JP3568597B2 - Mobile farm machine tilt detection device - Google Patents

Mobile farm machine tilt detection device Download PDF

Info

Publication number
JP3568597B2
JP3568597B2 JP25873194A JP25873194A JP3568597B2 JP 3568597 B2 JP3568597 B2 JP 3568597B2 JP 25873194 A JP25873194 A JP 25873194A JP 25873194 A JP25873194 A JP 25873194A JP 3568597 B2 JP3568597 B2 JP 3568597B2
Authority
JP
Japan
Prior art keywords
angle
gyro
detection
inclination
angular velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25873194A
Other languages
Japanese (ja)
Other versions
JPH0889011A (en
Inventor
弘章 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUBISHI NOUKI KABUSHIKI KAISHA
Original Assignee
MITSUBISHI NOUKI KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUBISHI NOUKI KABUSHIKI KAISHA filed Critical MITSUBISHI NOUKI KABUSHIKI KAISHA
Priority to JP25873194A priority Critical patent/JP3568597B2/en
Publication of JPH0889011A publication Critical patent/JPH0889011A/en
Application granted granted Critical
Publication of JP3568597B2 publication Critical patent/JP3568597B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transplanting Machines (AREA)
  • Harvester Elements (AREA)
  • Lifting Devices For Agricultural Implements (AREA)
  • Gyroscopes (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、トラクタ、移植機、管理機、収穫機等の移動農機の傾斜検出装置に関するものである。
【0002】
【従来技術及び発明が解決しようとする課題】
一般に、この種移動農機のなかには、走行機体もしくは作業部の傾斜角検出に基づいて傾斜姿勢制御を行うものがあるが、従来、傾斜角検出用センサとしては振子センサ等の重力式傾斜センサが用いられていた。しかるに、重力式傾斜センサにおいては、振子等の検出体に慣性力が作用するため、急激な傾斜変動に追随することができず、応答性に劣るのが実状であった。そこで、高速応答性を具備するジャイロを用いて傾斜角検出を行うことが提案されるが、ジャイロにおいては、アンプ等を構成する電子部品の温度変化等に伴って特性変化が生じる許りか、ジャイロ出力から検出角を演算する際にも誤差が生じるため、長時間に亘って傾斜角検出を継続した場合には、誤差が累積されて検出精度が低下するという不都合がある。
【0003】
【課題を解決するための手段】
本発明は、上記の如き実情に鑑みこれらの欠点を一掃することができる移動農機の傾斜検出装置を提供することを目的として創作されたものであって、走行機体もしくは作業部の傾斜角検出に基づいて傾斜姿勢制御を行う移動農機であって、該移動農機に、走行機体もしくは作業部の絶対傾斜角を検出する重力式傾斜センサと、走行機体もしくは作業部の相対傾斜角を検出する角速度または角加速度出力タイプのジャイロと、ジャイロが出力した角速度または角加速度が安定状態である場合に、重力式傾斜センサの検出角を最終的な検出角とし、かつ重力式傾斜センサの検出角を基準値として格納する安定時検出手段と、ジャイロが出力した角速度または角加速度が変動状態である場合に、前記基準値にジャイロが出力する角速度または角加速度に基づいて演算される相対傾斜角を加算して最終的な検出角とする変動時検出手段とを設けたことを特徴とする移動農機の傾斜検出装置である。
そして本発明は、この構成によって、傾斜角検出の応答性および検出精度を向上させることができるようにしたものである。
【0004】
【実施例】
次に、本発明の一実施例を図面に基づいて説明する。図面において、1はトラクタの走行機体であって、該走行機体1の後部には、昇降リンク機構2を介してロータリ等の作業部3が昇降自在に連結されている。そして作業部3は、リフトシリンダ4の伸縮に伴うリフトアーム5の上下揺動に連動して昇降する一方、リフトロッドシリンダ6の伸縮に基づいて左右傾斜するが、これらの基本構成は何れも従来通りである。
【0005】
7は前記走行機体1に設けられる重力式傾斜センサであって、該重力式傾斜センサ7は、機体左右方向(ローリング方向)の絶対傾斜角を検出すべく取付けられているが、さらに走行機体1には、重力式傾斜センサ7と同一方向の相対傾斜角を検出するジャイロ8(角速度出力タイプ)が併設されている。
【0006】
さらに、前記走行機体1には、マイクロコンピュータ等を用いて構成される制御部9が設けられるが、該制御部9は、前述した重力式傾斜センサ7およびジャイロ8に加え、傾斜自動制御をON−OFFするための傾斜自動スイッチ10、傾斜自動制御の目標傾斜を設定するための傾斜設定ボリューム11、リフトロッドシリンダ6の作動長を検出するためのロッド長センサ12、走行状態を検出するための車軸回転センサ13(走行クラッチの断続検出スイッチでも可)等から信号を入力する一方、リフトロッドシリンダ6を作動させる電磁バルブの伸長用ソレノイド14、縮小用ソレノイド15等に対して作動指令を出力すべく構成されている。即ち、制御部9は、前記重力式傾斜センサ7およびジャイロ8の出力に基づいて走行機体1の左右傾斜角を検出する傾斜角検出制御、前記検出角と目標傾斜角との比較に基づいて作業部3を自動的に傾斜制御する傾斜自動制御等の各種制御を行うが、以下、本発明が要旨とする傾斜角検出制御をフローチャートに基づいて詳述する。
【0007】
さて、傾斜角検出制御においては、まず、所定時間毎にサンプリングされる重力式傾斜センサ7の検出データに基づいて傾斜角(絶対傾斜角)Sを演算した後、走行状態を判断するが、走行停止中である場合には、ジャイロ8の中立値(角速度が「0」のときのジャイロデータ)を格納すると共に、最終的な検出傾斜角(傾斜自動制御の参照データ)を格納する「傾斜角」変数に前記傾斜角Sを格納するようになっている。
【0008】
一方、機体が走行中である場合には、ジャイロ8が出力した角速度が略「0」であるか否かを判断し、該判断がYESの場合には、所定のタイマ時間(重力式傾斜センサ7の応答時間に略対応)が経過したか否かを判断する。つまり、角速度が略「0」である状態が所定時間継続したか否かを判断するが、該判断がYESの場合には、前記傾斜角Sを「基準値」変数および「傾斜角」変数に格納するようになっている。
【0009】
また、角速度が略「0」の状態でない場合、もしくは略「0」の状態が所定時間未満である場合には、ジャイロ8が出力する角速度データに基づいて相対傾斜角Gを演算する。即ち、ジャイロ8の検出データから前記中立値を減算すると共に、その差分データをサンプリング時間毎に積算して前記相対傾斜角Gを得るが、相対傾斜角Gを演算した後は、相対傾斜角Gに前記基準値を加算して「傾斜角」変数に格納するようになっている。
【0010】
叙述の如く構成された本発明の実施例において、走行機体1の傾斜角を重力式傾斜センサ7およびジャイロ8を用いて検出し、検出した傾斜角に基づいて作業部3を自動的に傾斜制御することになるが、ジャイロ8が検出した角速度が略「0」の状態では、重力式傾斜センサ7の検出データに基づいて演算される傾斜角Sを適用するため、誤差の小さい絶対傾斜角が得られることになる。一方、前記角速度が略「0」でない状態では、ジャイロ8が出力する角速度データに基づいて相対傾斜角Gを演算すると共に、演算した相対傾斜角Gに基準値を加算して傾斜角を得るため、応答性に優れた傾斜角検出を行うことが可能になり、しかも、前記基準値は、角速度が略「0」になる毎に格納される絶対傾斜角(傾斜角S)であるため、特性変化による誤差や演算による誤差が累積される不都合も解消することができる。従って、重力式傾斜センサ7およびジャイロ8の長所を有効利用することが可能になり、その結果、傾斜角検出の応答性および検出精度を同時に向上させることができる。
【0011】
尚、本発明は、前記実施例に限定されないものであることは勿論であって、例えば前記実施例では、角速度出力タイプのジャイロを用い、角速度が略「0」である状態を基準として検出角の演算方式を切換えているが、角加速度出力タイプのジャイロを用い、角加速度が略「0」である状態を基準として検出角の演算方式を切換えることも可能である。
【0012】
【作用効果】
以上要するに、本発明は叙述の如く構成されたものであるから、走行機体もしくは作業部の傾斜角検出に基づいて傾斜姿勢制御を行うものでありながら、重力式傾斜センサおよびジャイロを備えており、そして、ジャイロの検出角が安定状態である場合には、重力式傾斜センサの検出角を最終的な検出角とする一方、ジャイロから出力される角速度または角加速度が変動状態である場合には、ジャイロ安定時に格納した重力式傾斜センサの検出角(基準値)にジャイロから出力される角速度または角加速度データに基づいて演算される相対傾斜角に前記格納した重力式傾斜センサの検出角を加算して最終的な検出角とするため、それぞれの長所を生かした傾斜角検出が可能になる。即ち、ジャイロ安定時には、誤差の少ない絶対傾斜角を検出できる一方、ジャイロ変動時には、応答性に優れた傾斜角検出を行うことができ、しかも、ジャイロの基準値は、ジャイロの検出角が安定する毎に更新されるため、特性変化による誤差や演算による誤差が累積される不都合も解消することができる。
【図面の簡単な説明】
【図1】トラクタの側面図である。
【図2】制御部の入出力を示すブロック図である。
【図3】傾斜角検出制御のフローチャートである。
【符号の説明】
1 走行機体
3 作業部
7 重力式傾斜センサ
8 ジャイロ
9 制御部
[0001]
[Industrial applications]
The present invention relates to a tilt detection device for a mobile farm machine such as a tractor, a transplanter, a management machine, and a harvester.
[0002]
2. Prior Art and Problems to be Solved by the Invention
In general, among this kind of mobile farming machine, there is a type that performs a tilt posture control based on detection of a tilt angle of a traveling machine body or a working unit, but conventionally, a gravity type tilt sensor such as a pendulum sensor is used as a tilt angle detection sensor. Had been. However, in a gravity type tilt sensor, since inertial force acts on a detection body such as a pendulum, it is impossible to follow a rapid change in tilt and the response is inferior. Therefore, it has been proposed to perform inclination angle detection using a gyro having a high-speed response. In the gyro, is it possible to change the characteristics of the electronic components constituting the amplifier and the like due to a temperature change or the like? Since an error also occurs when calculating the detection angle from the output, if the inclination angle detection is continued for a long time, there is a disadvantage that the error is accumulated and the detection accuracy is reduced.
[0003]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described circumstances, and has been created with the object of providing a tilt detection device for a mobile agricultural machine that can eliminate these disadvantages. A moving agricultural machine that performs tilt posture control based on the moving agricultural machine, a gravitational inclination sensor that detects an absolute inclination angle of the traveling body or the working unit, and an angular velocity or an angular velocity that detects a relative inclination angle of the traveling body or the working unit. When the angular acceleration output type gyro and the angular velocity or angular acceleration output by the gyro are in a stable state, the detection angle of the gravity type inclination sensor is used as the final detection angle, and the detection angle of the gravity type inclination sensor is used as the reference value. and stability when detecting means for storing as, when the gyro is an angular velocity or angular acceleration and output is variation state, the angular velocity or angular pressurized gyro outputs to the reference value An inclination detecting device of the mobile agricultural machine is characterized in that by adding the relative inclination angle that is calculated is provided a variation time detection means for the final detection angle based on time.
According to the present invention, the responsiveness and the detection accuracy of the tilt angle detection can be improved by this configuration.
[0004]
【Example】
Next, an embodiment of the present invention will be described with reference to the drawings. In the drawings, reference numeral 1 denotes a traveling body of a tractor, and a working unit 3 such as a rotary is connected to a rear portion of the traveling body 1 via a lifting link mechanism 2 so as to be able to move up and down. The working unit 3 moves up and down in conjunction with the vertical swing of the lift arm 5 accompanying the expansion and contraction of the lift cylinder 4, and tilts left and right based on the expansion and contraction of the lift rod cylinder 6. It is on the street.
[0005]
Numeral 7 denotes a gravity type inclination sensor provided on the traveling body 1. The gravity type inclination sensor 7 is attached to detect an absolute inclination angle in the lateral direction (rolling direction) of the aircraft. Is provided with a gyro 8 (angular velocity output type) for detecting a relative inclination angle in the same direction as the gravity type inclination sensor 7.
[0006]
Further, the traveling body 1 is provided with a control unit 9 configured using a microcomputer or the like. The control unit 9 turns on the automatic inclination control in addition to the gravity type inclination sensor 7 and the gyro 8 described above. A tilt automatic switch 10 for turning off, a tilt setting volume 11 for setting a target tilt for automatic tilt control, a rod length sensor 12 for detecting an operation length of the lift rod cylinder 6, and a travel state for detecting a running state. While a signal is input from an axle rotation sensor 13 (an on / off detection switch of the traveling clutch is also possible), an operation command is output to an extension solenoid 14 and a reduction solenoid 15 of an electromagnetic valve for operating the lift rod cylinder 6. It is configured as follows. That is, the control unit 9 performs tilt angle detection control for detecting the left and right tilt angles of the traveling body 1 based on the outputs of the gravitational tilt sensor 7 and the gyro 8, and performs operation based on a comparison between the detected angle and the target tilt angle. Various controls such as automatic tilt control for automatically controlling the tilt of the section 3 are performed. Hereinafter, the tilt angle detection control, which is the gist of the present invention, will be described in detail based on a flowchart.
[0007]
In the inclination angle detection control, first, the inclination state (absolute inclination angle) S is calculated based on the detection data of the gravity type inclination sensor 7 sampled every predetermined time, and then the traveling state is determined. When the gyro 8 is stopped, the neutral value (gyro data when the angular velocity is “0”) is stored and the final detected tilt angle (reference data for automatic tilt control) is stored. The inclination angle S is stored in a variable.
[0008]
On the other hand, when the aircraft is traveling, it is determined whether or not the angular velocity output by the gyro 8 is substantially “0”. If the determination is YES, a predetermined timer time (gravity-type tilt sensor 7 (substantially corresponding to the response time 7). That is, it is determined whether or not the state where the angular velocity is substantially “0” has continued for a predetermined time. If the determination is YES, the inclination angle S is set to the “reference value” variable and the “inclination angle” variable. It is designed to be stored.
[0009]
If the angular velocity is not substantially “0”, or if the state of substantially “0” is less than the predetermined time, the relative inclination angle G is calculated based on the angular velocity data output by the gyro 8. That is, the subtracting the neutral value from the detection data of the gyro 8, wherein at obtaining a relative inclination angle G by multiplying the difference data for each sampling time, after the calculating of the relative inclination angle G, the relative inclination angle G Is added to the reference value and stored in a “tilt angle” variable.
[0010]
In the embodiment of the present invention configured as described above, the inclination angle of the traveling body 1 is detected by using the gravity type inclination sensor 7 and the gyro 8, and the working unit 3 is automatically inclined based on the detected inclination angle. However, in the state where the angular velocity detected by the gyro 8 is substantially “0”, since the inclination angle S calculated based on the detection data of the gravity type inclination sensor 7 is applied, the absolute inclination angle with a small error is Will be obtained. On the other hand, when the angular velocity is not substantially "0", while calculates the relative tilt angle G on the basis of the angular velocity data gyro 8 outputs, to obtain the inclination angle by adding the reference value of the calculated relative angle of inclination G Therefore, it is possible to perform the inclination angle detection with excellent responsiveness, and the reference value is an absolute inclination angle (inclination angle S) stored every time the angular velocity becomes substantially “0”. The inconvenience of accumulating errors due to characteristic changes and errors due to calculations can be eliminated. Therefore, the advantages of the gravity type tilt sensor 7 and the gyro 8 can be effectively used, and as a result, the response and the detection accuracy of the tilt angle detection can be improved at the same time.
[0011]
The present invention is, of course, not limited to the above-described embodiment. For example, in the above-described embodiment, an angular velocity output type gyro is used, and a detection angle is set based on a state where the angular velocity is substantially “0”. However, it is also possible to use a gyro of an angular acceleration output type and switch the calculation method of the detected angle based on the state where the angular acceleration is substantially "0".
[0012]
[Effects]
In short, since the present invention is configured as described above, the present invention includes a gravity type tilt sensor and a gyro while performing tilt attitude control based on detection of the tilt angle of the traveling body or the working unit, Then, when the detection angle of the gyro is in a stable state, the detection angle of the gravity-type inclination sensor is used as the final detection angle, while when the angular velocity or angular acceleration output from the gyro is in a fluctuating state, The detected angle of the stored gravity type tilt sensor is added to the relative tilt angle calculated based on the angular velocity or angular acceleration data output from the gyro to the detected angle (reference value) of the gravity type tilt sensor stored when the gyro is stable. In this case, the inclination angle can be detected by making use of the respective advantages. In other words, when the gyro is stable, an absolute inclination angle with a small error can be detected. On the other hand, when the gyro fluctuates, an inclination angle detection with excellent responsiveness can be performed. In addition, the gyro reference value is such that the gyro detection angle is stable. Since it is updated every time, the inconvenience of accumulating errors due to characteristic changes and errors due to calculations can be eliminated.
[Brief description of the drawings]
FIG. 1 is a side view of a tractor.
FIG. 2 is a block diagram showing input and output of a control unit.
FIG. 3 is a flowchart of tilt angle detection control.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Traveling body 3 Working part 7 Gravity type inclination sensor 8 Gyro 9 Control part

Claims (1)

走行機体もしくは作業部の傾斜角検出に基づいて傾斜姿勢制御を行う移動農機であって、該移動農機に、走行機体もしくは作業部の絶対傾斜角を検出する重力式傾斜センサと、走行機体もしくは作業部の相対傾斜角を検出する角速度または角加速度出力タイプのジャイロと、ジャイロが出力した角速度または角加速度が安定状態である場合に、重力式傾斜センサの検出角を最終的な検出角とし、かつ重力式傾斜センサの検出角を基準値として格納する安定時検出手段と、ジャイロが出力した角速度または角加速度が変動状態である場合に、前記基準値にジャイロが出力する角速度または角加速度に基づいて演算される相対傾斜角を加算して最終的な検出角とする変動時検出手段とを設けたことを特徴とする移動農機の傾斜検出装置。A moving agricultural machine that performs inclination posture control based on detection of an inclination angle of a traveling machine or a working unit, wherein the moving agricultural machine includes a gravity type inclination sensor that detects an absolute inclination angle of the traveling machine or the operating unit, A gyro of an angular velocity or angular acceleration output type for detecting the relative inclination angle of the section, and when the angular velocity or angular acceleration output by the gyro is in a stable state, the detection angle of the gravity type inclination sensor is the final detection angle; and and stability when detecting means for storing the detection angle of the gravity gradient sensor as a reference value, when the gyro is an angular velocity or angular acceleration and output is variation state, on the basis of the angular velocity or angular acceleration gyro outputs to the reference value A change detecting means for adding a calculated relative tilt angle to obtain a final detected angle;
JP25873194A 1994-09-28 1994-09-28 Mobile farm machine tilt detection device Expired - Fee Related JP3568597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25873194A JP3568597B2 (en) 1994-09-28 1994-09-28 Mobile farm machine tilt detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25873194A JP3568597B2 (en) 1994-09-28 1994-09-28 Mobile farm machine tilt detection device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004102749A Division JP3763835B2 (en) 2004-03-31 2004-03-31 Inclination detector for mobile agricultural machines

Publications (2)

Publication Number Publication Date
JPH0889011A JPH0889011A (en) 1996-04-09
JP3568597B2 true JP3568597B2 (en) 2004-09-22

Family

ID=17324312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25873194A Expired - Fee Related JP3568597B2 (en) 1994-09-28 1994-09-28 Mobile farm machine tilt detection device

Country Status (1)

Country Link
JP (1) JP3568597B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010220518A (en) * 2009-03-23 2010-10-07 Iseki & Co Ltd Attitude controller of farm working vehicle
EP2104413B1 (en) 2007-01-08 2017-04-05 Precision Planting LLC Planter monitor system and method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3725313B2 (en) * 1997-10-22 2005-12-07 ヤンマー農機株式会社 Combine leveling device
JP2004085476A (en) * 2002-08-28 2004-03-18 Sony Corp Head tracking method and device
JP4500644B2 (en) * 2004-10-01 2010-07-14 三菱農機株式会社 Inclination automatic control device for work vehicle
JP4500659B2 (en) * 2004-12-13 2010-07-14 三菱農機株式会社 Mobile farm machine
JP2007238057A (en) * 2006-03-13 2007-09-20 Kubota Corp Attitude controller of working vehicle
JP4871002B2 (en) * 2006-03-13 2012-02-08 株式会社クボタ Combine attitude control device
JP5444920B2 (en) * 2009-07-30 2014-03-19 井関農機株式会社 Automatic rolling control device for farm work machines

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2104413B1 (en) 2007-01-08 2017-04-05 Precision Planting LLC Planter monitor system and method
EP2104413B2 (en) 2007-01-08 2020-03-25 The Climate Corporation Planter monitor system and method
JP2010220518A (en) * 2009-03-23 2010-10-07 Iseki & Co Ltd Attitude controller of farm working vehicle

Also Published As

Publication number Publication date
JPH0889011A (en) 1996-04-09

Similar Documents

Publication Publication Date Title
ES2427563T3 (en) Articulated ladder or lifting platform with position trajectory control and active vibration damping
JP3568597B2 (en) Mobile farm machine tilt detection device
US20030183435A1 (en) Balancing personal vehicle
JP3763835B2 (en) Inclination detector for mobile agricultural machines
JP3797881B2 (en) Rolling control device for work equipment
RU2020125677A (en) EXCAVATOR WITH IMPROVED MOVEMENT PERCEPTION
CN106976496A (en) A kind of balance telescoping mechanism and the balance car comprising it
JP3838319B2 (en) Horizontal control device
JP3497481B2 (en) Work machine rolling control device
Čížek et al. On locomotion control using position feedback only in traversing rough terrains with hexapod crawling robot
JP3717411B2 (en) Sensor zero correction device for work equipment
JP2000211896A (en) Angle controlling method and its device
JP3688211B2 (en) Rolling control device for work equipment
KR102632765B1 (en) Driving state observer estimating angular velocity, pitch angle, and disturbance, and mobile robot including the same
JP3838320B2 (en) Horizontal control device
JP3115274B2 (en) Attitude control device for agricultural work machine
JP2005170196A (en) Suspension device for vehicle
JPH0515567B2 (en)
JPH0644957Y2 (en) Leveling equipment for aerial work vehicles
JPH0739205A (en) Steering control mechanism in working machine
JP2000324906A (en) Horizontal control device
JP3115278B2 (en) Attitude control device for agricultural work machine
JPS6225903A (en) Rolling controller of earth working machine
JP3721855B2 (en) Horizontal control device
KR100309145B1 (en) Feedback sensor for active roll stabilizer and control method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees