JP3569093B2 - Wiring board and method of manufacturing the same - Google Patents

Wiring board and method of manufacturing the same Download PDF

Info

Publication number
JP3569093B2
JP3569093B2 JP32397896A JP32397896A JP3569093B2 JP 3569093 B2 JP3569093 B2 JP 3569093B2 JP 32397896 A JP32397896 A JP 32397896A JP 32397896 A JP32397896 A JP 32397896A JP 3569093 B2 JP3569093 B2 JP 3569093B2
Authority
JP
Japan
Prior art keywords
film
substrate
layer
heat treatment
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32397896A
Other languages
Japanese (ja)
Other versions
JPH10163378A (en
Inventor
暢男 岩瀬
原  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP32397896A priority Critical patent/JP3569093B2/en
Publication of JPH10163378A publication Critical patent/JPH10163378A/en
Application granted granted Critical
Publication of JP3569093B2 publication Critical patent/JP3569093B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体パッケージ、ハイブリッドIC、半導体モジュール、表面実装部品、半導体素子等の各種電子部品に使用される配線基板およびその製造方法に関する。
【0002】
【従来の技術】
半導体素子の搭載用等として用いられる配線基板やパッケージ基体等には、樹脂材料やセラミックス材料等が用いられているが、近年の半導体素子の高集積化や高出力化等に伴って、高放熱化が期待できるセラミックス材料が多用されるようになってきている。中でも窒化アルミニウム(AlN)等の窒化物系セラミックス材料は、熱膨張係数がシリコンの熱膨張係数とほぼ等しく、半導体素子の熱的応力を十分小さくできると共に、高熱伝導率を有していることから半導体素子の高集積化や高速化に伴う発熱量の増大にも十分対応できるものとして注目されている。
【0003】
上述したようなAlN等の窒化物系セラミックス基板の表面に回路パターンを形成する方法としては、活性金属法や銅直接接合法等を適用して銅回路板を接合する方法が一般的であるが、このような方法では微細な回路パターンの実現が難しいことから、高密度配線の形成方法としてはスパッタ法や蒸着法等の薄膜形成法を利用することが検討されている。
【0004】
例えば、AlN基板上に薄膜導体を形成する場合、表面粗さRを 100nm以下としたAlN基板の表面に、スパッタ法等でTi/Ni/Auの順に金属薄膜を形成することが行われている。TiはAlNとの接合を主目的とするものであり、NiはAuの拡散防止を主目的とするものであり、またAuは低抵抗配線の実現やワイヤボンディング性の確保、さらにはNiの酸化防止等を主目的とするものである。Ni部分には、同族の8族材料であるPdやPtを使用することも行われている。このように形成するTi/Ni/Auの厚さはおおむね50nm/500nm/100nmであるが、ワイヤボンディング性を高める目的からAuを 1〜 4μm 程度の厚さで形成する場合もある。
【0005】
【発明が解決しようとする課題】
上述したような構成を有する従来の薄膜導体層においては、Niの拡散防止作用が十分ではなく、はんだ付け、ろう付け、アニール等の473K以上の熱処理工程によりNiの拡散防止効果(バリア層効果)が薄れることから、AuがAlN/Ti反応層に拡散して接合強度を低下させたり、さらにはAlNマトリクスにまで拡散が進行して薄膜導体層の接台強度を低下させるというような問題を招いていた。薄膜導体層の接合強度の低下は、搭載部品(ピン、受動チップ部品、半導体チップ、ボンデイングワイヤ、半導体パッケージ等)の脱落や剥がれ等を引き起こすことになる。
【0006】
また、上記したような熱処理工程によってNi(特にNi酸化物)がAu層に拡散し、ワイヤボンディング性や半田付け性等を低下させるという問題も生じている。このような問題には、通常、Au層の厚さを厚くすることで対処しているが、Au層を前述したように 1〜 4μm 程度と厚くすることにより、製造コストが大幅に上昇してしまう。さらに、Niはスパッタレートが低く、作業工数の増加を招く上に、 3ターゲットのスパッタ装置そのものが高価であること等から、工業化の促進のために薄膜導体層の構成の簡素化が求められていた。
【0007】
上述したように、従来の薄膜導体層においては、簡易な膜構成で、熱処理工程を経た後においてもAu等の拡散を再現性よく防止することによって、接合強度の保持を可能にすると共に、拡散バリア層の構成元素自体の表面側への拡散等を抑制することによって、ボンディング性や半田付け性等の低下を防止することが課題とされていた。
【0008】
本発明は、このような課題に対処するためになされたもの、簡易な膜構成で、各種熱処理工程後においても安定して導体層の接合強度を保持することができ、かつ導体層のボンディング性や半田付け性等の低下を防止することを可能にした配線基板およびその製造方法を提供することを目的としている。
【0010】
【課題を解決するための手段】
発明配線基板は、セラミックス基板と、前記セラミックス基板上にM2Nを主体とする中間層を介して設けられた、Au膜導体層とを具備することを特徴としている。
【0011】
本発明における第1の配線基板の製造方法は、基板上に、M元素の薄膜を形成した後に熱処理を施して、M2Nを主体とする中間層を形成する工程と、前記M2Nを主体とする中間層上に、Au薄膜導体層を形成する工程とを具備することを特徴としている。
【0012】
また、第2の配線基板の製造方法は、基板上に、M金属膜を介して、あるいは直接M2N薄膜からなる中間層を形成する工程と、前記中間層上にAu薄膜導体層を形成する工程とを具備することを特徴としている。Ti2N、Zr2N、Hf2N等のM2Nは、Auの導体層構成元素に対して高い高温バリア性を有することから、はんだ付け、ろう付け、アニール等の473K以上の熱処理工程を経ても、基板と導体層との間の元素移動を有効に抑制することができる。従って、基板/中間層界面の接合が良好に保持され、その結果として各種熱処理工程後においても安定して導体層の接合強度を維持することが可能となる。また、Ti2Nに代表されるM2N自体が導体層側に拡散することもないため、導体層を厚くすることなく、良好なボンディング性や半田付け性等を得ることができる。
【0013】
【発明の実施の形態】
以下、本発明を実施するための形態について説明する。
【0014】
図1は、本発明の一実施形態の配線基板を示す断面図である。同図において、1は窒化アルミニウム(AlN)基板、窒化ケイ素(Si34)基板、窒化ホウ素(BN)基板等の窒化物系セラミックス基板である。この窒化物系セラミックス基板1上には、M2N(M=Ti,Zr,Hf)を主体とする中間層2を介して薄膜導体層3が形成されており、これらによって配線基板4が構成されている。薄膜導体層3にAu主成分とする薄膜が用いられる。
【0015】
上述した中間層2はTi2N、Zr2N、Hf2N等のM2Nを主体とする層である。Ti2Nに代表されるM2Nは、Auの薄膜導体層3の構成元素に対して高い高温バリア性を有することから、はんだ付け、ろう付け、アニール等の473K以上の熱処理工程を経ても、窒化物系セラミックス基板1と薄膜導体層3との間の元素移動、具体的には薄膜導体層3から窒化物系セラミックス基板1への元素移動を有効に抑制することができる。すなわち、中間層2は窒化物系セラミックス基板1と薄膜導体層3との間の拡散バリア層として良好に機能する。また、後に詳述するように、M2Nを主体とする中間層2は、窒化物系セラミックス基板1への接合層としても機能するものである。
【0016】
このように、薄膜導体層3から窒化物系セラミックス基板1への元素移動を防止することによって、窒化物系セラミックス基板1/中間層2界面の接合が保持され、その結果として各種熱処理工程後においても安定して薄膜導体層3の接合強度を維持することが可能となる。また、TiNに代表されるMN自体が薄膜導体層3側に拡散することもないため、薄膜導体層3を厚くすることなく、良好なボンディング性や半田付け性等を得ることができる。
【0017】
ここで、上記したような薄膜導体層3の構成元素の拡散バリア効果とそれ自体の拡散防止性とは、TiNに代表されるMN化合物によって初めてもたらされるものである。通常、AlN基板等の表面にTi膜等を形成して熱処理した場合、AlN等と反応してTi等の窒化物が形成されるが、単に熱処理を施しただけではTiN等の化合物が主として生成される。このTiN等の化合物やTiメタルは拡散バリア効果等を有していない。本発明はあくまでもTiNに代表されるMNを主体とする中間層2を用いることに特徴を有するものである。
【0018】
図2は、AlN基板上に厚さ 100nmのTiN層と厚さ50nmのAu層とを順に形成した試料の膜形成後と、それに873K×10min の条件で大気中熱処理を施した後に、それぞれTiN層/Au層界面におけるラザフォート後方散乱分析装置(RBS(1.5MeV,He))で組成の深さ方向分布を測定した結果を示すものである。図2から明らかなように、熱処理後においても深さ方向の組成変動はほとんどなく、TiNに代表されるMNを主体とする中間層2は、極めて良好な薄膜導体層3の構成元素の拡散バリア効果とそれ自体の拡散防止性とを有していることが分かる。
【0019】
一方、図3はAlN基板上に厚さ 100nmのTi層と厚さ50nmのAu層とを順に形成した試料の膜形成後と、それに873K×10min の条件で大気中熱処理を施した後に、それぞれTi層/Au層界面における組成の深さ方向分布を上記と同様に測定した結果を示すものである。図3から明らかなように、熱処理後にTiおよびAuが拡散しており、本発明のような薄膜導体層3の構成元素の拡散バリア効果とそれ自体の拡散防止性とは得られていないことが分かる。また、図4は従来のTi(50 nm) /Ni(500nm) /Au(100nm) 構造膜を形成したAlN基板に 773K×5minの条件で大気中熱処理を施した後、オージェ電子分光装置(AES)で深さ方向の組成分布を測定した結果である。図4から、従来構造の積層膜ではAuのAlN/Ti界面への拡散やNiOの表面方向への拡散が生じていることが分かる。
【0020】
上述した中間層2は、MNを主体とする層であればよいが、具体的にはMNを50体積% 以上含む層であることが好ましい。さらには、後述する窒化物系セラミックス基板1との界面側に形成される反応生成物を除いて、ほぼMNからなる層であることが望ましい。このような中間層2の厚さは、良好な拡散バリア効果を得るために10nm以上とすることが好ましい。ただし、あまり厚くすると中間層2自体の剥離等を招くおそれがあることから、 2μm 以下とすることが好ましい。
【0021】
Nを主体とする中間層2は例えば以下のようにして形成する。すなわち、まず窒化物系セラミックス基板1上に、Ti膜、Zr膜、Hf膜等の金属膜(M元素膜)をスパッタ法、蒸着法等の各種薄膜形成法で形成し、これら金属膜に対して制御された条件下で熱処理を施して、MNを生成する。MNを生成する際の条件としては、熱処理雰囲気中の窒素分圧と温度が重要であり、例えばAr雰囲気のような実質的にNを含まない雰囲気中で熱処理する場合には、800K以上の高温で熱処理することが好ましい。一方、NとArとの混合雰囲気中等で熱処理する場合には、雰囲気中のN分圧を 1×10−3〜 1Paとすると共に、 800〜 1300Kの温度で熱処理することが好ましい。このような熱処理条件から外れると、MNの生成量が不十分となったり、またTiN等のMN化合物が優先して生成してしまう。
【0022】
このように、まずM金属膜を形成した後に熱処理を施して、MNを主体とする中間層2を形成する場合には、成膜時や熱処理時にTi膜等のM金属膜と窒化物系セラミックス基板1とが界面で反応し、TiAl等の界面反応物が生成することによって、窒化物系セラミックス基板1と中間層2とが強固に接合する。MNを主体とする中間層2は、反応性スパッタ等で直接形成することも可能である。このような場合には、MN中のTi等のM元素の窒化物系セラミックス基板1に対する反応性を利用して、窒化物系セラミックス基板1と中間層2とを接合してもよいし、また窒化物系セラミックス基板1上に予めTi膜等のM金属膜を形成し、このM金属膜上にMN膜を形成してもよい。
【0023】
上述したように、窒化物系セラミックス基板1と薄膜導体層3との間に、MNを主体とする中間層2を介在させることによって、窒化物系セラミックス基板1と薄膜導体層3間での元素移動を良好に防止することができる上に、中間層2の構成元素自体の拡散等を招くこともない。また、中間層2自体は窒化物系セラミックス基板1および薄膜導体層3に対して強固な接合力を発揮する。
【0024】
従って、各種熱処理工程後においても、窒化物系セラミックス基板1/中間層2界面の接合が保持されるため、薄膜導体層3の接合強度を安定して維持することが可能となる。また、薄膜導体層3への元素拡散等を招くこともないため、導電性、ボンディング性、半田付け性等を確保し得る範囲で薄膜導体層3の厚さを薄くすることができる。これは、薄膜導体層3に高価なAu等を用いる場合に製造コストの低減に繋がる。さらに、上述したような作用・効果をMNを主体とする中間層2/薄膜導体層3という簡易な膜構成で得られるため、従来構造の積層膜に対して成膜コストの低減を図ることが可能となる。膜構成の簡素化に加えて、従来の拡散バリア層であるNi膜(スパッタ時間:20nm/min(RF出力500W))に比べてMNを主体とする中間層2は、成膜時間自体を短くすることができることから、成膜工数の低減ならびに製造コストの低減を図ることができる。またさらに、MNを主体とする中間層2を熱処理で形成することによって、場所による厚さ変化や膜質変化が少なく、均一で再現性の良い膜が得られる。
【0025】
上記した実施形態では窒化物系セラミックス基板1を使用した配線基板4について説明したが、本発明の配線基板は図5に示すように、アルミナ(Al)基板等の酸化物系セラミックス基板5を用いる場合にも適用することができ、上述した実施形態と同様な効果を得ることができる。酸化物系セラミックス基板5上にMNを主体とする中間層2を形成する場合には、M元素の酸化・還元作用によって、酸化物系セラミックス基板5と中間層2とが強固に接合される。
【0026】
また、酸化物系セラミックス基板5を適用した際のMNを主体とする中間層2の形成方法としては、MN膜を反応性スパッタ等で直接形成してもよいし、NとArとの混合雰囲気中等でM金属膜に熱処理を施し、雰囲気中からNを供給することによって、MNを生成することもできる。このような場合の熱処理条件は、雰囲気中のN分圧を 1×10−3〜 1Paとし、熱処理温度を 800〜 1300Kの範囲とすることが好ましい。
【0027】
図6は、本発明の他の実施形態を示す図であり、同図において11はSi基板等の半導体基板である。この半導体基板11上には、前述した実施形態と同様なMNを主体とする中間層12を介して、Al配線等の薄膜導体層13が形成されている。ここで、Al配線にアニール処理等を施すと、Alの拡散が生じて半導体基板11の特性劣化等を招くおそれがある。これに対して、MNを主体とする中間層12は、前述したようにAl等の拡散バリア効果を有することから、Al等の拡散に伴う特性劣化等を防止することができる。このように、本発明は半導体基板上の配線用薄膜導体層等に対しても有効である。
【0028】
【実施例】
次に、本発明の具体的な実施例について説明する。
【0029】
実施例1
AlN製セラミックス基板・TAN170(商品名、(株)東芝製)(形状:50.8mm×50.8mm×厚さ0.6mm)を用意し、まずこのAlN製セラミックス基板の表面を、表面粗さR=30nm まで鏡面状に研磨した。この研磨面上にRFスパッタ法によりTi膜を成膜した。成膜条件は、基板温度298K、RF周波数13.56MHz、RF出力500W、Tiターゲット純度99.99%、Arガス雰囲気(純度99.9999%)、初期 Arガス圧 2×10−4Pa、作業時Ar圧力 6×10−1Paとした。
【0030】
上述したような条件下でTiを 100nm堆積した後(所要時間10分)、上記高純度のAr雰囲気を有する同一スパッタ装置内で、連続的に基板温度を773Kに上昇させ、この温度で 5分間保持することによって、TiNを生成させた。熱処理後の膜のX線回折結果(Cu−Kα/ 0.5°)を図7に示す。図7からTiNが生成していることが確認できる。
【0031】
上記した熱処理の後に、冷却して基板温度が303K以下に低下したことを確認してから、RFスパッタ法で連続して厚さ50nmのAu膜を成膜した。Auの成膜条件は、上記Ti膜の成膜条件と同一とした。基板をスパッタ装置から取り出し、電解Auめっきを実施して、電極形成を終了した。
【0032】
この後、周知の方法によりAu膜およびTiN膜の積層膜を所望の配線形状にエッチングして、目的とする配線基板を得た。このようにして形成した配線層の機械的特性として接合強度を測定した。接合強度は、成膜後の配線層と上記配線基板に大気中で773K×5minの熱処理を施した後にそれぞれ実施した。AuSnはんだやAuSi共晶マウントを実施する場合には、おおむねこのような温度条件に晒されることから、上記熱処理条件を決定した。表1にその測定結果を、従来のTi(50nm)/Ni(500nm) /Au(100nm) 構造膜を形成したAlN基板(比較例1)に同様な熱処理を施した後の配線層の接合強度と比較して示す。
【0033】
表1から明らかなように、実施例1による配線基板では、熱処理後においても十分な接合強度を有しており、高温安定性が確認できた。また、実施例1による成膜工程は比較例1の成膜工程に対して 3/4に減少し、製造の容易化および製造時間の短縮が図れた。さらに、得られた配線基板を用いてモジュールを作製したところ、導体抵抗や半導体マウント等で良好な特性が得られた。
【0034】
実施例2
AlN製セラミックス基板・TAN170(商品名、(株)東芝製)(形状:50.8mm×50.8mm×厚さ0.600mm)を用意し、まずこのAlN製セラミックス基板の表面を、表面粗さR=30nm まで鏡面状に研磨した。この研磨面上にRFスパッタ法によりTi膜を成膜した。成膜条件は、基板温度298K、RF周波数13.56MHz、RF出力 1kW、Tiターゲット純度99.99%、Arガス雰囲気(純度99.9999%)、初期 Arガス圧 2×10−4Pa、作業時Ar圧力 6×10−1Paとした。このような条件下でTiを50nm堆積(所要時間 2分30秒)した。
【0035】
引き続いて、連続的にΤiN膜を同様な条件下で反応性スパッタ法により形成した。ターゲットにはTiN(x=0.5)合金ターゲットを使用し、Ar/N混合ガス雰囲気(Ar/N圧力比=0.53Pa/0.1Pa)中で成膜した。この状態ではアモルファス状であるため、アニール処理として同一チャンバ内で、基板をWハロケンランプアニールにより 773〜873Kに昇温し、N雰囲気圧力を制御しながら約30秒間熱処理した。
【0036】
上記した熱処理の後に、冷却して基板温度が303K以下に低下したことを確認してから、RFスパッタ法で連続して厚さ50nmのAu膜を成膜した。Auの成膜条件は、上記Ti膜の成膜条件と同一とした。基板をスパッタ装置から取り出し、電解Auめっきを実施して、電極形成を終了した。
【0037】
この後、周知の方法によりAu膜およびTiN膜の積層膜を所望の配線形状にエッチングして、目的とする配線基板を得た。このようにして形成した配線層の機械的特性として接合強度を、実施例1と同様にして測定した。表1に測定結果を示す。実施例2による配線基板では、熱処理後においても十分な接合強度を有しており、高温安定性が確認できた。また実施例1による配線基板と同様に、製造の容易化や製造時間の短縮が図れ、さらに導体抵抗や半導体マウント等においても良好な特性が得られた。
【0038】
実施例3
AlN製セラミックス基板として、熱伝導率200W/m Kを有するパッケージ用多層基板(形状:50.8mm×50.8mm×厚さ0.600mm)を用意した。多層基板は、予め半導体パッケージとしての内部配線が 6層以上形成されている。基板組成はAlNが97重量% で、残部の元素構成はイットリウム(Y)が主体の酸窒化物である。このパッケージ用多層基板の表面を平均粗さR=30nm まで鏡面状に研磨した。上記パッケージ用多層基板の研磨面上に、RFスパッタ法によりTi膜を成膜した。成膜条件は、基板温度298K、RF周波数13.56MHz、RF出力500W、Tiターゲット純度99.99%、Arガス雰囲気(純度99.9999%)、初期Arガス圧 2×10−4Pa、作業時Ar圧力 6×10−1Paとした。
【0039】
上述したような条件下でTiを 100nm堆積した後(所要時間10分)、上記高純度のAr雰囲気を有する同一スパッタ装置内で、連続的に基板温度を773Kに上昇(タングステンハロゲンランプアニール法による)させ、この温度で 1分間保持することによって、TiNを生成させた。
【0040】
上記した熱処理の後に、冷却して基板温度が303K以下に低下したことを確認してから、RFスパッタ法で連続して厚さ50nmのAu膜を成膜した。Auの成膜条件は、上記Ti膜の成膜条件と同一とした。基板をスパッタ装置から取り出し、電解Auめっきを実施して、電極形成を終了した。
【0041】
この後、周知の方法によりワイヤボンディングパターン、電源バイパスコンデンサ用電極パターン、Ι/O用電極パターンほかをエッチングし、Au膜およびTiN膜の積層膜を所望の配線形状にエッチングして所望の回路を形成し、目的とする配線基板を得た。このようにして形成した配線層の機械的特性として接合強度を、実施例1と同様にして測定した。表1にその測定結果を、従来のTi(50nm)/Ni(500nm) /Au(100nm) 構造膜を形成したAlN多層基板(比較例2)に同様な熱処理を施した後の配線層の接合強度と比較して示す。
【0042】
表1から明らかなように、実施例3による配線基板では、熱処理後においても十分な接合強度を有しており、高温安定性が確認できた。また、実施例3による成膜工程は比較例2の成膜工程に対して 3/4に減少し、製造の容易化および製造時間の短縮が図れた。さらに、得られた多層基板にLSIチップのマウント、 AuSnはんだによる封止(作業温度:573K)を実施したところ、熱抵抗および気密性共に良好な特性が得られた。
【0043】
【表1】

Figure 0003569093
実施例4
実施例1で用いたAlN基板に代えて、Al基板を用いて実施例1と同様な条件で配線層の形成を行ったところ、実施例1と同様な結果を得た。
【0044】
実施例5
実施例1で用いたAlN基板に代えて、Si基板を用いて実施例1と同様な条件で配線層の形成を行ったところ、実施例1と同様な結果を得た。
【0045】
【発明の効果】
以上説明したように、本発明の配線基板によれば、簡易な膜構成で、各種熱処理工程後においても導体層の接合強度を保持することができると共に、良好なボンディング性や半田付け性等を安定して得ることができ、さらには製造工数ならびに製造コストの低減を図ることが可能となる。
【図面の簡単な説明】
【図1】本発明の配線基板の一実施形態を示す断面図である。
【図2】本発明の代表的な配線基板におけるTiN/Au界面のRBS測定結果を示す図である。
【図3】本発明との比較としてのTiN/Au界面のRBS測定結果を示す図である。
【図4】従来構造の配線基板におけるAES測定結果を示す図である。
【図5】図1に示す配線基板の変形例を示す断面図である。
【図6】本発明の配線基板の他の実施形態を示す断面図である。
【図7】実施例1により形成した中間層のX線回折結果を示す図である。
【符号の説明】
1……窒化物系セラミックス基板
2、12……TiNを主体とする中間層
3、13……薄膜導体層
4、14……配線基板
5……酸化物系セラミックス基板
11…半導体基板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wiring board used for various electronic components such as a semiconductor package, a hybrid IC, a semiconductor module, a surface mount component, and a semiconductor element, and a method of manufacturing the same.
[0002]
[Prior art]
A resin material, a ceramic material, or the like is used for a wiring board, a package base, and the like used for mounting a semiconductor element or the like. However, with the recent high integration and high output of the semiconductor element, high heat radiation is required. Ceramic materials that can be expected to be used are increasingly used. Above all, nitride-based ceramic materials such as aluminum nitride (AlN) have a thermal expansion coefficient substantially equal to that of silicon, and can sufficiently reduce the thermal stress of a semiconductor element and have a high thermal conductivity. Attention has been paid to those that can sufficiently cope with an increase in the amount of heat generated by high integration and high speed operation of semiconductor elements.
[0003]
As a method of forming a circuit pattern on the surface of a nitride ceramic substrate such as AlN as described above, a method of joining a copper circuit board by applying an active metal method, a copper direct joining method, or the like is generally used. However, since it is difficult to realize a fine circuit pattern by such a method, use of a thin film forming method such as a sputtering method or a vapor deposition method has been studied as a method for forming a high-density wiring.
[0004]
For example, when a thin film conductor is formed on an AlN substrate, a metal thin film is formed in the order of Ti / Ni / Au by sputtering or the like on the surface of the AlN substrate having a surface roughness Ra of 100 nm or less. I have. Ti has a main purpose of bonding with AlN, Ni has a main purpose of preventing diffusion of Au, and Au has a low resistance wiring and a wire bonding property, and further has an oxidation of Ni. The main purpose is prevention. For the Ni portion, Pd or Pt, which is a group 8 material of the same family, is also used. The thickness of Ti / Ni / Au formed in this way is approximately 50 nm / 500 nm / 100 nm, but Au may be formed to a thickness of about 1 to 4 μm for the purpose of improving wire bonding properties.
[0005]
[Problems to be solved by the invention]
In the conventional thin film conductor layer having the above-described configuration, the effect of preventing diffusion of Ni is not sufficient, and the effect of preventing diffusion of Ni (barrier layer effect) by a heat treatment step of 473 K or more such as soldering, brazing, annealing, etc. Since Au is thinned, Au diffuses into the AlN / Ti reaction layer and lowers the bonding strength, and further, diffusion progresses to the AlN matrix and lowers the bonding strength of the thin film conductor layer. I was A decrease in the bonding strength of the thin film conductor layer causes the mounted components (pins, passive chip components, semiconductor chips, bonding wires, semiconductor packages, etc.) to fall off or peel off.
[0006]
In addition, there is a problem that Ni (especially, Ni oxide) diffuses into the Au layer due to the above-described heat treatment step, thereby deteriorating wire bonding properties, solderability, and the like. Such a problem is usually dealt with by increasing the thickness of the Au layer. However, by increasing the thickness of the Au layer to about 1 to 4 μm as described above, the manufacturing cost is significantly increased. I will. Further, Ni has a low sputter rate, which increases the number of man-hours, and the cost of a three-target sputter device itself is high. Therefore, it is required to simplify the structure of the thin film conductor layer in order to promote industrialization. Was.
[0007]
As described above, the conventional thin film conductor layer has a simple film configuration and prevents the diffusion of Au or the like with good reproducibility even after the heat treatment step, thereby enabling the holding of the bonding strength and the diffusion. It has been an issue to prevent the deterioration of the bonding property, the soldering property, and the like by suppressing the diffusion of the constituent elements of the barrier layer itself to the surface side and the like.
[0008]
The present invention has been made to address such a problem, has a simple film configuration, can stably maintain the bonding strength of the conductor layer even after various heat treatment steps, and has the bonding property of the conductor layer. It is an object of the present invention to provide a wiring board and a method for manufacturing the same, which can prevent a decrease in solderability and solderability.
[0010]
[Means for Solving the Problems]
Wiring board of the present invention is directed to a ceramics substrate, provided with the intermediate layer composed mainly of M 2 N on the ceramic substrate, characterized by comprising the Au thin film conductor layer.
[0011]
Manufacturing method of the first wiring board in the present invention comprises a base plate, heat treatment is performed after forming a thin film of M elements, forming an intermediate layer composed mainly of M 2 N, wherein M 2 N Forming an Au thin-film conductor layer on an intermediate layer mainly composed of:
[0012]
The manufacturing method of the second wiring board on the base plate, through an M metal film, or forming an intermediate layer composed of directly M 2 N thin film, an Au thin film conductor layer on the intermediate layer And a forming step. Ti 2 N, Zr 2 N, M 2 N , such as Hf 2 N, since with high high-temperature barrier properties to the conductor layer constituting elements such as Au, soldering, brazing, heat treatment or 473K such as annealing Even after the step, the element transfer between the substrate and the conductor layer can be effectively suppressed. Therefore, the bonding at the interface between the substrate and the intermediate layer is favorably maintained, and as a result, the bonding strength of the conductor layer can be stably maintained even after various heat treatment steps. In addition, since M 2 N itself represented by Ti 2 N does not diffuse to the conductor layer side, it is possible to obtain good bonding properties and solderability without increasing the thickness of the conductor layer.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments for carrying out the present invention will be described.
[0014]
FIG. 1 is a sectional view showing a wiring board according to one embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a nitride ceramic substrate such as an aluminum nitride (AlN) substrate, a silicon nitride (Si 3 N 4 ) substrate, and a boron nitride (BN) substrate. On the nitride-based ceramic substrate 1, a thin-film conductor layer 3 is formed via an intermediate layer 2 mainly composed of M 2 N (M = Ti, Zr, Hf). Have been. The thin-film conductor layer 3 thin film composed mainly of Au.
[0015]
The above-described intermediate layer 2 is a layer mainly composed of M 2 N such as Ti 2 N, Zr 2 N, and Hf 2 N. Since M 2 N typified by Ti 2 N has a high high-temperature barrier property against the constituent elements of the thin film conductor layer 3 such as Au, the M 2 N undergoes a heat treatment step of 473 K or more such as soldering, brazing, annealing and the like. In addition, element transfer between the nitride-based ceramic substrate 1 and the thin-film conductor layer 3, specifically, element transfer from the thin-film conductor layer 3 to the nitride-based ceramic substrate 1 can be effectively suppressed. That is, the intermediate layer 2 functions well as a diffusion barrier layer between the nitride-based ceramic substrate 1 and the thin-film conductor layer 3. Further, as described later in detail, the intermediate layer 2 mainly composed of M 2 N also functions as a bonding layer to the nitride ceramic substrate 1.
[0016]
As described above, by preventing element transfer from the thin film conductor layer 3 to the nitride-based ceramic substrate 1, the bonding at the interface between the nitride-based ceramic substrate 1 and the intermediate layer 2 is maintained, and as a result, after various heat treatment steps, Therefore, the bonding strength of the thin film conductor layer 3 can be stably maintained. In addition, since M 2 N itself represented by Ti 2 N does not diffuse to the thin film conductor layer 3 side, it is possible to obtain good bonding properties and solderability without increasing the thickness of the thin film conductor layer 3. it can.
[0017]
Here, the diffusion barrier effect of the constituent elements of the thin film conductor layer 3 and the diffusion preventing property of the thin film conductor layer 3 as described above are first brought about by an M 2 N compound represented by Ti 2 N. Normally, when a Ti film or the like is formed on the surface of an AlN substrate or the like and subjected to heat treatment, nitrides such as Ti are formed by reacting with AlN or the like. Is done. Compounds such as TiN and Ti metal do not have a diffusion barrier effect or the like. The present invention is characterized by using the intermediate layer 2 mainly composed of M 2 N typified by Ti 2 N.
[0018]
FIG. 2 shows a film formed on a AlN substrate in which a Ti 2 N layer having a thickness of 100 nm and an Au layer having a thickness of 50 nm are sequentially formed, and after performing a heat treatment in the air under the condition of 873 K × 10 min, It shows the result of measuring the depth direction distribution of the composition at each Ti 2 N layer / Au layer interface with a Razafort backscattering analyzer (RBS (1.5 MeV, He + )). As is clear from FIG. 2, even after the heat treatment, there is almost no composition change in the depth direction, and the intermediate layer 2 mainly composed of M 2 N typified by Ti 2 N has a very good configuration of the thin film conductor layer 3. It can be seen that it has a diffusion barrier effect of the element and its own diffusion preventing property.
[0019]
On the other hand, FIG. 3 shows a film in which a 100-nm-thick Ti layer and a 50-nm-thick Au layer are sequentially formed on an AlN substrate, and after heat-treating the sample in the air under the condition of 873K × 10 min. This shows the result of measuring the distribution in the depth direction of the composition at the interface between the Ti layer and the Au layer in the same manner as described above. As is clear from FIG. 3, Ti and Au are diffused after the heat treatment, and the diffusion barrier effect of the constituent elements of the thin film conductor layer 3 and the diffusion preventing property of itself are not obtained as in the present invention. I understand. FIG. 4 shows that an AlN substrate on which a conventional Ti (50 nm) / Ni (500 nm) / Au (100 nm) structure film is formed is subjected to a heat treatment in the air under a condition of 773 K × 5 min, and then subjected to an Auger electron spectroscopy (AES). 4) shows the result of measuring the composition distribution in the depth direction. From FIG. 4, it can be seen that in the laminated film of the conventional structure, Au diffuses to the AlN / Ti interface and NiO diffuses in the surface direction.
[0020]
The above-described intermediate layer 2 may be a layer mainly composed of M 2 N, and specifically, is preferably a layer containing M 2 N by 50% by volume or more. Further, it is desirable that the layer be substantially made of M 2 N except for a reaction product formed on the interface side with the nitride-based ceramic substrate 1 described later. The thickness of the intermediate layer 2 is preferably 10 nm or more in order to obtain a good diffusion barrier effect. However, if the thickness is too large, the intermediate layer 2 itself may be peeled off. Therefore, the thickness is preferably 2 μm or less.
[0021]
The intermediate layer 2 mainly composed of M 2 N is formed, for example, as follows. That is, first, a metal film (M element film) such as a Ti film, a Zr film, and an Hf film is formed on the nitride-based ceramic substrate 1 by various thin film forming methods such as a sputtering method and an evaporation method. Heat treatment under controlled conditions to produce M 2 N. As conditions for generating M 2 N, nitrogen partial pressure and temperature in a heat treatment atmosphere are important. For example, when heat treatment is performed in an atmosphere that does not substantially contain N 2 such as an Ar atmosphere, 800 K is used. It is preferable to perform the heat treatment at the above high temperature. On the other hand, when the heat treatment is performed in a mixed atmosphere of N 2 and Ar or the like, it is preferable that the N 2 partial pressure in the atmosphere be 1 × 10 −3 to 1 Pa and the heat treatment be performed at a temperature of 800 to 1300 K. If the heat treatment conditions are not satisfied, the amount of generated M 2 N may be insufficient, or an MN compound such as TiN may be preferentially generated.
[0022]
As described above, when forming the M metal film and then performing the heat treatment to form the intermediate layer 2 mainly composed of M 2 N, the M metal film such as the Ti film and the nitride are formed during the film formation and the heat treatment. The nitride-based ceramics substrate 1 and the intermediate layer 2 are strongly bonded by reacting at the interface with the ceramic-based substrate 1 to generate an interface reactant such as TiAl 3 . The intermediate layer 2 mainly composed of M 2 N can be directly formed by reactive sputtering or the like. In such a case, the nitride ceramic substrate 1 and the intermediate layer 2 may be joined by utilizing the reactivity of the M element such as Ti in M 2 N with the nitride ceramic substrate 1. Alternatively, an M metal film such as a Ti film may be formed on the nitride ceramic substrate 1 in advance, and an M 2 N film may be formed on the M metal film.
[0023]
As described above, the intermediate layer 2 mainly composed of M 2 N is interposed between the nitride-based ceramic substrate 1 and the thin-film conductor layer 3 so that the nitride-based ceramic substrate 1 and the thin-film conductor layer 3 Element migration can be favorably prevented, and the diffusion of the constituent elements of the intermediate layer 2 itself does not occur. Further, the intermediate layer 2 itself exhibits a strong bonding force to the nitride ceramic substrate 1 and the thin film conductor layer 3.
[0024]
Therefore, even after various heat treatment steps, the bonding at the interface between the nitride ceramic substrate 1 and the intermediate layer 2 is maintained, so that the bonding strength of the thin film conductor layer 3 can be stably maintained. Further, since element diffusion into the thin film conductor layer 3 does not occur, the thickness of the thin film conductor layer 3 can be reduced as long as conductivity, bonding property, solderability and the like can be ensured. This leads to a reduction in manufacturing cost when expensive Au or the like is used for the thin film conductor layer 3. Further, since the above-described functions and effects can be obtained with a simple film configuration of the intermediate layer 2 mainly composed of M 2 N and the thin film conductor layer 3, the cost of film formation can be reduced with respect to the laminated film having the conventional structure. It becomes possible. In addition to the simplification of the film configuration, the intermediate layer 2 mainly composed of M 2 N has a larger film forming time than the conventional diffusion barrier layer Ni film (sputtering time: 20 nm / min (RF output: 500 W)). Can be shortened, so that the number of film forming steps and the manufacturing cost can be reduced. Further, by forming the intermediate layer 2 mainly composed of M 2 N by a heat treatment, a film having a small change in thickness and a change in film quality depending on a place, and a uniform and highly reproducible film can be obtained.
[0025]
In the above embodiment, the wiring substrate 4 using the nitride ceramic substrate 1 has been described. However, as shown in FIG. 5, the wiring substrate of the present invention is an oxide ceramic substrate such as an alumina (Al 2 O 3 ) substrate. 5 can be applied, and the same effect as in the above-described embodiment can be obtained. When the intermediate layer 2 mainly composed of M 2 N is formed on the oxide ceramic substrate 5, the oxide ceramic substrate 5 and the intermediate layer 2 are firmly joined by the oxidation and reduction actions of the M element. You.
[0026]
As a method for forming the intermediate layer 2 made mainly of M 2 N when applying the oxide ceramic substrate 5, to the M 2 N film may be directly formed by reactive sputtering or the like, and N 2 M 2 N can also be generated by performing a heat treatment on the M metal film in a mixed atmosphere of Ar and supplying N from the atmosphere. The heat treatment conditions in such a case are preferably such that the N 2 partial pressure in the atmosphere is 1 × 10 −3 to 1 Pa and the heat treatment temperature is in the range of 800 to 1300 K.
[0027]
FIG. 6 is a view showing another embodiment of the present invention, in which 11 is a semiconductor substrate such as a Si substrate. On the semiconductor substrate 11, a thin film conductor layer 13 such as an Al wiring is formed via an intermediate layer 12 mainly composed of M 2 N as in the above-described embodiment. Here, if an annealing process or the like is performed on the Al wiring, there is a possibility that the diffusion of Al occurs and the characteristics of the semiconductor substrate 11 are deteriorated. On the other hand, since the intermediate layer 12 mainly composed of M 2 N has a diffusion barrier effect of Al or the like as described above, it is possible to prevent deterioration of characteristics due to diffusion of Al or the like. As described above, the present invention is also effective for a thin film conductor layer for wiring on a semiconductor substrate.
[0028]
【Example】
Next, specific examples of the present invention will be described.
[0029]
Example 1
An AlN ceramic substrate TAN170 (trade name, manufactured by Toshiba Corporation) (shape: 50.8 mm x 50.8 mm x thickness 0.6 mm) is prepared. First, the surface of the AlN ceramic substrate is subjected to surface roughness. Mirror polishing to Ra = 30 nm. A Ti film was formed on the polished surface by RF sputtering. The film formation conditions were as follows: substrate temperature 298 K, RF frequency 13.56 MHz, RF output 500 W, Ti target purity 99.99%, Ar gas atmosphere (purity 99.9999%), initial Ar gas pressure 2 × 10 −4 Pa, work The Ar pressure was set to 6 × 10 −1 Pa.
[0030]
After depositing 100 nm of Ti under the conditions described above (required time: 10 minutes), the substrate temperature is continuously increased to 773 K in the same sputtering apparatus having the high-purity Ar atmosphere, and the temperature is maintained at this temperature for 5 minutes. By holding, Ti 2 N was generated. FIG. 7 shows the X-ray diffraction result (Cu-Kα / 0.5 °) of the film after the heat treatment. From FIG. 7, it can be confirmed that Ti 2 N is generated.
[0031]
After the above heat treatment, it was confirmed that the substrate temperature was lowered to 303 K or less by cooling, and then a 50 nm-thick Au film was continuously formed by RF sputtering. The conditions for forming the Au film were the same as those for forming the Ti film. The substrate was taken out of the sputtering apparatus and subjected to electrolytic Au plating to complete electrode formation.
[0032]
Thereafter, the laminated film of the Au film and the Ti 2 N film was etched into a desired wiring shape by a well-known method to obtain a target wiring substrate. The bonding strength was measured as a mechanical property of the wiring layer thus formed. The bonding strength was measured after the wiring layer after film formation and the wiring substrate were subjected to a heat treatment of 773 K × 5 min in air. When performing AuSn solder or AuSi eutectic mounting, the above heat treatment conditions were determined because they were generally exposed to such temperature conditions. Table 1 shows the measurement results, and the bonding strength of the wiring layer after performing the same heat treatment on the AlN substrate (Comparative Example 1) on which the conventional Ti (50 nm) / Ni (500 nm) / Au (100 nm) structure film was formed. Shown in comparison with.
[0033]
As is clear from Table 1, the wiring board according to Example 1 had sufficient bonding strength even after the heat treatment, and high-temperature stability was confirmed. Further, the film forming process according to Example 1 was reduced to / of the film forming process according to Comparative Example 1, thereby facilitating the manufacturing and shortening the manufacturing time. Furthermore, when a module was manufactured using the obtained wiring board, good characteristics were obtained with a conductor resistance, a semiconductor mount, and the like.
[0034]
Example 2
An AlN ceramic substrate TAN170 (trade name, manufactured by Toshiba Corporation) (shape: 50.8 mm x 50.8 mm x thickness 0.600 mm) is prepared. First, the surface of the AlN ceramic substrate is subjected to surface roughness. Mirror polishing to Ra = 30 nm. A Ti film was formed on the polished surface by RF sputtering. The film formation conditions are: substrate temperature 298 K, RF frequency 13.56 MHz, RF output 1 kW, Ti target purity 99.99%, Ar gas atmosphere (purity 99.9999%), initial Ar gas pressure 2 × 10 −4 Pa, work The Ar pressure was set to 6 × 10 −1 Pa. Under such conditions, 50 nm of Ti was deposited (required time: 2 minutes 30 seconds).
[0035]
Subsequently, a Τi 2 N film was continuously formed by a reactive sputtering method under the same conditions. A TiN x (x = 0.5) alloy target was used as a target, and a film was formed in an Ar / N 2 mixed gas atmosphere (Ar / N 2 pressure ratio = 0.53 Pa / 0.1 Pa). Since the substrate was amorphous in this state, the substrate was heated to 773 to 873 K by W-halogen lamp annealing in the same chamber as the annealing treatment, and was heat-treated for about 30 seconds while controlling the N 2 atmosphere pressure.
[0036]
After the above heat treatment, it was confirmed that the substrate temperature was lowered to 303 K or less by cooling, and then a 50 nm-thick Au film was continuously formed by RF sputtering. The conditions for forming the Au film were the same as those for forming the Ti film. The substrate was taken out of the sputtering apparatus and subjected to electrolytic Au plating to complete electrode formation.
[0037]
Thereafter, the laminated film of the Au film and the Ti 2 N film was etched into a desired wiring shape by a well-known method to obtain a target wiring substrate. The bonding strength as a mechanical property of the wiring layer thus formed was measured in the same manner as in Example 1. Table 1 shows the measurement results. The wiring board according to Example 2 had sufficient bonding strength even after heat treatment, and high-temperature stability was confirmed. Further, as in the case of the wiring board according to the first embodiment, simplification of the manufacturing and shortening of the manufacturing time were achieved, and good characteristics were obtained in the conductor resistance, the semiconductor mount, and the like.
[0038]
Example 3
As a ceramic substrate made of AlN, a multilayer substrate for package (shape: 50.8 mm × 50.8 mm × thickness 0.600 mm) having a thermal conductivity of 200 W / mK was prepared. In the multilayer substrate, six or more layers of internal wiring as a semiconductor package are formed in advance. The composition of the substrate was 97% by weight of AlN, and the remaining elemental composition was an oxynitride mainly composed of yttrium (Y). The surface of the multilayer substrate for a package was mirror-polished to an average roughness Ra = 30 nm. A Ti film was formed on the polished surface of the package multilayer substrate by an RF sputtering method. The film formation conditions are: substrate temperature 298 K, RF frequency 13.56 MHz, RF output 500 W, Ti target purity 99.99%, Ar gas atmosphere (purity 99.9999%), initial Ar gas pressure 2 × 10 −4 Pa, work The Ar pressure was set to 6 × 10 −1 Pa.
[0039]
After depositing 100 nm of Ti under the above-described conditions (required time: 10 minutes), the substrate temperature is continuously increased to 773 K in the same sputtering apparatus having the high-purity Ar atmosphere (by a tungsten halogen lamp annealing method). ) And held at this temperature for 1 minute to produce Ti 2 N.
[0040]
After the above heat treatment, it was confirmed that the substrate temperature was lowered to 303 K or less by cooling, and then a 50 nm-thick Au film was continuously formed by RF sputtering. The conditions for forming the Au film were the same as those for forming the Ti film. The substrate was taken out of the sputtering apparatus and subjected to electrolytic Au plating to complete electrode formation.
[0041]
Thereafter, the wire bonding pattern, the electrode pattern for the power supply bypass capacitor, the electrode pattern for Ι / O, and the like are etched by a known method, and the laminated film of the Au film and the Ti 2 N film is etched into a desired wiring shape to obtain a desired wiring shape. A circuit was formed to obtain a target wiring board. The bonding strength as a mechanical property of the wiring layer thus formed was measured in the same manner as in Example 1. Table 1 shows the measurement results, and the bonding of wiring layers after performing the same heat treatment on an AlN multilayer substrate (Comparative Example 2) on which a conventional Ti (50 nm) / Ni (500 nm) / Au (100 nm) structure film was formed. It is shown in comparison with the strength.
[0042]
As is clear from Table 1, the wiring board according to Example 3 had sufficient bonding strength even after the heat treatment, and high-temperature stability was confirmed. Further, the film forming process according to Example 3 was reduced to / of the film forming process according to Comparative Example 2, thereby facilitating the manufacturing and shortening the manufacturing time. Further, mounting of an LSI chip and sealing with AuSn solder (working temperature: 573 K) were performed on the obtained multilayer substrate, and good characteristics were obtained in both thermal resistance and airtightness.
[0043]
[Table 1]
Figure 0003569093
Example 4
When a wiring layer was formed under the same conditions as in Example 1 using an Al 2 O 3 substrate instead of the AlN substrate used in Example 1, the same results as in Example 1 were obtained.
[0044]
Example 5
When a wiring layer was formed under the same conditions as in Example 1 using a Si substrate instead of the AlN substrate used in Example 1, results similar to those of Example 1 were obtained.
[0045]
【The invention's effect】
As described above, according to the wiring board of the present invention, with a simple film configuration, the bonding strength of the conductor layer can be maintained even after various heat treatment steps, and good bonding properties and soldering properties are obtained. It can be obtained stably, and it is possible to reduce the number of manufacturing steps and manufacturing cost.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an embodiment of a wiring board of the present invention.
FIG. 2 is a diagram showing an RBS measurement result of a Ti 2 N / Au interface in a typical wiring board of the present invention.
FIG. 3 is a diagram showing an RBS measurement result of a TiN / Au interface as a comparison with the present invention.
FIG. 4 is a diagram showing an AES measurement result on a wiring board having a conventional structure.
FIG. 5 is a sectional view showing a modification of the wiring board shown in FIG. 1;
FIG. 6 is a sectional view showing another embodiment of the wiring board of the present invention.
FIG. 7 is a view showing an X-ray diffraction result of an intermediate layer formed according to Example 1.
[Explanation of symbols]
1 ...... nitride ceramic substrate 2, 12 ...... Ti 2 N intermediate layer 3, 13 ...... thin film conductor layers 4, 14 ...... wiring consisting mainly of substrate 5 ...... oxide ceramic substrate 11 ... semiconductor substrate

Claims (4)

セラミックス基板と、前記セラミックス基板上にM2N(ただし、MはTi、ZrおよびHfから選ばれる少なくとも1種の元素を示す)を主体とする中間層を介して設けられた、Au膜導体層とを具備することを特徴とする配線基板。A ceramic substrate, M 2 N (provided that, M is Ti, at least one element selected from Zr and Hf) in the ceramic substrate is provided via an intermediate layer mainly composed of, Au thin film conductor And a wiring board. 基板上に、M元素(ただし、MはTi、ZrおよびHfから選ばれる少なくとも1種の元素を示す)の薄膜を形成した後に熱処理を施して、M2Nを主体とする中間層を形成する工程と、
前記M2Nを主体とする中間層上に、Au薄膜導体層を形成する工程と
を具備することを特徴とする配線基板の製造方法。
After forming a thin film of an M element (where M represents at least one element selected from Ti, Zr and Hf) on a substrate, a heat treatment is performed to form an intermediate layer mainly composed of M 2 N. Process and
Forming a Au thin-film conductor layer on the intermediate layer mainly composed of M 2 N.
請求項記載の配線基板の製造方法において、
前記M元素の薄膜に800K以上の温度で熱処理を施すことを特徴とする配線基板の製造方法。
The method for manufacturing a wiring board according to claim 2 ,
A method for manufacturing a wiring board, wherein a heat treatment is performed on the thin film of the element M at a temperature of 800 K or more.
基板上に、M金属膜(ただし、MはTi、ZrおよびHfから選ばれる少なくとも1種の元素を示す)を介して、あるいは直接M2N薄膜からなる中間層を形成する工程と、
前記中間層上にAu薄膜導体層を形成する工程と
を具備することを特徴とする配線基板の製造方法。
Forming an intermediate layer of an M 2 N thin film on the substrate via an M metal film (where M represents at least one element selected from Ti, Zr and Hf), or
Forming a Au thin-film conductor layer on the intermediate layer.
JP32397896A 1996-12-04 1996-12-04 Wiring board and method of manufacturing the same Expired - Lifetime JP3569093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32397896A JP3569093B2 (en) 1996-12-04 1996-12-04 Wiring board and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32397896A JP3569093B2 (en) 1996-12-04 1996-12-04 Wiring board and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10163378A JPH10163378A (en) 1998-06-19
JP3569093B2 true JP3569093B2 (en) 2004-09-22

Family

ID=18160759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32397896A Expired - Lifetime JP3569093B2 (en) 1996-12-04 1996-12-04 Wiring board and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3569093B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8569142B2 (en) 2003-11-28 2013-10-29 Blackberry Limited Multi-level thin film capacitor on a ceramic substrate and method of manufacturing the same
US7224040B2 (en) 2003-11-28 2007-05-29 Gennum Corporation Multi-level thin film capacitor on a ceramic substrate
JP6499545B2 (en) * 2015-08-07 2019-04-10 Jx金属株式会社 Metal-ceramic bonding substrate and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2664744B2 (en) * 1988-11-02 1997-10-22 株式会社東芝 Aluminum nitride thin film circuit board
JPH0282641A (en) * 1988-09-20 1990-03-23 Matsushita Electric Ind Co Ltd Ceramic multilayer substrate
JPH05136290A (en) * 1991-11-11 1993-06-01 Toshiba Corp Ceramics circuit substrate
JPH0551272A (en) * 1991-08-22 1993-03-02 Murata Mfg Co Ltd Manufacture of joined body of aluminum nitride substrate and metallic sheet
JPH05166854A (en) * 1991-12-12 1993-07-02 Toshiba Corp Semiconductor device
JP3322967B2 (en) * 1993-12-10 2002-09-09 株式会社東芝 Circuit board

Also Published As

Publication number Publication date
JPH10163378A (en) 1998-06-19

Similar Documents

Publication Publication Date Title
JP4623774B2 (en) Heat sink and manufacturing method thereof
US6569514B2 (en) Ceramic circuit board and method of manufacturing the same
US4875284A (en) Process for producing a package for packing semiconductor devices
EP0521405B1 (en) Heat radiating component and semiconductor device provided with the same
JPS62207789A (en) Surface structure for aluminum nitride material and manufacture
EP0297511B1 (en) Connection structure between components for semiconductor apparatus
US6830780B2 (en) Methods for preparing brazeable metallizations for diamond components
JPH0516398B2 (en)
JPH08241942A (en) Thin-film laminate
JP3569093B2 (en) Wiring board and method of manufacturing the same
WO1997005757A1 (en) Diamond electronic packages featuring bonded metal
JP2003101217A (en) Circuit substrate and its manufacturing method
US6914330B2 (en) Heat sink formed of diamond-containing composite material with a multilayer coating
JP2000086368A (en) Nitride ceramic substrate
JPS63242985A (en) Aluminum nitride substrate
JPS62197375A (en) Aluminum nitride substrate
JPH06151637A (en) Insulating aluminum nitride heat-radiation plate provided with lead
JPH02153883A (en) High thermal conductivity base and its production
JP2555898B2 (en) Method for metallizing diamond thin film and method for forming pattern
JP3103208B2 (en) Solder preform substrate
EP0443277B1 (en) Metallized ceramic body and method to make the same
JPS59184586A (en) Circuit board for placing semiconductor element
JP2512898B2 (en) Insulating substrate and manufacturing method thereof
JPH02226749A (en) Heat sink for high-output circuit component
JPH03141169A (en) Metallized structure of aluminum nitride substrate and bond structure of aluminum nitride substrate with metal plate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

EXPY Cancellation because of completion of term