JP3571356B2 - Manufacturing method of evaporation material - Google Patents

Manufacturing method of evaporation material Download PDF

Info

Publication number
JP3571356B2
JP3571356B2 JP21013792A JP21013792A JP3571356B2 JP 3571356 B2 JP3571356 B2 JP 3571356B2 JP 21013792 A JP21013792 A JP 21013792A JP 21013792 A JP21013792 A JP 21013792A JP 3571356 B2 JP3571356 B2 JP 3571356B2
Authority
JP
Japan
Prior art keywords
vapor deposition
deposition material
powder
sio
specific gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21013792A
Other languages
Japanese (ja)
Other versions
JPH0657417A (en
Inventor
芳治 森原
宗敏 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP21013792A priority Critical patent/JP3571356B2/en
Publication of JPH0657417A publication Critical patent/JPH0657417A/en
Application granted granted Critical
Publication of JP3571356B2 publication Critical patent/JP3571356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、酸化珪素系蒸着膜を形成するために使用される蒸着材料の製造方法に関するものである。
【0002】
【従来の技術】
SiO(一酸化珪素) 、SiO(二酸化珪素)等の酸化珪素系の薄膜は、電気絶縁性に優れ、エレクトロニクスや光学の分野で使われているが、透明で、ガスバリア性等にも優れていることから、食料品等様々なものの包装材料の表面被覆材(ガスバリア材)としても利用されるようになってきた。
【0003】
この酸化珪素系の薄膜を得る方法として、従来は、予め合成した一酸化珪素の粉末あるいは塊状のものを蒸着用材料として使用し、抵抗加熱、あるいは電子ビーム(EB)照射加熱等によって蒸着を行う方法が採られていた。この方法は、膜の生成速度が比較的大きく、得られる薄膜の酸素透過量、水蒸気透過量が小さく、耐屈曲性、耐熱性にも優れるなど、良好な特性を有するが、蒸着材料として用いる一酸化珪素の製造工程が複雑で、生産性が悪いため価格が高い。そのため、例えば蒸着ガスバリア性フィルムの原材料費が大きくなり、包装材料をはじめとするガスバリア性フィルム応用品の製造コストの削減には限界がある。
【0004】
一方、金属珪素 (Si) と二酸化珪素(SiO)を混合し、造粒あるいはプレス成形した蒸着用材料が特開昭63−310961号公報に提案されている。しかし、この蒸着用材料は組成が不均一で、蒸着膜生成時の蒸発特性も良くないため、良好な特性の膜を得ることは難しい。また、熱の拡散、EB等の荷電ビーム加熱の場合の帯電などにより、材料が飛散したり、高温で飛沫が発生し、膜厚および組成の均一な蒸着膜が得られないという問題があった。また、基板材料がプラスチックのような耐熱性のない基材の場合には、飛沫により基板が溶け、微小な穴や欠陥が発生する場合がある。更に、蒸着材料に付着、及び、混入している不純物から多量のガスが放出され、真空圧が上昇し、得られる膜特性が悪いという問題もあった。このようなことは、高周波誘導加熱、抵抗加熱等の他の蒸着法においても程度の差はあるものの見られ、蒸着時の飛沫、スプラッシュ発生の少ない蒸着材料が望まれていた。
【0005】
【発明が解決しようとする課題】
本発明は、合成した一酸化珪素単体を蒸着材料とするのではなく、主にSiとSiOをはじめとするSi酸化物からなる蒸着材料を用いて薄膜を作製する方法において、出力を上げて高能率の作業を行っても良好な特性が得られる技術の開発を課題としてなされたものである。
【0006】
本発明の具体的な目的は、蒸発特性が良好で、蒸着速度を大きくした場合でも優れた特性の薄膜を得ることができる酸化珪素系蒸着材料の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明の要旨は、以下の蒸着材料の製造方法にある。即ち、SiとSi酸化物を含有し、多孔質構造を有する蒸着材料であって、見掛け比重がこの蒸着材料の真比重よりも小さいことを特徴とする蒸着材料であり、好ましくは見掛け比重がこの蒸着材料の真比重よりも5〜60%小さい値をもつ蒸着材料の製造方法である。具体的には、SiとSi酸化物を含有する粉末状組成物を用いて蒸着材料を製造するに際し、粉末状組成物に水を添加した後、40〜150℃で水分を蒸発させることにより多孔質化させた後、焼結することを特徴とする蒸着材料の製造方法であり、またSiとSi酸化物を含有する粉末状組成物を用いて蒸着材料を製造するに際し、粉末状組成物100gに対して32〜52gの水を添加した後、水分を蒸発させることにより多孔質化させた後、焼結することを特徴とする蒸着材料の製造方法であり、更に、粉末状組成物100gに対して32〜52gの水を添加した後、水分を蒸発させることにより多孔質化させた後、焼結することを特徴とする請求項1に記載の蒸着材料の製造方法である。
【0008】
本発明における真空蒸着法とは、抵抗加熱、高周波誘導加熱、EB加熱、レーザー加熱等により、ルツボに入っている材料を加熱、蒸発させて基板に付着させる方法である。この時、真空槽内に水素、酸素、水蒸気等の反応性ガスを導入し、例えば酸化反応を行わせる、反応性蒸着等の特殊な蒸着も含まれる。
【0009】
本発明の被覆用材料は、SiとSi酸化物を含むものであるが、Si酸化物としては、SiO 、SiO等およびそれらの混合物が挙げられる。SiOの使用が好適である。
【0010】
SiとSiO酸化物との混合割合は作製する薄膜に要求される特性により変化させてよく、特に限定されないが、包装用ガスバリアフィルムへの応用を考えた場合には、例えば次の通りである。すなわち、Si 100重量部に対して、Si酸化物は通常20〜400 重量部、好ましくは50〜300 重量部、更に好ましくは 100〜250 重量部である。また、Si酸化物として SiOとSiOとの混合物を使用する場合、その配合割合は、 SiO 100重量部に対して、SiOは通常50〜400 重量部、好ましくは50〜200 重量部、更に好ましくは 100〜150 重量部である。また、この成分中に、本発明の効果が損なわれない範囲で、SiおよびSi酸化物以外の成分を微量、例えば全成分に対して5重量%程度まで含んでいてもよい。
【0011】
本発明でいう多孔質構造とは、細かい空孔を多量に含んだ構造である。この空孔は発泡工程により生じさせたものをいい、天然のままで存在しているものは含まれない。本発明の多孔質構造の空孔の大きさとしては、 0.1μm 〜十数mm程度であればよいが、蒸着効率と得られる蒸着材料の特性を考えると1μm 〜数mm程度が好ましい。
【0012】
本発明でいう真比重とは、原料である無機成分が本来もっている比重をいい、見掛け比重とは、空孔を含んだ見掛け上の比重である。空孔率を原料の比重との変化率で示すと、見掛け比重が真比重よりも小さければよく、見掛け比重が真比重よりも5〜60%小さい値をもつものがより好ましい。すなわち、見掛け比重が原材料の比重より60%を超えるほど小さい場合、すなわち原材料の比重の40%未満の場合には、蒸着時の材料の消耗が激しすぎるため、材料供給を頻繁に行わなければならないという問題が出てくる。また、見掛け比重が原材料の比重より5%に満たない程度しか小さくない場合には、本発明の効果がやや小さい。
【0013】
本発明の多孔質構造を有する蒸着材料を作製する方法としては、SiとSi酸化物を含有する粉末状組成物を用いて蒸着材料を製造する際に、粉末状組成物を多孔質化させた後、焼結する方法を採ればよい。粉末状組成物とは、粉末状の組成成分であって、その粒度は本発明の効果が損なわれない限り特に限定はしないが、細かいほど本発明の効果が大きく、平均粒径50μm 以下が特に好ましい。従って、混合粉末の粒径が50μm を超える場合には、解砕して平均粒径を50μm 以下に微細化することも効果的である。
【0014】
図1は、本発明の概略の製造工程を示す図である。この図に示すように、本発明方法では、まず、Si(金属珪素)粉末とSiO(二酸化珪素)粉末を混合する。
【0015】
混合する方法としては、特に限定されないが、ボールミル、ジェットミル等、混合と同時に解砕(微粉砕)することが可能な混合機を使用するのが好ましい。これによって、混合と解砕(微粉砕)を同時に行うことができる。
【0016】
Si粉末とSiO粉末との混合粉末の粒度は後述の表1から推察されるように細かいほどよく、50μm 以下の微粉末であるのが好ましい。従って、混合粉末の粒度が50μm を超える場合は、解砕して50μm 以下に微細化するのが望ましい。なお、混合粉末を解砕する場合は、必ずしも図1に示すように混合工程の後に行う必要はない。例えば、混合前に両者を別々に解砕してもよいし、混練と同時に行ってもよく、要するに成形前に微細化しておけばよい。
【0017】
次に、混合粉末を微粉砕した後、水を添加して混練し、スラリー状とする。水の量が少なければスラリー状にならず、また、水の量が多すぎるとスラリーの粘度が低くなりすぎ、後工程の鋳込み時に取り扱いが困難になるので、水の量はSi粉末とSiO粉末との混合粉末 100g に対して32〜52g とするのが好適である。
【0018】
次いで、スラリー状の混合粉末を成形する。この成形は、型枠 (鋳型) に鋳込む方法によって行うのが実際的である。型枠ごと乾燥させることができるように耐熱材料製の型枠を用いるのが望ましい。型枠の形状は特に限定はされないが、材料の取り扱いの便を考えて、高さの低い直方体が好ましい。
【0019】
成形後、乾燥して水分を蒸発させ、成形体を多孔質化する。前記のようにスラリー状の混合粉末を型枠に鋳込んだ場合は、そのままホットプレート等の上に載せて乾燥・多孔質化(以下、単に多孔質化ともいう)を行ってもよいし、乾燥機へ入れて水分を蒸発させてもよい。
【0020】
多孔質化の温度は特に限定する必要はないが、低ければ水分の蒸発に長時間を要し、高ければ激しく沸騰して均一な多孔質体が得られないので、40〜150 ℃とする方がより望ましい。この乾燥工程でスラリー状の混合粉末は多孔質体となる。
【0021】
蒸発乾固した多孔質体は1000〜1300℃で焼結する。このときの多孔質化の見掛け比重は混練の際に添加する水分の量、組成比、多孔質化の温度等によって調節が可能である。これによって、蒸着材料として極めて好適な多孔質体が得られる。
【0022】
上記の工程で得られる多孔質構造を有する蒸着材料が本発明の蒸着材料で、以下に述べるように、酸化珪素系蒸着膜を形成するために使用される蒸着材料として極めて好適である。
【0023】
【作用】
本発明の蒸着材料及びその製造方法の特徴は、▲1▼SiとSiOをはじめとするSi酸化物との混合粉末を用いること、及び、▲2▼蒸着材料を多孔質体にすること、にある。多孔質体にするために、混合粉末に水を加える工程を経るのである。
【0024】
▲1▼のSiとSi酸化物を含有する粉末状組成物を用いることにより、両粉末の混合の均一性ならびに反応性が高められ、下記 (1)式によって反応し、SiO となって蒸発する傾向が大きくなる。この傾向は、粉末状組成物の平均粒径が小さいほど大きい。
【0025】
Si+SiO→2SiO ・・・(1)
図2は種々の平均粒径を有するSiとSiOとの混合粉末を10−5Torrの真空中で1250℃に加熱したときのSiO の蒸発による重量減少(以下、蒸発特性という)を熱重量分析により測定した結果を示す図である。この図から、所定温度(1250℃)に達した後の重量減少は、混合粉末の粒径が 100μm 程度の比較的大きい場合でも認められるが、特に、粒径が50μm 以下の場合に急激で、蒸発特性が著しく向上していることがわかる。これは、微粉末を用いることによってSiとSiOとの混合の均一性がよくなり、反応性が向上したことによるものと考えられる。焼結温度を低くすれば、焼結時の粒の成長を抑え、粉末の粒径と焼結体の粒径をほとんど同程度にすることができる。この蒸発特性に対する微粉末使用の効果は、焼結後の材料の蒸発特性においても同じである。
【0026】
表1は、種々の平均粒径を有するSiとSiOとの混合粉末の蒸発特性を、前記図2の場合と同様の測定を行い、昇温開始後 200分経過した後の重量変化を求めた結果である。この結果からも、混合粉末の平均粒径が小さくなるに従って重量減少率が大きくなり、蒸発特性が向上していることがわかる。
【0027】
【表1】

Figure 0003571356
【0028】
前記▲2▼の蒸着材料を多孔質体にすること、すなわち、混合粉末に水を加えて混練し、乾燥することにより多孔質化する効果は以下の点にある。
【0029】
すなわち、従来のSiとSiOとを単に混合して造粒し、あるいはプレス成形した後、焼結することによって得られる従来の蒸着用材料は、粒子あるいは成形体が緻密であり、見掛け比重と真比重の差はほとんどない。このような材料を用いると、例えばEB蒸着法の場合、電子ビームの照射点の蒸着材料の温度が局部的に急上昇し、材料の表面からその破片が飛散する。又、造粒した蒸着材料を使用する場合は、造粒された球状の粒子自体が飛散する。電子ビームの出力を上げるとその傾向はさらに強まるので、蒸着速度を大きくすることができない(後述の実施例1参照)。
【0030】
これに対して、本発明の多孔質構造を有する蒸発材料では、材料の破片等の飛散、スプラッシュが少なくなるので、ビームの出力を高め、蒸着速度を格段に高くすることが可能である。これは、蒸着材料が多孔質であると、ビームの照射による熱が速やかに逃げてしまうことによるものと考えられる。
【0031】
次に実施例をあげて、本発明を説明する。
【0032】
【実施例1】
本発明方法により作製した蒸着材料を用いた場合(本発明例)と、SiとSiOとを混合して造粒し、焼結して得られた蒸着材料を用いた場合(比較例)について、EB蒸着時の粒子(造粒された球状の粒子)あるいは蒸着材料の破片の飛散状況を比較した。
【0033】
本発明方法による蒸着材料の作製においては、平均粒径 100μm のSiとSiOとをそれぞれ 300g秤量し混合した。直径5mmのジルコニアのボールとともに材料をジルコニア製のポットに容れ、遊星ボールミルに装着し、150rpmで2時間回転させ、混合、解砕した。こうして得られた混合粉末の平均粒径は2μm であった。この微粉砕した混合粉末 100gに対して水を40g加え、攪拌してスラリー状とし、直方体の型枠に容れ、 100℃で20時間乾燥した後、1300℃で2時間焼結した。この焼結体は見掛け比重が1.47で、前記粉末原材料の比重に対して60%の比重を有する多孔質構造の焼結体であった。
【0034】
一方、比較用の蒸着材料は、平均粒径 100μm のSiとSiOの混合粉末にバインダーを加え、造粒機を用いて直径3〜15mm程度の球状に造粒し、 100℃で20時間乾燥した後、1300℃で2時間焼結した。この焼結体の見掛け比重は、前記粉末材料の比重に対し95%であり、ほとんど緻密な構造であった。
【0035】
EB蒸着時の粒子あるいは蒸着材料の破片の飛散状況を表2に示す。この表において、本発明例では、蒸着材料は多孔質体で、比較例の場合のような粒子(造粒された球状の粒子)は存在しないので、蒸着材料の破片の飛散状況のみを記した。なお、表中の「微」とは、1mm以下の小片がわずかに飛散する状態、「少」とは、1〜3mm程度の破片がときどき飛散する状態、「中」とは、3〜5mm以上の破片がときどき飛散する状態、「多」とは、破片が間断なく飛散している状態を表す。
【0036】
この結果から明らかなように、出力をあげた場合、比較例では蒸着材料の粒体状での飛散、あるいは材料の破片での飛散が激しい。飛散した破片等によって、均一な膜が得られないばかりでなく、飛沫によってプラスチック基板等が溶け、微小な穴や欠陥が発生するので、製品として利用できない。このため、出力をあげて生産速度を高めることができない。これに対し、本発明例では電子ビームの出力を高めても蒸着材料の破片の飛散は極めて少なく、電子ビームの出力を高め、蒸着速度を大きくすることができる。
【0037】
表3は、平均粒径が2μm 、50μm 、 100μm および 150μm と異なるSi粉末とSiO粉末の混合粉末を用いて、上記の方法で焼結体を蒸着材料とした場合の破片の飛散状況を調査した結果である。この結果から明らかなように、原料粉末の平均粒径が大きくなると破片の飛散が多くなるが、粒径が50μm 以下であれば特に飛散が少なく、電子ビーム出力を高めることが可能であることがわかる。
【0038】
【表2】
Figure 0003571356
【0039】
【表3】
Figure 0003571356
【0040】
【実施例2】
実施例1で作製した本発明例および比較例の蒸着材料(原料粉末の平均粒径:2μm )を用いてPETフィルム(東洋紡績(株)製 E5007:12μm 厚)の表面に酸化珪素系薄膜(膜厚: 700Å)を形成させ、これらの膜の酸素バリア性を測定した。
【0041】
蒸着時の電子ビーム出力は、本発明例においては10〜45kw、比較例においては10kwおよび15kwとした。また、作製したガスバリアフィルムの酸素透過量は、酸素透過率測定装置(モダンコントロールズ社製 OX−TRAN100 )を用いて測定した。
【0042】
測定結果を表4に示す。比較例では、フィルムの移動速度を 60m/minとすれば酸素透過量が 70cc/m・day を超え、ガスバリア膜として使用できないが(比較例2)、本発明例では、フィルムの移動速度を100m/min以上にしても酸素遮蔽性は損なわれず、実に 200m/min でも良好な性能を示した。
【0043】
【表4】
Figure 0003571356
【0044】
【発明の効果】
本発明の蒸着材料は良好な蒸発特性を有し、蒸着速度を大きくとることができるので、電子ビーム蒸着法を用いて被覆を行えば、透明で、酸素透過量が小さく、飛散物の付着のない食品包装材料を高能率で生産することが可能である。この蒸着材料は本発明方法によれば、比較的簡単な工程で製造することできる。
【図面の簡単な説明】
【図1】本発明方法の概略の製造工程を示す図である。
【図2】金属珪素と二酸化珪素との混合粉末の加熱時における蒸発特性(重量減少)を示す図である。[0001]
[Industrial applications]
The present invention relates to a manufacturing method of deposition materials that are used to form a silicon oxide vapor-deposited film.
[0002]
[Prior art]
Silicon oxide-based thin films such as SiO (silicon monoxide) and SiO 2 (silicon dioxide) have excellent electrical insulation properties and are used in the fields of electronics and optics. However, they are transparent and have excellent gas barrier properties. Therefore, it has come to be used as a surface coating material (gas barrier material) for packaging materials of various things such as foodstuffs.
[0003]
As a method for obtaining a silicon oxide-based thin film, conventionally, a powder or a lump of silicon monoxide synthesized in advance is used as an evaporation material, and evaporation is performed by resistance heating or electron beam (EB) irradiation heating. The method was taken. This method has good characteristics such as a relatively high film formation rate, a small amount of oxygen permeation and a small amount of water vapor permeation of the obtained thin film, and excellent bending resistance and heat resistance. The production process of silicon oxide is complicated and the productivity is poor, so the price is high. For this reason, for example, the raw material cost of the vapor-deposited gas barrier film increases, and there is a limit to the reduction of the manufacturing cost of the gas barrier film applied product such as the packaging material.
[0004]
On the other hand, JP-A-63-310961 proposes a deposition material obtained by mixing metal silicon (Si) and silicon dioxide (SiO 2 ) and granulating or press-molding the mixture. However, it is difficult to obtain a film having good characteristics because the material for vapor deposition has a non-uniform composition and poor evaporation characteristics when a deposited film is formed. Further, there is a problem that materials are scattered or droplets are generated at high temperature due to heat diffusion, charging in the case of charged beam heating such as EB or the like, and a vapor deposited film having a uniform thickness and composition cannot be obtained. . Further, when the substrate material is a non-heat-resistant base material such as plastic, the substrate may be melted by splashing, and minute holes or defects may be generated. Further, there is also a problem that a large amount of gas is released from impurities adhering to and adhering to the deposition material, the vacuum pressure is increased, and the obtained film properties are poor. Such a phenomenon is found to some extent in other vapor deposition methods such as high-frequency induction heating and resistance heating, and a vapor deposition material with less splash and splash during vapor deposition has been desired.
[0005]
[Problems to be solved by the invention]
The present invention does not use a synthesized silicon monoxide alone as a vapor deposition material, but increases the output in a method of producing a thin film using a vapor deposition material mainly composed of Si oxides including Si and SiO 2. The purpose of the present invention was to develop a technology that can obtain good characteristics even when performing highly efficient work.
[0006]
A specific object of the present invention, the evaporation characteristics are good, there is provided a method for producing a silicon oxide-based vapor deposition materials which can obtain a thin film having excellent characteristics even when a large deposition rate.
[0007]
[Means for Solving the Problems]
The gist of the present invention resides in the following method for producing a deposition material. That is, a vapor-deposited material containing Si and a Si oxide and having a porous structure, wherein the apparent specific gravity is smaller than the true specific gravity of the vapor-deposited material, and the apparent specific gravity is preferably This is a method for producing a vapor deposition material having a value 5 to 60% smaller than the true specific gravity of the vapor deposition material. Specifically, when producing a deposition material using a powder composition containing Si and Si oxide, after adding water to the powder composition, by evaporating the water at 40 ~ 150 ℃, the porous The method for producing a vapor deposition material, characterized by sintering, after the quenching, and when producing a vapor deposition material using a powder composition containing Si and Si oxide, 100g of the powdery composition After adding 32 to 52 g of water, a method of producing a vapor deposition material characterized by sintering after evaporating water to make it porous, and further to 100 g of a powdery composition. The method according to claim 1, wherein after adding 32 to 52 g of water, the water is evaporated to make it porous, and then sintered.
[0008]
The vacuum deposition method according to the present invention is a method in which a material in a crucible is heated and evaporated to be attached to a substrate by resistance heating, high-frequency induction heating, EB heating, laser heating, or the like. At this time, special vapor deposition such as reactive vapor deposition, in which a reactive gas such as hydrogen, oxygen, or water vapor is introduced into the vacuum chamber to cause an oxidation reaction, for example, is also included.
[0009]
The coating material of the present invention contains Si and a Si oxide. Examples of the Si oxide include SiO 2 , SiO 2, and a mixture thereof. The use of SiO 2 is preferred.
[0010]
The mixing ratio of Si and SiO 2 oxide may be changed according to the characteristics required for the thin film to be formed, and is not particularly limited. For example, when the application to a gas barrier film for packaging is considered, it is as follows. . That is, the amount of the Si oxide is usually 20 to 400 parts by weight, preferably 50 to 300 parts by weight, more preferably 100 to 250 parts by weight with respect to 100 parts by weight of Si. Also, when using the mixture of SiO and SiO 2 as a Si oxide, the mixing ratio, with respect to SiO 100 parts by weight, SiO 2 is generally 50 to 400 parts by weight, preferably 50 to 200 parts by weight, more Preferably it is 100 to 150 parts by weight. In addition, this component may contain trace amounts of components other than Si and Si oxides, for example, up to about 5% by weight based on all components, as long as the effects of the present invention are not impaired.
[0011]
The porous structure referred to in the present invention is a structure containing a large amount of fine pores. The pores are generated by a foaming process, and do not include those existing as they are. The size of the pores in the porous structure of the present invention may be about 0.1 μm to about several tens mm, but is preferably about 1 μm to several mm in consideration of the vapor deposition efficiency and the characteristics of the obtained vapor deposition material.
[0012]
The true specific gravity referred to in the present invention refers to a specific gravity inherent in the inorganic component as a raw material, and the apparent specific gravity is an apparent specific gravity including pores. When the porosity is represented by the rate of change from the specific gravity of the raw material, it is sufficient that the apparent specific gravity is smaller than the true specific gravity, and it is more preferable that the apparent specific gravity has a value that is 5 to 60% smaller than the true specific gravity. That is, when the apparent specific gravity is smaller than the specific gravity of the raw material by more than 60%, that is, when the apparent specific gravity is less than 40% of the specific gravity of the raw material, the material is excessively consumed at the time of vapor deposition. The problem that it does not come up. Further, when the apparent specific gravity is smaller than the specific gravity of the raw material by less than 5%, the effect of the present invention is slightly small.
[0013]
As a method for producing a vapor deposition material having a porous structure of the present invention, when producing a vapor deposition material using a powder composition containing Si and Si oxide, the powder composition was made porous. Thereafter, a method of sintering may be adopted. The powdery composition is a powdery component, and its particle size is not particularly limited as long as the effect of the present invention is not impaired, but the finer the effect of the present invention, the greater the average particle size is 50 μm or less. preferable. Therefore, when the particle size of the mixed powder exceeds 50 μm, it is also effective to pulverize the mixture to reduce the average particle size to 50 μm or less.
[0014]
FIG. 1 is a diagram showing a schematic manufacturing process of the present invention. As shown in this figure, in the method of the present invention, first, Si (metal silicon) powder and SiO 2 (silicon dioxide) powder are mixed.
[0015]
The method of mixing is not particularly limited, but it is preferable to use a mixer such as a ball mill or a jet mill that can be crushed (finely pulverized) simultaneously with mixing. Thereby, mixing and pulverization (fine pulverization) can be performed simultaneously.
[0016]
The particle size of the mixed powder of the Si powder and the SiO 2 powder is preferably as fine as can be inferred from Table 1 below, and is preferably a fine powder of 50 μm or less. Therefore, when the particle size of the mixed powder exceeds 50 μm, it is desirable to pulverize the mixture to reduce the particle size to 50 μm or less. It is not always necessary to crush the mixed powder after the mixing step as shown in FIG. For example, both may be crushed separately before mixing, or may be performed at the same time as kneading. In short, they may be finely divided before molding.
[0017]
Next, after finely pulverizing the mixed powder, water is added and kneaded to form a slurry. The less the amount of water does not become slurry, and when the amount of water is too large too viscosity of the slurry is low and the handling becomes difficult at the time of casting of the subsequent process, the amount of water Si powder and SiO 2 It is preferable that the amount is 32 to 52 g with respect to 100 g of the mixed powder with the powder.
[0018]
Next, a slurry-like mixed powder is formed. This molding is practically performed by a method of pouring into a mold (mold). It is desirable to use a mold made of a heat-resistant material so that the entire mold can be dried. Although the shape of the mold is not particularly limited, a rectangular parallelepiped having a low height is preferable in consideration of the convenience of material handling.
[0019]
After the molding, the molded body is dried to evaporate the water, and the molded body is made porous. When the slurry-like mixed powder is cast into a mold as described above, the mixture may be directly placed on a hot plate or the like for drying and making porous (hereinafter, also simply referred to as porous), or You may put into a dryer and evaporate water.
[0020]
There is no particular limitation on the temperature for making the porous material, but if the temperature is low, it takes a long time to evaporate the water, and if the temperature is high, it will boil violently and a uniform porous body cannot be obtained. Is more desirable. In this drying step, the slurry-like mixed powder becomes a porous body.
[0021]
The porous body evaporated to dryness is sintered at 1000 to 1300 ° C. The apparent specific gravity of the porous material at this time can be adjusted by the amount of water added at the time of kneading, the composition ratio, the temperature of the porous material, and the like. Thereby, a porous body which is extremely suitable as a deposition material can be obtained.
[0022]
The deposition material having a porous structure obtained in the above process is the deposition material of the present invention, and as described below, is extremely suitable as a deposition material used for forming a silicon oxide-based deposition film.
[0023]
[Action]
The features of the vapor deposition material and the method for producing the same according to the present invention include (1) using a mixed powder of Si and Si oxides such as SiO 2 , and (2) making the vapor deposition material porous. It is in. This is because a step of adding water to the mixed powder is performed to make the porous body.
[0024]
By using the powder composition containing Si and Si oxide of (1), the uniformity and reactivity of mixing of both powders are enhanced, and the powder reacts according to the following formula (1), evaporates as SiO 2. The tendency increases. This tendency increases as the average particle size of the powder composition decreases.
[0025]
Si + SiO 2 → 2SiO (1)
FIG. 2 is a thermogravimetric graph showing the weight loss (hereinafter referred to as evaporation characteristic) due to evaporation of SiO 2 when a mixed powder of Si and SiO 2 having various average particle diameters is heated to 1250 ° C. in a vacuum of 10 −5 Torr. It is a figure showing the result measured by analysis. From this figure, it can be seen that the weight loss after reaching the predetermined temperature (1250 ° C.) is observed even when the particle size of the mixed powder is relatively large, about 100 μm. It can be seen that the evaporation characteristics are significantly improved. This is presumably because the use of the fine powder improved the uniformity of mixing of Si and SiO 2 and improved the reactivity. If the sintering temperature is lowered, the growth of grains during sintering can be suppressed, and the particle size of the powder and the particle size of the sintered body can be made almost the same. The effect of using the fine powder on the evaporation characteristics is the same in the evaporation characteristics of the material after sintering.
[0026]
Table 1 shows the evaporation characteristics of mixed powders of Si and SiO 2 having various average particle diameters, measured in the same manner as in the case of FIG. 2 described above, and the weight change after 200 minutes from the start of heating. It is a result. From this result, it can be seen that as the average particle size of the mixed powder decreases, the weight reduction rate increases, and the evaporation characteristics are improved.
[0027]
[Table 1]
Figure 0003571356
[0028]
The effect of making the vapor deposition material of the above item (2) porous, that is, adding water to the mixed powder, kneading the mixture, and drying it, has the following effects.
[0029]
That is, the conventional vapor deposition material obtained by simply mixing and granulating or press-molding the conventional Si and SiO 2, and then sintering, has a dense particle or compact, and has an apparent specific gravity and There is almost no difference in true specific gravity. When such a material is used, for example, in the case of the EB vapor deposition method, the temperature of the vapor deposition material at the irradiation point of the electron beam rises locally locally, and fragments thereof are scattered from the surface of the material. When a granulated vapor deposition material is used, the granulated spherical particles themselves scatter. Increasing the output of the electron beam further increases the tendency, so that the deposition rate cannot be increased (see Example 1 described later).
[0030]
On the other hand, in the evaporating material having a porous structure of the present invention, scattering and splash of material fragments and the like are reduced, so that the output of the beam can be increased and the vapor deposition rate can be remarkably increased. This is considered to be due to the fact that when the vapor deposition material is porous, the heat due to the irradiation of the beam quickly escapes.
[0031]
Next, the present invention will be described with reference to examples.
[0032]
Embodiment 1
In the case of using a vapor deposition material produced by the method of the present invention (Example of the present invention) and in the case of using a vapor deposition material obtained by mixing and granulating Si and SiO 2 and sintering (Comparative Example) Then, the scattering state of particles (granulated spherical particles) at the time of EB deposition or fragments of the deposition material was compared.
[0033]
In the preparation of the vapor deposition material according to the method of the present invention, 300 g of Si and SiO 2 each having an average particle diameter of 100 μm were weighed and mixed. The material was placed in a zirconia pot together with a zirconia ball having a diameter of 5 mm, mounted on a planetary ball mill, rotated at 150 rpm for 2 hours, mixed and crushed. The average particle size of the mixed powder thus obtained was 2 μm. 40 g of water was added to 100 g of the finely pulverized mixed powder, and the mixture was stirred to form a slurry, placed in a rectangular parallelepiped mold, dried at 100 ° C. for 20 hours, and then sintered at 1300 ° C. for 2 hours. This sintered body had an apparent specific gravity of 1.47, and had a porous structure having a specific gravity of 60% of the specific gravity of the powder raw material.
[0034]
On the other hand, a vapor deposition material for comparison was prepared by adding a binder to a mixed powder of Si and SiO 2 having an average particle diameter of 100 μm, granulating the mixture into a spherical shape having a diameter of about 3 to 15 mm using a granulator, and drying at 100 ° C. for 20 hours. After that, sintering was performed at 1300 ° C. for 2 hours. The apparent specific gravity of this sintered body was 95% with respect to the specific gravity of the powder material, and the sintered body was almost dense.
[0035]
Table 2 shows the scattering of particles or fragments of the deposition material during EB deposition. In this table, in the example of the present invention, since the vapor deposition material is a porous body and there are no particles (granulated spherical particles) as in the case of the comparative example, only the scattering state of the fragments of the vapor deposition material is described. . In the table, "fine" means that small pieces of 1 mm or less are slightly scattered, "small" means that fragments of about 1 to 3 mm are sometimes scattered, and "medium" means 3 to 5 mm or more. The state in which the fragments are sometimes scattered, "many" indicates the state in which the fragments are scattered without interruption.
[0036]
As is clear from these results, when the output is increased, in the comparative example, the vapor deposition material is scattered in the form of particles or in the form of material fragments. Not only can a uniform film not be obtained due to the scattered debris and the like, but also the plastic substrate and the like are melted by the droplets, and minute holes and defects are generated. Therefore, the output cannot be increased to increase the production speed. On the other hand, in the example of the present invention, even if the output of the electron beam is increased, the scattering of the fragments of the deposition material is extremely small, so that the output of the electron beam can be increased and the deposition rate can be increased.
[0037]
Table 3 shows the scattering of fragments when the sintered body was used as a deposition material by the above method using a mixed powder of Si powder and SiO 2 powder having different average particle diameters of 2 μm, 50 μm, 100 μm and 150 μm. This is the result. As is clear from the results, the scattering of the fragments increases when the average particle size of the raw material powder increases, but when the particle size is 50 μm or less, the scattering is particularly small, and the electron beam output can be increased. Understand.
[0038]
[Table 2]
Figure 0003571356
[0039]
[Table 3]
Figure 0003571356
[0040]
Embodiment 2
A silicon oxide-based thin film (E5007: 12 μm thick, manufactured by Toyobo Co., Ltd.) was formed on the surface of the PET film (Toyobo Co., Ltd. E5007: 12 μm thick) using the vapor deposition materials (average particle size of the raw material powder: 2 μm) of the present invention examples and comparative examples produced in Example 1. Film thickness: 700 °) was formed, and the oxygen barrier properties of these films were measured.
[0041]
The electron beam output at the time of vapor deposition was 10 to 45 kw in the present invention, and 10 kw and 15 kw in the comparative example. In addition, the oxygen permeability of the produced gas barrier film was measured using an oxygen permeability measuring device (OX-TRAN100 manufactured by Modern Controls).
[0042]
Table 4 shows the measurement results. In the comparative example, if the moving speed of the film is 60 m / min, the amount of oxygen permeation exceeds 70 cc / m 2 · day, and the film cannot be used as a gas barrier film (Comparative Example 2). Even at 100 m / min or more, the oxygen shielding properties were not impaired, and even at 200 m / min, good performance was exhibited.
[0043]
[Table 4]
Figure 0003571356
[0044]
【The invention's effect】
Since the vapor deposition material of the present invention has good evaporation characteristics and can increase the vapor deposition rate, if the coating is performed by using the electron beam vapor deposition method, it is transparent, the oxygen transmission rate is small, and the adherence of scattered matter is prevented. It is possible to produce efficient food packaging materials. According to the method of the present invention, this vapor deposition material can be manufactured by relatively simple steps.
[Brief description of the drawings]
FIG. 1 is a view showing a schematic manufacturing process of the method of the present invention.
FIG. 2 is a view showing an evaporation characteristic (weight loss) of a mixed powder of metallic silicon and silicon dioxide during heating.

Claims (3)

SiとSi酸化物を含有する粉末状組成物を用いて蒸着材料を製造するに際し、粉末状組成物に水を添加した後、 40 150 ℃で水分を蒸発させることにより多孔質化させた後、焼結することを特徴とする蒸着材料の製造方法。In producing a vapor deposition material using a powdery composition containing Si and a Si oxide, after adding water to the powdery composition, after evaporating water at 40 to 150 ° C. to make the composition porous. , And sintering. SiとSi酸化物を含有する粉末状組成物を用いて蒸着材料を製造するに際し、粉末状組成物 100g に対して 32 52g の水を添加した後、水分を蒸発させることにより多孔質化させた後、焼結することを特徴とする蒸着材料の製造方法。In producing a deposition material using a powdery composition containing Si and a Si oxide , 32 to 52 g of water is added to 100 g of the powdery composition , and then water is evaporated to make the composition porous. And then sintering . 粉末状組成物100g に対して 32 52g の水を添加した後、水分を蒸発させることにより多孔質化させた後、焼結することを特徴とする請求項1に記載の蒸着材料の製造方法。 After addition of 32 ~ water 52g against powdery composition 100 g, after being porous by evaporating the water, method for producing the vapor deposition material according to claim 1, characterized in that sintering .
JP21013792A 1992-08-06 1992-08-06 Manufacturing method of evaporation material Expired - Fee Related JP3571356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21013792A JP3571356B2 (en) 1992-08-06 1992-08-06 Manufacturing method of evaporation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21013792A JP3571356B2 (en) 1992-08-06 1992-08-06 Manufacturing method of evaporation material

Publications (2)

Publication Number Publication Date
JPH0657417A JPH0657417A (en) 1994-03-01
JP3571356B2 true JP3571356B2 (en) 2004-09-29

Family

ID=16584398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21013792A Expired - Fee Related JP3571356B2 (en) 1992-08-06 1992-08-06 Manufacturing method of evaporation material

Country Status (1)

Country Link
JP (1) JP3571356B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030150377A1 (en) * 2000-08-31 2003-08-14 Nobuhiro Arimoto Silicon monoxide vapor deposition material, process for producing the same, raw material for producing the same, and production apparatus
US20040182700A1 (en) * 2001-07-26 2004-09-23 Yoshitake Natsume Silicon monoxide sintered prroduct and method for production thereof
WO2003018506A1 (en) * 2001-08-22 2003-03-06 Sumitomo Titanium Corporation Mixed sintered compact of silicon and silicon dioxide and method for preparation thereof
JP4648879B2 (en) * 2005-07-21 2011-03-09 株式会社大阪チタニウムテクノロジーズ Method for producing negative electrode for lithium secondary battery
JP5272656B2 (en) * 2008-10-31 2013-08-28 凸版印刷株式会社 Silicon oxide-based porous molded body and method for producing the same
JP2010235966A (en) * 2009-03-30 2010-10-21 Toppan Printing Co Ltd SiOx MOLDED BODY AND GAS BARRIER FILM
JP5435220B2 (en) * 2009-09-24 2014-03-05 株式会社豊田中央研究所 Method of forming film by laser ablation, target for laser ablation used in the method, and method for manufacturing the target for laser ablation
JP5533049B2 (en) * 2010-03-08 2014-06-25 凸版印刷株式会社 Vapor deposition material and method for producing the same

Also Published As

Publication number Publication date
JPH0657417A (en) 1994-03-01

Similar Documents

Publication Publication Date Title
US4992235A (en) Method for producing thermoelectric elements
CN108374113A (en) A kind of preparation method of TaTiZrAlSi high-entropy alloys and its powder
WO2005092789A1 (en) Aluminum nitride powder and aluminum nitride sintered compact
EP1055743A1 (en) Vapor deposition material
JP3571356B2 (en) Manufacturing method of evaporation material
CN114956826A (en) (TiNbCrWTa) C x High-entropy ceramic and preparation method thereof
US7658822B2 (en) SiOx:Si composite articles and methods of making same
CN104926307B (en) A kind of Ti2The reactive spray synthesis preparation method of AlC composite ceramic materials
JP2021038125A (en) Alumina particle material and its manufacturing method
JP3791041B2 (en) Method for producing chromium sputtering target
JP6659073B1 (en) Powder for film formation or sintering
CN114293126A (en) LATP-TSC composite wave-absorbing coating and preparation method thereof
JPH01290529A (en) Production of high purity titanium suboxide
JP2010235966A (en) SiOx MOLDED BODY AND GAS BARRIER FILM
JP6028714B2 (en) Method for producing Cu-Ga alloy sputtering target
JPH0143021B2 (en)
JP2861383B2 (en) Silicide target and method for manufacturing the same
JP4196438B2 (en) Vapor deposition material and manufacturing method thereof
JP2602979B2 (en) Production method of heat-resistant metal fine powder
KR100779033B1 (en) A method for manufacturing tungsten-copper composite powder
JP2004124259A (en) METHOD FOR PRODUCING W-Cu COMPOSITE MATERIAL THIN SHEET
JP2921041B2 (en) Method for producing sintered compact of Nb-Al intermetallic compound
JPS59207883A (en) Manufacture of aluminum nitride sintered body
JPS59152261A (en) Manufacture of silicon sintered body
JPH0483759A (en) Production of sintered composite boron nitride

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040624

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees