JP3568616B2 - Laser trapping device - Google Patents

Laser trapping device Download PDF

Info

Publication number
JP3568616B2
JP3568616B2 JP06275795A JP6275795A JP3568616B2 JP 3568616 B2 JP3568616 B2 JP 3568616B2 JP 06275795 A JP06275795 A JP 06275795A JP 6275795 A JP6275795 A JP 6275795A JP 3568616 B2 JP3568616 B2 JP 3568616B2
Authority
JP
Japan
Prior art keywords
laser
prism
light
optical axis
planes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06275795A
Other languages
Japanese (ja)
Other versions
JPH08262328A (en
Inventor
野 修 司 鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moritex Corp
Japan Science and Technology Agency
Original Assignee
Moritex Corp
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moritex Corp, Japan Science and Technology Agency filed Critical Moritex Corp
Priority to JP06275795A priority Critical patent/JP3568616B2/en
Publication of JPH08262328A publication Critical patent/JPH08262328A/en
Priority to US08/975,256 priority patent/US5953166A/en
Application granted granted Critical
Publication of JP3568616B2 publication Critical patent/JP3568616B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Microscoopes, Condenser (AREA)
  • Lasers (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、レーザ光を集光光学系によりその焦点上に集光させて真空又は媒質中の粒子に照射することにより当該粒子を捕捉するレーザトラッピング装置に関する。
【0002】
【従来の技術】
媒質中の微粒子を非接触,非破壊で捕捉したり、任意の位置へ転送する等のマニュピレーションを行う手法としてレーザトラッピングが知られている。
これは、レーザ光を顕微鏡内に導いて対物レンズで集光し、捕捉しようとする粒子に照射することにより光の放射圧を生じさせ、その圧力により当該粒子を捕捉するものである。
【0003】
そして、このようなレーザトラッピングにおいては、光軸に直交する平面内でのトラップ力が比較的大きく、これに比して光軸方向のトラップ力が小さいので、専ら光軸に直交する平面内において粒子を二次元的に移動させる操作が行われていたが、最近では、光軸方向のトラップ力を大きくして粒子を光軸に直交する平面内だけでなく光軸方向へも三次元的に移動できるようにしたレーザトラッピング装置が提案された(特開平5−93871号公報参照)。
【0004】
これは、図5(a)に示すように、レーザ光の光路B中に、頂角の等しい一対の円錐プリズム61,62と集光レンズ(対物レンズ)63が夫々の光軸を一致した状態で配されたもので、レーザ光束は第一の円錐プリズム61を透過したところで円錐筒状に拡がる光束に変換され、次いで第二の円錐プリズム62を透過したところで円環状の円筒状の光束に変換された後、これが集光レンズ63により焦点に集光されて、その焦点において真空又は媒質中の粒子64を捕捉するようになされている。
【0005】
このとき、粒子64を焦点上に位置させてレーザ光を照射すると、レーザ光は光軸に対して比較的大きな角度で入射される円錐筒状の光束となり、その内側には粒子に照射される光がないので、粒子64の表面の反射により当該粒子64を光軸に沿って光照射方向に押す力が小さくなり、結果として光軸に沿って光照射方向と反対方向に捕捉する力が増し、粒子を重力に抗して持ち上げたり、空間中の任意の位置に保持することができる。
【0006】
【発明が解決しようとする課題】
しかしながら、対となる二つの円錐プリズム61及び62の光軸を同軸的に精度よく配置することは極めて困難であり、光軸が傾いたりずれたりした場合にはレーザ光が散乱してしまうという問題があった。
例えば、図5(a)に示すように光軸を完全に一致させて直径約4mmのレーザ光束を照射した場合、その焦点においてレーザ光は図6(a)に示すように直径約10μmのスポット状に集光されるが、図5(b)に示すように第一の円錐プリズム61の光軸が約2度傾くとレーザ光は図6(b)に示すように直径約 0.2mm程度に散乱し、また図5(c)に示すように第一の円錐プリズム61の光軸がレーザ光の光軸から僅かに0.10mmずれるだけでレーザ光は図6(c)に示すように直径約 0.4mm程度に散乱してしまい、とてもレーザトラッピングを行う光学系として使用することができないという問題があった。
【0007】
また、光軸を正確に合わすことができたとしても、円錐プリズム61及び62の頂角を正確に等しく加工し、且つ、歪みなく成形することは非常に困難である。したがって、歪みのない一対の理想的なプリズムを成形し、且つ、これらの光軸を精度よく合わせなければならず、このため製造コストが嵩み、レーザトラッピング装置が高価にならざるを得ないという問題があった。
そこで、本発明は、精度よく製造することが極めて困難な円錐プリズムを用いることなく、しかも、光軸が多少傾いたりずれたりしてもレーザ光が散乱することなく集光されて粒子を確実に捕捉できるようにすることを技術的課題としている。
【0008】
【課題を解決するための手段】
この課題を解決するために、本発明は、レーザ光を集光光学系によりその焦点上に集光させて真空又は媒質中の粒子に照射することにより当該粒子を捕捉するレーザトラッピング装置において、レーザ光の光路に沿って、前記集光光学系の手前側にレーザ光を複数の平行光束に分割するプリズムが配設され、当該プリズムは、レーザ光の入射側及び出射側の両端が、2以上の同数の平面で形成され、入射側及び出射側の対となる平面同士が互いに平行面に形成されたことを特徴とする。
【0009】
【作用】
本発明によれば、集光光学系の手前側にレーザ光を複数の平行光束に分割するプリズムが配設されており、そのプリズムは、レーザ光の入射側及び出射側の両端が、2以上の同数の平面で形成されており、入射側及び出射側の対となる平面同士が互いに平行面に形成されているので、複雑な曲面を形成する必要がなく、プリズムを極めて簡単にしかも精度良く加工成形できる。
【0010】
そして、プリズムの入射側の各平面が集まる稜線又は頂点からレーザ光を入射させると、レーザ光は各平面で屈折されてその面の数分の光束に分割されると共に、出射側の面で再び屈折される。
このとき、入射側と出射側の対となる平面同士が平行に形成されているので、集光光学系の光軸に対してプリズムの光軸が多少傾いても、また、多少ずれても各光束は散乱することなく、必ず集光光学系の周囲に光軸と平行な複数の光束として出射される。
したがって、これらの光束を集光光学系によりその焦点に集光することができ、各光束は光軸に対して比較的大きな角度で集光されるのでその焦点上に粒子が捕捉される。
【0011】
【実施例】
以下、本発明を図面に示す実施例に基づいて具体的に説明する。
図1は本発明に係るレーザトラッピング装置を示す概略説明図、図2(a)乃至(e)は夫々レーザトラッピング装置に使用する使用するプリズムを示す図、図3(a)及び(b)は夫々プリズムを出射した光束及び焦点におけるレーザスポットを示す説明図、図4(a)及び(b)は光軸が傾いたときとずれたときの光学系を示す概略説明図である。
【0012】
図中1は、真空又は媒質中の粒子2にレーザ光を照射することにより当該粒子2を捕捉するレーザトラッピング装置であって、その光路に沿って、レーザ光を複数の平行光束に分割して出射させるプリズム3と、その平行光束を焦点上に集光させる二つのレンズ4a,4bからなる集光光学系5が配列されている。
このプリズム3は、レーザ光の入射側及び出射側の両端が、2以上の同数の平面6A,6B,7A,7Bで形成され、入射側及び出射側の対となる平面6A及び7A,6B及び7B同士が互いに平行面に形成されている。
【0013】
具体的には、例えば、図2(a)に示すように四角柱8の両端に山形の斜面を形成したもの、図2(b)に示すように正四角柱9の両端に正四角錐形状の斜面を形成したもの、図2(c)に示すように正六角柱10の両端に正六角錐形状の斜面を形成したもの、図2(d)に示すように正八角柱11の両端に正八角錐形状の斜面を形成したもの等を使用することができる。
【0014】
また、上述したように偶数の平面を形成する場合に限らず、図2(e)に示すように円柱12に正三角錐形状の斜面を形成したものであってもよく、さらに、入射側及び出射側の対となる平面同士が互いに平行面に形成されていれば、正多角錐形状に限らず、単なる角錐形状であってもよい。
さらにまた、入射側に平面の集合する稜線又は頂点Pがあれば、出射側にはそのような稜線又は頂点がなくてもよい。
【0015】
なお、プリズム3及びレンズ4a,4bは任意の材質を使用できるが、本例のプリズム3は屈折率n=1.51のガラスを使用し、レンズ4aはSK11(屈折率n=1.5638)のガラス、レンズ4bはSF5(屈折率n=1.6727)のガラスを夫々使用している。
【0016】
以上が本発明の構成例であって、次にその作用について図2(b)のプリズムを使用した場合を例にとって説明する。
プリズム3は、正四角柱9の両端に正四角錐形状の斜面が形成されてなり、入射側及び出射側の対となる斜面だけでなく、当該プリズム3の周面もすべて平行な平面で形成することができるので、容易にしかも精度よく加工することができる。
【0017】
そして、このように形成されたプリズム3を集光光学系5の光軸と同軸的に配列し、プリズム3の入射側の頂点Pからその光軸に沿ってレーザ光を入射させると、入射側の正四角錐の4つの斜面によりレーザ光が四方向に屈折され、出射側の正四角錐の4つの斜面により再び屈折されて4本の平行光となって出射される。
なお、このときレーザ光束の円形スポットが正四角錐の4つの斜面により4分割されているので、各光束の断面は、図3(a)に示すように1/4円の形状になっている。
【0018】
そして、この平行光束を集光光学系5で集光させると、各光束は光軸に対して大きな角度をもって焦点に集まり、図3(b)に示すように約10μm程度のレーザスポットが形成され、その焦点で粒子を捕捉する。
このとき、光束と光軸のなす角度の内側には粒子に照射されるレーザ光は存在しないので、粒子の表面の反射により当該粒子を光軸に沿って光照射方向に押す力が小さくなり、結果として光軸に沿って光照射方向と反対方向に捕捉する力が増し、粒子を重力に抗して持ち上げたり、空間中の任意の位置に保持することができる。
【0019】
また、プリズム3を配列するときに、図4(a)に示すように、プリズム3の光軸が集光光学系5の光軸に対して傾いても、各光束は光軸に対して平行に維持されるので光が散乱することはなく、例えば光軸の傾きが2度の場合、集光レンズ4の焦点にはやはり図3(b)に示したのと同様に約10μmのレーザスポットが形成されるので、粒子2を確実に捕捉することができる。
【0020】
さらに、図4(b)に示すように、プリズム3の光軸が集光レンズ4の光軸に対してずれていても、集光レンズ4に入射される各平行光のエネルギー強度が異なるだけで、光が散乱することは一切なく、例えば光軸のずれが 0.1mmの場合、集光レンズ4の焦点にはやはり図3(b)に示したのと同様に約10μmのレーザスポットが形成されるので、この場合も粒子2を確実に捕捉することができる。
【0021】
なお、実施例では両端に正四角錐の斜面を形成したプリズムを使用した場合について説明したが、両端に山形の二対の平面を形成したプリズムや、角錐形状の傾斜面が形成されたプリズムを使用しても同様の作用効果が得られる。
ただし、角錐状に形成したプリズム3を使用する場合、平面の数が多くなるとそれだけ加工が面倒になるので、片端側を八面程度に加工するのが好ましい。
【0022】
【発明の効果】
以上述べたように、本発明によれば、プリズムの入射側及び出射側の面をすべて平面で構成することができるので、容易に且つ精度良く加工することができ、したがって、プリズムの単価が低下し、ひいては装置全体の製造コストを軽減することができ、また、入射側と出射側の対となる面が平行面で形成されているので、光軸が傾いたりずれたりしても光が散乱することなく焦点に集光されるので、確実に粒子を捕捉することができるという大変優れた効果を有する。
【図面の簡単な説明】
【図1】本発明に係るレーザトラッピング装置の例を示す概略説明図
【図2】それに使用するプリズムの例を示す斜視図
【図3】光束及びレーザスポットを示す説明図。
【図4】光軸が傾いた状態及びずれた状態を示す概略説明図
【図5】従来装置を示す概略説明図
【図6】従来装置の焦点におけるレーザスポットを示す説明図
【符号の説明】
1・・・レーザトラッピング装置
2・・・粒子
3・・・プリズム
5・・・集光光学系
6A,7A・・・入射側及び出射側の対となる平面
6B,7B・・・入射側及び出射側の対となる平面
[0001]
[Industrial applications]
The present invention relates to a laser trapping device that captures a laser beam by condensing the laser beam on a focal point by a condensing optical system and irradiating the particle on a vacuum or a medium in a medium.
[0002]
[Prior art]
2. Description of the Related Art Laser trapping is known as a technique for performing manipulation such as capturing fine particles in a medium in a non-contact and non-destructive manner and transferring the particles to an arbitrary position.
In this method, a laser beam is guided into a microscope, condensed by an objective lens, and irradiates particles to be captured to generate a radiation pressure of light, and the particles are captured by the pressure.
[0003]
In such laser trapping, the trapping force in a plane perpendicular to the optical axis is relatively large, and the trapping force in the optical axis direction is small in comparison with this. The operation of moving particles two-dimensionally has been performed, but recently, by increasing the trapping force in the direction of the optical axis, the particles are three-dimensionally moved not only in a plane perpendicular to the optical axis but also in the direction of the optical axis. A laser trapping device capable of moving has been proposed (see Japanese Patent Application Laid-Open No. 5-93871).
[0004]
This is because, as shown in FIG. 5A, a pair of conical prisms 61 and 62 having the same apex angle and a condenser lens (objective lens) 63 have their optical axes aligned in the optical path B of the laser beam. The laser beam is converted into a light beam that spreads in a conical cylinder when transmitted through the first conical prism 61, and then converted into an annular cylindrical light beam when transmitted through the second conical prism 62. After that, the light is condensed to a focal point by the condenser lens 63, and the particle 64 in the vacuum or the medium is captured at the focal point.
[0005]
At this time, when the particle 64 is irradiated with laser light while being positioned on the focal point, the laser light becomes a conical cylindrical light beam incident at a relatively large angle with respect to the optical axis, and the particle is irradiated inside the light beam. Since there is no light, the force of pushing the particle 64 in the light irradiation direction along the optical axis due to the reflection of the surface of the particle 64 is reduced, and as a result, the force of capturing the particle 64 in the direction opposite to the light irradiation direction is increased. The particles can be lifted against gravity or held at any position in space.
[0006]
[Problems to be solved by the invention]
However, it is extremely difficult to accurately and coaxially arrange the optical axes of the two conical prisms 61 and 62 to form a pair. If the optical axis is tilted or shifted, the laser light is scattered. was there.
For example, when a laser beam having a diameter of about 4 mm is irradiated with the optical axes completely aligned as shown in FIG. 5A, the laser beam at the focal point has a spot having a diameter of about 10 μm as shown in FIG. When the optical axis of the first conical prism 61 is tilted about 2 degrees as shown in FIG. 5B, the laser beam is about 0.2 mm in diameter as shown in FIG. 6B. 5C, and the laser light is shifted from the optical axis of the first conical prism 61 by only 0.10 mm as shown in FIG. There is a problem that the light is scattered to a diameter of about 0.4 mm and cannot be used as an optical system for performing laser trapping.
[0007]
Further, even if the optical axes can be accurately aligned, it is very difficult to precisely process the apex angles of the conical prisms 61 and 62 equally and to form them without distortion. Therefore, a pair of ideal prisms having no distortion must be formed, and their optical axes must be precisely aligned, which increases the manufacturing cost and makes the laser trapping device expensive. There was a problem.
Thus, the present invention reliably collects particles without using a conical prism, which is extremely difficult to manufacture with high accuracy, and without scattering laser light even when the optical axis is slightly inclined or shifted. It is a technical issue to be able to capture.
[0008]
[Means for Solving the Problems]
In order to solve this problem, the present invention provides a laser trapping device that captures laser light by focusing the laser light on its focal point by a focusing optical system and irradiating the particles in a vacuum or a medium with a laser. Along the optical path of the light, a prism for splitting the laser light into a plurality of parallel light beams is provided on the front side of the condensing optical system, and the prism has two or more ends on the incident side and the emission side of the laser light. , And a pair of planes on the incident side and the emission side are formed parallel to each other.
[0009]
[Action]
According to the present invention, a prism for splitting a laser beam into a plurality of parallel light beams is provided on the front side of the converging optical system, and the prism has two or more ends on the incident side and the emission side of the laser beam. Are formed with the same number of planes, and the planes forming the pair on the entrance side and the exit side are formed in parallel to each other, so that it is not necessary to form a complicated curved surface, and the prism can be formed very simply and accurately. Can be processed and formed.
[0010]
When laser light is incident from the ridgeline or vertex where the planes on the incident side of the prism converge, the laser light is refracted on each plane and split into luminous fluxes corresponding to the number of the planes, and again on the plane on the exit side. Refracted.
At this time, since the paired planes of the incident side and the exit side are formed in parallel, even if the optical axis of the prism is slightly inclined with respect to the optical axis of the condensing optical system, The light beam is always emitted as a plurality of light beams parallel to the optical axis around the focusing optical system without being scattered.
Therefore, these light beams can be condensed at the focal point by the condensing optical system, and each light beam is condensed at a relatively large angle with respect to the optical axis, so that particles are captured on the focal point.
[0011]
【Example】
Hereinafter, the present invention will be specifically described based on embodiments shown in the drawings.
FIG. 1 is a schematic explanatory view showing a laser trapping device according to the present invention, FIGS. 2A to 2E show prisms used in the laser trapping device, respectively, and FIGS. 4A and 4B are schematic diagrams showing the optical system when the optical axis is inclined and when the optical axis is deviated, respectively.
[0012]
In the drawing, reference numeral 1 denotes a laser trapping device that captures a particle 2 in a vacuum or a medium by irradiating the particle 2 with the laser light, and divides the laser light into a plurality of parallel light beams along the optical path. A prism 3 for emitting light and a condensing optical system 5 composed of two lenses 4a and 4b for converging a parallel light beam on a focal point are arranged.
The prism 3 has two or more equal-numbered planes 6A, 6B, 7A, and 7B at both ends on the incident side and the emission side of the laser beam, and the planes 6A and 7A, 6B and 7B are formed parallel to each other.
[0013]
Specifically, for example, as shown in FIG. 2 (a), a square pillar 8 is formed with mountain-shaped slopes at both ends, and as shown in FIG. 2 (b), a square pyramid-shaped slope is formed at both ends of a square prism 9 2 (c), a regular hexagonal prism 10 is formed at both ends of a regular hexagonal prism 10 as shown in FIG. 2 (c), and a regular octagonal prism 11 is formed at both ends of a regular octagonal prism 11 as shown in FIG. 2 (d). Can be used.
[0014]
Further, the present invention is not limited to the case where an even number of planes are formed as described above, but may be a cylinder having a regular triangular pyramid-shaped slope formed on a cylinder 12 as shown in FIG. The shape is not limited to a regular polygonal pyramid, but may be a simple pyramid as long as the planes forming the pair on the side are formed in parallel to each other.
Furthermore, if there is a ridge or vertex P where the planes are gathered on the incident side, such a ridge or vertex may not be provided on the output side.
[0015]
The prism 3 and the lenses 4a and 4b can be made of any material. However, the prism 3 of this example uses glass having a refractive index n d = 1.51, and the lens 4a is made of SK11 (refractive index n d = 1. 5638), and the lens 4b uses SF5 (refractive index n d = 1.6727) glass.
[0016]
The above is an example of the configuration of the present invention, and its operation will be described next with reference to an example in which the prism shown in FIG. 2B is used.
The prism 3 has a square pyramid-shaped slope formed at both ends of a square prism 9, and not only the slopes that form a pair on the incident side and the emission side, but also the entire peripheral surface of the prism 3 is formed of a parallel plane. Therefore, processing can be performed easily and accurately.
[0017]
Then, the prism 3 formed in this way is arranged coaxially with the optical axis of the condensing optical system 5, and when a laser beam is incident along the optical axis from the vertex P on the incident side of the prism 3, the prism 3 on the incident side The laser light is refracted in four directions by the four slopes of the regular square pyramid, and is refracted again by the four slopes of the square pyramid on the emission side to be emitted as four parallel lights.
At this time, since the circular spot of the laser light beam is divided into four by the four slopes of the regular square pyramid, the cross section of each light beam has a shape of a quarter circle as shown in FIG.
[0018]
When this parallel light beam is condensed by the condensing optical system 5, each light beam converges at a large angle with respect to the optical axis, and a laser spot of about 10 μm is formed as shown in FIG. Capture the particles at their focal point.
At this time, since there is no laser light applied to the particles inside the angle between the light flux and the optical axis, the force of pushing the particles in the light irradiation direction along the optical axis by reflection of the surface of the particles is reduced, As a result, the force of capturing along the optical axis in the direction opposite to the light irradiation direction increases, and the particles can be lifted against gravity or held at an arbitrary position in space.
[0019]
Further, when the prisms 3 are arranged, as shown in FIG. 4A, even if the optical axis of the prism 3 is inclined with respect to the optical axis of the condensing optical system 5, each light beam is parallel to the optical axis. Is maintained, the light is not scattered. For example, when the inclination of the optical axis is 2 degrees, the laser spot of about 10 μm is also focused on the focal point of the condenser lens 4 as shown in FIG. Is formed, the particles 2 can be reliably captured.
[0020]
Further, as shown in FIG. 4B, even if the optical axis of the prism 3 is shifted with respect to the optical axis of the condenser lens 4, only the energy intensity of each parallel light incident on the condenser lens 4 is different. There is no scattering of light. For example, when the deviation of the optical axis is 0.1 mm, a laser spot of about 10 μm is also focused at the focal point of the condenser lens 4 as shown in FIG. Since the particles 2 are formed, the particles 2 can be reliably captured in this case as well.
[0021]
In the embodiment, the case where the prism having the slopes of the regular quadrangular pyramid formed at both ends is used.However, a prism having two pairs of mountain-shaped planes formed at both ends or a prism having a pyramid-shaped inclined surface formed at both ends is used. The same operation and effect can be obtained.
However, when the prism 3 formed in a pyramid shape is used, the processing becomes troublesome as the number of planes increases, so it is preferable to process one end side to about eight surfaces.
[0022]
【The invention's effect】
As described above, according to the present invention, all of the surfaces on the entrance side and the exit side of the prism can be constituted by planes, so that processing can be performed easily and accurately, and the unit price of the prism decreases. In addition, the manufacturing cost of the entire device can be reduced, and since the paired surfaces of the incident side and the outgoing side are formed by parallel surfaces, light is scattered even if the optical axis is tilted or shifted. Since the light is condensed at the focal point without performing the above operation, it has an excellent effect that particles can be reliably captured.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing an example of a laser trapping device according to the present invention. FIG. 2 is a perspective view showing an example of a prism used therein. FIG. 3 is an explanatory view showing a light beam and a laser spot.
FIG. 4 is a schematic explanatory view showing a state where the optical axis is tilted and shifted. FIG. 5 is a schematic explanatory view showing a conventional apparatus. FIG. 6 is an explanatory view showing a laser spot at a focal point of the conventional apparatus.
DESCRIPTION OF SYMBOLS 1 ... Laser trapping apparatus 2 ... Particle 3 ... Prism 5 ... Condensing optical system 6A, 7A ... Plane 6B, 7B which becomes a pair of an incident side and an outgoing side Outgoing side paired plane

Claims (1)

レーザ光を集光光学系(5)によりその焦点上に集光させて真空又は媒質中の粒子(2)に照射することにより当該粒子(2)を捕捉するレーザトラッピング装置において、レーザ光の光路に沿って、前記集光光学系(5)の手前側にレーザ光を複数の平行光束に分割するプリズム(3)が配設され、当該プリズム(3)は、レーザ光の入射側及び出射側の両端が、2以上の同数の平面(6A,6B,7A,7B) で形成され、入射側及び出射側の対となる平面(6A及び7A,6B及び7B) 同士が互いに平行面に形成されたことを特徴とするレーザトラッピング装置。An optical path of the laser light in a laser trapping device that captures the laser light by condensing the laser light on its focal point by a light condensing optical system (5) and irradiating the particle (2) in a vacuum or a medium with the laser light A prism (3) for splitting the laser beam into a plurality of parallel light beams is disposed in front of the condensing optical system (5), and the prism (3) is arranged on the incident side and the emission side of the laser beam. Are formed by two or more equal numbers of planes (6A, 6B, 7A, 7B), and planes (6A, 7A, 6B, and 7B) forming a pair on the incident side and the exit side are formed in parallel to each other. A laser trapping device.
JP06275795A 1995-03-22 1995-03-22 Laser trapping device Expired - Fee Related JP3568616B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP06275795A JP3568616B2 (en) 1995-03-22 1995-03-22 Laser trapping device
US08/975,256 US5953166A (en) 1995-03-22 1997-11-21 Laser trapping apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06275795A JP3568616B2 (en) 1995-03-22 1995-03-22 Laser trapping device

Publications (2)

Publication Number Publication Date
JPH08262328A JPH08262328A (en) 1996-10-11
JP3568616B2 true JP3568616B2 (en) 2004-09-22

Family

ID=13209599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06275795A Expired - Fee Related JP3568616B2 (en) 1995-03-22 1995-03-22 Laser trapping device

Country Status (1)

Country Link
JP (1) JP3568616B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021051225A (en) * 2019-09-25 2021-04-01 株式会社フジクラ Beam shaper, processing device, and processing method

Also Published As

Publication number Publication date
JPH08262328A (en) 1996-10-11

Similar Documents

Publication Publication Date Title
US10018819B2 (en) Light sheet illumination microscope which illuminates a sample from a direction substantially perpendicular to a detection axis, while reducing likelihood of creating shadows
CN109196336B (en) Dark field wafer nano defect inspection system using singular beams
US5953166A (en) Laser trapping apparatus
CN108845409B (en) Device and method for generating array multiple focuses based on polyhedral prism
CN107783206A (en) Double-layer microlens array optical element
KR102242926B1 (en) Lens array-based illumination for wafer inspection
JP2004521398A (en) Arrangement and apparatus for optically homogenizing light beams
JP3568616B2 (en) Laser trapping device
JP2003340588A (en) Method for processing inside transparent material and its device
JP2931268B2 (en) Laser scan optical device
US20060049355A1 (en) Condenser Zone Plate Illumination for Point X-Ray Sources
JP3317290B2 (en) Emission optics for laser processing
JP2884583B2 (en) X-ray collector
JPS61160048A (en) Optical system for detecting spot light source intensity
JP4962749B2 (en) Light particle handling equipment
JP2947971B2 (en) Laser trapping method and apparatus
JPS63108318A (en) Laser working device
JP2003255256A (en) Light scanning device
JPH09145899A (en) X-ray condensing system
JPH0498214A (en) Device for irradiating with laser beam
JP2001290083A (en) Operating method and operation unit for particulate by light beam
JP5062025B2 (en) Laser processing method
KR101710570B1 (en) Nano-hole array substrate for an extraordinary optical transmission and super resolution imaging system using of the same
CN218512724U (en) Device for capturing and controlling particles in liquid based on adjustable Bessel light beam
JPS62251641A (en) Optical inspection device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees