 (en) 2006-07-28 2010-06-09 住友金属工業株式会社 Stainless steel sheet for parts and manufacturing method thereof
JP5467408B2 (en) * 2008-12-19 2014-04-09 日本金属株式会社 Stainless steel plate for spring and manufacturing method thereof
JP2011012334A (en) * 2009-07-06 2011-01-20 Sumitomo Metal Ind Ltd Stainless steel sheet for photoetching-processing and manufacturing method therefor
WO2014030607A1 (en) * 2012-08-20 2014-02-27 新日鐵住金株式会社 Stainless steel sheet and method for producing same
JP6260019B2 (en) 2012-11-09 2018-01-17 北陽電機株式会社 Metal elastic member, micro mechanical device, manufacturing method of micro mechanical device, swing control device, and swing control method
JP5382257B1 (en) * 2013-01-10 2014-01-08 大日本印刷株式会社 Metal plate, method for producing metal plate, and method for producing vapor deposition mask using metal plate
JP5455099B1 (en) 2013-09-13 2014-03-26 大日本印刷株式会社 Metal plate, metal plate manufacturing method, and mask manufacturing method using metal plate
JP5516816B1 (en) 2013-10-15 2014-06-11 大日本印刷株式会社 Metal plate, method for producing metal plate, and method for producing vapor deposition mask using metal plate
JP6369742B2 (en) * 2014-02-26 2018-08-08 北陽電機株式会社 Micro mechanical equipment
JP5641462B1 (en) 2014-05-13 2014-12-17 大日本印刷株式会社 Metal plate, metal plate manufacturing method, and mask manufacturing method using metal plate
DE202016008840U1 (en) 2015-02-10 2020-02-11 Dai Nippon Printing Co., Ltd. metal sheet
CN114515757B (en) * 2022-02-18 2024-04-19 山西太钢不锈钢精密带钢有限公司 Production method of super-hard ultra-flat precise strip steel SMT steel mesh material

Also Published As

Publication number Publication date
JP2001226718A (en) 2001-08-21

Similar Documents

Publication Publication Date Title
JP3573047B2 (en) Manufacturing method of stainless steel sheet with excellent flatness after etching
JP2021014639A (en) PRODUCING METHOD OF Fe-Ni ALLOY SHEET
US2040442A (en) Method of treating sheet metal
JP7156279B2 (en) METHOD FOR MANUFACTURING METAL MASK THIN PLATE AND METHOD FOR METAL MASK SLIM
JP2812869B2 (en) Plate material for electrical and electronic parts for half-etching and method for producing the same
JP2011012334A (en) Stainless steel sheet for photoetching-processing and manufacturing method therefor
JP2000319728A (en) Manufacture of metal sheet for shadow mask
JP3661434B2 (en) Controlled cooling method for hot rolled steel sheet
JPH1088302A (en) Production of titanium sheet excellent in glare-proof characteristics
JPS63169330A (en) Production of chromium stainless steel strip of high-strength double phase structure having excellent ductility
JPH0867914A (en) Production of ic lead frame material
JP4052140B2 (en) Steel plate shape correction method
JPH0353077B2 (en)
JPH09256061A (en) Production of thin steel sheet for aperture grill
JPH0853726A (en) Pure titanium thin sheet for roll forming and its production
JP3490814B2 (en) Manufacturing method of aluminum alloy plate with excellent flatness
JPS58181825A (en) Manufacture of shadow mask
JPH1034237A (en) Production of cold rolling stainless steel sheet with excellent flatness
JPH0130893B2 (en)
RU1780884C (en) Method of obtaining coldrolles work-hardened band for production of bimetal band saw
JPS6350425B2 (en)
JP2002144051A (en) Manufacturing method of asymmetric clad material
JPS5944937B2 (en) High speed tension leveler
JPH0140093B2 (en)
JP2007021537A (en) Shape straightening method of metallic strip

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040621

R150 Certificate of patent or registration of utility model

Ref document number: 3573047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees