JP3567550B2 - Semiconductor laser and semiconductor light emitting device - Google Patents

Semiconductor laser and semiconductor light emitting device Download PDF

Info

Publication number
JP3567550B2
JP3567550B2 JP26520695A JP26520695A JP3567550B2 JP 3567550 B2 JP3567550 B2 JP 3567550B2 JP 26520695 A JP26520695 A JP 26520695A JP 26520695 A JP26520695 A JP 26520695A JP 3567550 B2 JP3567550 B2 JP 3567550B2
Authority
JP
Japan
Prior art keywords
strain
light
active layer
semiconductor
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26520695A
Other languages
Japanese (ja)
Other versions
JPH09107149A (en
Inventor
政勝 鈴木
雄 上野山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP26520695A priority Critical patent/JP3567550B2/en
Publication of JPH09107149A publication Critical patent/JPH09107149A/en
Application granted granted Critical
Publication of JP3567550B2 publication Critical patent/JP3567550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光通信、光情報処理分野などに用いられる短波長の半導体発光素子等に関するものである。
【0002】
【従来の技術】
近年、多くの分野で短波長半導体発光素子の需要が高まり、ZnSe系、及びGaN系材料を中心として精力的に研究が進められている。ZnSe系材料では、発振波長500nm前後の短波長半導体レーザの室温連続発振が達成され、実用化に向けての研究開発が続けられている。一方、GaN系材料でも、最近、高輝度な青色発光ダイオードが実現された。発光ダイオードとしての信頼性も、他の半導体発光素子材料と比較しても遜色なく、半導体レーザへの応用も十分可能であると思われる。
【0003】
【発明が解決しようとする課題】
しかしながら、GaN系材料はその物性があまり明らかにされておらず、結晶構造が六方晶系であるため、従来の立方晶系材料と同様な素子構造で十分実用に耐えられる特性が得られるかどうかはわからない。
【0004】
本発明は以上のような問題点を鑑みてなされたものであり、六方晶化合物半導体の独特の電子帯構造の特徴を用いて高性能な半導体レーザを提供することを目的とする。
【0005】
【課題を解決するための手段】
上記の目的を達成するために、本発明の半導体発光素子は、六方晶化合物半導体固有の電子帯構造の歪特性を用いて、構成の単純な高性能半導体発光素子を実現するものである。具体的には、六方晶化合物半導体のc面内に、光の進行方向に垂直な方向に圧縮歪、あるいは、光の進行方向に平行な方向に引張歪を生じさせる等方的でない歪を加えることにより、しきい値電流が低く、光学利得が大きい半導体発光素子を実現するものである。また、前記発光素子が共振器構造を有しない場合、光の進行方向と歪を加える方向は、歪によって光の進行方向を制御していることに相当する。
【0006】
本発明の作用は以下の通りである。我々は、六方晶化合物半導体のc面内に、光の進行方向に垂直な方向に圧縮歪、あるいは、光の進行方向に平行な方向に引張歪を生じさせる等方的でない歪を加えた場合、価電子帯上端付近のホールの状態密度が小さくなり、かつ、光学遷移に寄与する状態がc面内に異方性があるということを見い出した。この性質を利用して、c軸方向に成長させた六方晶化合物半導体から構成されている活性層のc面内に、光の進行方向に垂直な方向に圧縮歪、あるいは、光の進行方向に平行な方向に引張歪を生じさせる等方的でない歪を入れることにより、しきい値電流が低く、光学利得が大きい半導体発光素子が実現できる。また、前記発光素子が共振器構造を有しない場合、光の進行方向が歪を加える方向によって光の進行方向を制御でき、輝度の大きい発光素子が実現できる。ここで、等方的とはc面内で静水圧的(等方的)にかかる歪をいう。
【0007】
【発明の実施の形態】
(実施の形態1)
以下に、本発明で利用している六方晶化合物半導体の価電子帯の電子帯構造の歪特性について、図面を参照しながら説明する。
【0008】
図1は歪が加わっていない場合のAlGaN/GaN量子井戸構造(AlGaNが障壁層、GaNが井戸層)におけるGaN層の価電子帯の電子帯構造を示している。
【0009】
図1から明らかなように、価電子帯上端付近のホールの有効質量はZincblende型化合物半導体と比べてかなり大きい。また、GaN層にc軸方向の一軸性歪、あるいはc面内の等方的な(二軸性)歪が加わった場合、価電子帯上端付近のホールの有効質量は無歪の場合とほとんど変わらない。ここでc軸方向の一軸性歪とは、六方晶化合物半導体のc軸方向にのみ歪がある場合をいい、c面内の二軸性歪とは、互いに垂直な軸にそれぞれ等しい大きさの歪がある場合である。
【0010】
ところで、六方晶化合物半導体(ここではGaN)のc面内に等方的でない歪が加わった場合の変形ポテンシャルをD5、c面内の直交する2つの方向の歪をexx、及びeyy、c面内のせん断歪をexyとすると、c面内に等方的でない歪が加わったことによる変形エネルギーはD5(exx−eyy+2iexy)の形で記述できる。c軸方向をz軸、c面内にx−y軸の直交座標軸を定義すると、図2、3はc面内のy軸方向に、1%の圧縮歪、あるいはx軸方向に引張歪を生じさせる等方的でない歪が加わった場合のAlGaN/GaN量子井戸構造におけるGaN層の価電子帯のy軸およびx軸方向の電子帯構造を示している。
【0011】
図2から明らかなように、y軸方向に圧縮歪(あるいはx軸方向に引張歪)が加わった場合、y軸方向の電子帯構造から、価電子帯上端付近のホールの有効質量は、図1の無歪の場合と比較してかなり小さくなっていることがわかる。これは価電子帯上端付近の状態密度が減少していることを意味し、レーザ発振させるために必要な反転分布を実現しやすいということに対応している。同様に図3はGaN層の価電子帯のx軸方向の電子帯構造であるが、図より価電子帯上端付近の状態密度は図1の場合とあまりかわっていないことがわかる。よって、y軸方向の圧縮歪(あるいはx軸方向に引張歪)により、光の電場ベクトルEはy軸方向につくられるので、光はx軸方向に出射する。したがってx軸方向に共振器を形成することで半導体レーザが実現できる。
【0012】
また、図4はc面内に等方的でない歪が加わった場合の注入電流密度と光学利得の関係を示している。図には、光の進行方向をx軸方向にとり、光の電場ベクトルEがy方向成分が主成分であるTEモードの場合の、y軸方向の圧縮歪(あるいはx軸方向に平行な方向の引張歪)の大きさが、1、0、−1%の場合の結果をまとめて示してある。ここで、0%とは無歪の場合に対応し、−1%とは、y軸方向の1%の引張歪(あるいはx軸方向に平行な方向の1%の圧縮歪)が加わった場合に対応する。
【0013】
図4から明らかなように、y軸方向に圧縮歪(あるいはx軸方向に引張歪)を生じさせる等方的でない歪を加えた場合は、グラフはAのようになり、少ないキャリア密度で光学利得が生じ、かつAの傾きが大きいことから、キャリア密度に対する光学利得の増加も著しく改善されていることがわかる。よってしきい値電流密度が減少する。これは、価電子帯上端付近の状態密度が減少するため、反転分布に必要なキャリア密度が減少し、また、y軸方向の圧縮歪を加えた場合、価電子帯上端の状態を示す波動関数が、y軸方向に強い方向性を示し、光の電場ベクトルと結合するため、光学遷移に寄与する状態が増えていることを意味し、レーザ発振させるために必要な注入電流密度が少なくてよいことに対応している。
【0014】
一方、y軸方向に引張歪(あるいはx軸方向に圧縮歪)を生じさせる等方的でない歪を加えた場合は、グラフCで示すようにしきい値電流密度が減少しない。これは、価電子帯上端付近の状態密度は減少しているが、価電子帯上端の状態を示す波動関数がx軸方向に強い方向性を示し、光の電場ベクトルと結合しないため、光学遷移に寄与する状態が減っていることを意味し、レーザ発振させるために必要な注入電流密度を減少させることができないことに対応している。
【0015】
以上、図1〜図4ではGaNを用いて説明したが、一般に六方晶化合物半導体を活性層に用いた半導体発光素子において、活性層に等方的でない圧縮歪を加えることで、この歪を加えた方向と垂直方向に光が進行することになる。したがって、この光の進行方向に共振器を形成することで、しきい値電流が低く、光学利得の大きい半導体レーザをつくることができる。
【0016】
同様に、活性層に等方的でない引張歪を加えることで、この歪と平行方向に光が進行することになるので、この光の進行方向に共振器を形成すれば、しきい値電流が低く、光学利得が大きい半導体レーザをつくることができる。
【0017】
このように量子井戸層に、反射鏡面を具備した共振器構造で、前記反射鏡面に平行な方向に圧縮歪(あるいは、反射鏡面に垂直な方向に引張歪)を生じさせる等方的でない歪を加えた活性層を用いた半導体レーザでは、発振しきい値電流が小さくなることがわかる。
【0018】
以上説明したのは、半導体レーザの場合であるが、LEDの場合は、光の方向を制御することができるデバイスになる。つまりLEDは光が全体に広がって出射されるが、上述したように、歪を加えることで発光の方向を制御することができる。y軸方向に圧縮歪(あるいはx軸方向に引張歪)を加えると、発光はy軸方向になる。
【0019】
LEDのように反射鏡面がない場合、活性層を活性層のバンドギャップより大きいバンドギャップの材料(または、活性層を活性層の屈折率より小さい屈折率の材料)の層ではさみ、ヘテロ界面に垂直な方向に光を閉じ込めると、c面内の等方的でない歪によって、価電子帯上端の状態を示す波動関数の方向性を制御することができ、同時にそれと結合する光の電場ベクトルの方向を制御することができ、輝度の大きい指向性のある発光素子を得ることができる。
【0020】
以下、具体的にGaN六方晶化合物半導体に等方的でない歪を導入した素子の構造について述べていく。
【0021】
図5にAlGaN/GaN量子井戸を有する半導体発光素子の構造を示す。NGO(011)面の基板101の上に有機金属気相成長方等の結晶成長方法によってGaNバッファ層102を成長させ、続いてn型AlGaNクラッド層103、n型AlGaN光ガイド層104、AlGaN/GaN量子井戸構造による活性層105、p型AlGaN光ガイド層106、p型AlGaNクラッド層107を成長させ、その一部をn型AlGaN層までエッチングし、カソード電極108とアノード電極を形成する。ここでNGOとはNdGaO3のことであり、結晶系は擬似立方構造である。
【0022】
y軸方向に圧縮歪112を選ぶと、発光110は図の方向になり、TEモードでは光の電場ベクトル111がc面内に平行になる。したがって、上述の内容からc面内で光の進行方向に垂直な方向に圧縮歪112を、または、c面内で光の進行方向に平行な方向に引っぱり歪113を加えることにより、低しきい値電流の半導体レーザを得ることができる。また共振器を形成しない場合には、輝度の大きいx軸方向に指向性のある発光素子を得ることができる。
【0023】
図5の発光素子において、GaN量子井戸活性層105のy軸方向に圧縮歪を加える方法について図6〜9を用いて説明する。
【0024】
図6はNGOの結晶構造を示している。図のようにa軸とb軸との格子定数がほぼ等しい擬似立方構造である。a=5.428A、b=5.495A、c=7.710Aである。この(011)面を上から見た図は図7のようになる。底辺がa=5.428Aで、他の2辺が√(a+b+c)/2=5.457Aの2等辺3角形になっている。
【0025】
このNGO基板の(011)面上に結晶成長させる。簡単にするため、GaN層の成長について図8を用いて説明する。図8において、点線の丸はNGO基板のGa原子を示している。この上にN(窒素)がつく。またNは点線で結んだ3角形の中心にもつく。Gaは3角形の点線上についていく。このようにGaNの六方晶構造が形成される。
【0026】
本来のGaNの格子定数は図8(b)で示すように、a=3.189Aであるが、NGO基板上では√3×aとなり、その大きさは5.524Aとなる。すると、図9に示すように、x方向は5.524Aが5.428Aになるため圧縮歪がかかり、同様にy方向にも、成長したGaNには圧縮歪が加わることになる。x方向とy方向との圧縮歪の大きさを計算すると、
εxx=(5.524−5.428)/5.524
εyy=(√3/2×5.524−√3/2×5.457)/(√3/2×5.524)、となる。
【0027】
ε=εxx−εyy=0.53%となる。ε=εxx−εyy=0であれば、等方的となり、本発明の効果は得られないが、いま、ε=εxx−εyy≠0であるので、等方的でない圧縮歪が加わっている。圧縮歪はy軸方向よりx軸方向の方が大きいので、光の進行方向はy軸方向となる。したがって、レーザを構成する場合、y軸方向に共振器を形成ればよい。
【0028】
LEDの場合であれば、y軸方向に指向性の強い発光が得られる。
以上のように、NGO基板上にGaNを成長させると、GaN層にはx軸方向とy軸方向とに等方的でない歪を加えることができるので、この層を活性層に使えば、しきい値電流が小さく、光学利得の大きい発光素子を得ることができる。
【0029】
(実施の形態2)
実施の形態1では、c軸に垂直な面内に活性層を形成した場合について説明したが、それに限らず、c軸に平行に活性層を有した構造であってもよい。活性層を活性層のバンドギャップより大きいバンドギャップの材料(または、活性層を活性層の屈折率より小さい屈折率の材料)の層で挟んだ構造でも、c面内の歪によって、活性層と平行な光の電場ベクトルと強く結合する波動関数を価電子帯上端の状態にさせることができるため、実施の形態1と同様に輝度の大きい指向性のある発光素子を得ることができる。
【0030】
活性層にはGaNを用いて説明したが、六方晶化合物半導体であればどれでもよい。また六方晶化合物半導体は、ウルツ型構造、4H型構造、6H型構造のどれであってもよい。
【0031】
【発明の効果】
以上説明したように本発明は、六方晶化合物半導体のc面内に、光の進行方向に垂直な方向に圧縮歪、あるいは、光の進行方向に平行な方向に引張歪を生じさせる等方的でない歪を加えた場合、価電子帯上端付近のホールの有効質量が小さくなり、かつ、光学遷移に寄与する状態が増えるということにもとづき、c軸方向に成長させた六方晶化合物半導体から構成されている活性層のc面内に、光の進行方向に垂直な方向に圧縮歪、あるいは、光の進行方向に平行な方向に引張歪を生じさせる等方的でない歪を加えることにより、しきい値電流が低く、光学利得が大きい半導体発光素子を実現することができる。
【図面の簡単な説明】
【図1】AlGaN/GaN量子井戸におけるGaN層の価電子帯の電子帯構造を示す図
【図2】c面内に、光の進行方向に垂直な方向に圧縮歪、あるいは、光の進行方向に平行な方向に引張歪を生じさせる等方的でない歪が加わった場合のAlGaN/GaN量子井戸におけるGaN層の価電子帯の電子帯構造を示す図
【図3】c面内に、光の進行方向に垂直な方向に圧縮歪、あるいは、光の進行方向に平行な方向に引張歪を生じさせる等方的でない歪が加わった場合のAlGaN/GaN量子井戸におけるGaN層の価電子帯の電子帯構造を示す図
【図4】c面内に、反射鏡面に垂直な方向に圧縮歪、あるいは、反射鏡に平行な方向に引張歪を生じさせる等方的でない歪が加わった場合の注入電流密度と光学利得の関係の歪依存性を示す図
【図5】本発明の実施例の構造図
【図6】NGO基板の結晶構造図
【図7】NGOの(011)面の平面図
【図8】NGO基板上に成長したGa原子とN原子を説明する図
【図9】NGO基板上に成長したGaNの格子間距離を説明する図
【符号の説明】
101 NGO基板
102 GaNバッファ層
103 n型AlGaNクラッド層
104 n型AlGaN光ガイド層
105 AlGaN/GaN量子井戸
106 p型AlGaN光ガイド層
107 p型AlGaNクラッド層
108 カソード電極
109 アノード電極
110 発光の方向
111 光の電場ベクトル
112 圧縮歪の方向
113 引っぱり歪の方向
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a short-wavelength semiconductor light-emitting element used in optical communication, optical information processing, and the like.
[0002]
[Prior art]
In recent years, demand for short-wavelength semiconductor light-emitting devices has been increasing in many fields, and research has been vigorously pursued focusing on ZnSe-based and GaN-based materials. With a ZnSe-based material, continuous oscillation at room temperature of a short-wavelength semiconductor laser having an oscillation wavelength of about 500 nm has been achieved, and research and development for practical use have been continued. On the other hand, a GaN-based material has recently realized a high-luminance blue light-emitting diode. The reliability as a light emitting diode is not inferior to other semiconductor light emitting element materials, and it seems that application to a semiconductor laser is sufficiently possible.
[0003]
[Problems to be solved by the invention]
However, since the physical properties of GaN-based materials are not well understood and the crystal structure is hexagonal, whether the element structure similar to that of the conventional cubic material can provide sufficient properties for practical use can be obtained. I don't know.
[0004]
The present invention has been made in view of the above-described problems, and has as its object to provide a high-performance semiconductor laser using the unique characteristic of the electronic band structure of a hexagonal compound semiconductor.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the semiconductor light emitting device of the present invention realizes a high-performance semiconductor light emitting device having a simple configuration by using a distortion characteristic of an electronic band structure unique to a hexagonal compound semiconductor. Specifically, a non-isotropic strain that causes a compressive strain in a direction perpendicular to the light traveling direction or a tensile strain in a direction parallel to the light traveling direction is applied to the c-plane of the hexagonal compound semiconductor. This realizes a semiconductor light emitting device having a low threshold current and a large optical gain. When the light emitting element does not have a resonator structure, the direction in which light travels and the direction in which distortion is applied correspond to controlling the direction in which light travels by distortion.
[0006]
The operation of the present invention is as follows. We apply a non-isotropic strain to the c-plane of a hexagonal compound semiconductor, which causes a compressive strain in a direction perpendicular to the light propagation direction or a tensile strain in a direction parallel to the light propagation direction. It has been found that the state density of holes near the upper end of the valence band is reduced, and that the state contributing to the optical transition has anisotropy in the c-plane. By utilizing this property, the compressive strain in the direction perpendicular to the traveling direction of the light or the compressive strain in the traveling direction of the light in the c-plane of the active layer composed of the hexagonal compound semiconductor grown in the c-axis direction. By introducing non-isotropic strain that causes tensile strain in the parallel direction, a semiconductor light emitting device having a low threshold current and a large optical gain can be realized. When the light emitting element does not have a resonator structure, the light traveling direction can be controlled by the direction in which the light travels in a direction in which distortion is applied, and a light emitting element with high luminance can be realized. Here, isotropic means a strain applied hydrostatically (isotropically) in the c-plane.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment 1)
The distortion characteristics of the valence band electronic band structure of the hexagonal compound semiconductor used in the present invention will be described below with reference to the drawings.
[0008]
FIG. 1 shows an electron band structure of a valence band of a GaN layer in an AlGaN / GaN quantum well structure (AlGaN is a barrier layer and GaN is a well layer) when no strain is applied.
[0009]
As is clear from FIG. 1, the effective mass of the hole near the upper end of the valence band is much larger than that of the Zincblend-type compound semiconductor. Further, when uniaxial strain in the c-axis direction or isotropic (biaxial) strain in the c-plane is applied to the GaN layer, the effective mass of the hole near the upper end of the valence band is almost the same as in the case of no strain. does not change. Here, the uniaxial strain in the c-axis direction refers to a case where the strain is present only in the c-axis direction of the hexagonal compound semiconductor, and the biaxial strain in the c-plane has a magnitude equal to the axes perpendicular to each other. This is when there is distortion.
[0010]
By the way, when a non-isotropic strain is applied to a c-plane of a hexagonal compound semiconductor (here, GaN), a deformation potential is D5, and strains in two orthogonal directions in the c-plane are xx, ey, and c-plane. If the shear strain in is defined as xy, the deformation energy due to the non-isotropic strain applied to the c-plane can be described in the form of D5 (ex-ey + 2exy). If the c-axis direction is defined as the z-axis and the x-y-axis orthogonal coordinate axes are defined in the c-plane, FIGS. 2 and 3 show 1% compressive strain in the y-axis direction in the c-plane or tensile strain in the x-axis direction. FIG. 4 shows the electron band structure in the y-axis and x-axis directions of the valence band of the GaN layer in the AlGaN / GaN quantum well structure when a non-isotropic strain is applied.
[0011]
As is apparent from FIG. 2, when compressive strain is applied in the y-axis direction (or tensile strain in the x-axis direction), the effective mass of the hole near the upper end of the valence band is calculated from the electron band structure in the y-axis direction. It can be seen that it is considerably smaller than the case of No. 1 without distortion. This means that the state density near the upper end of the valence band is reduced, which corresponds to the fact that the population inversion necessary for laser oscillation can be easily realized. Similarly, FIG. 3 shows the electron band structure of the valence band of the GaN layer in the x-axis direction. From the figure, it can be seen that the state density near the upper end of the valence band is not much different from that of FIG. Accordingly, the electric field vector E of the light is generated in the y-axis direction due to the compressive strain in the y-axis direction (or the tensile strain in the x-axis direction), so that the light is emitted in the x-axis direction. Therefore, a semiconductor laser can be realized by forming a resonator in the x-axis direction.
[0012]
FIG. 4 shows the relationship between the injected current density and the optical gain when non-isotropic strain is applied to the c-plane. In the figure, the traveling direction of the light is taken in the x-axis direction, and the electric field vector E of the light is the compressive strain in the y-axis direction (or in the direction parallel to the x-axis direction) in the case of the TE mode in which the y-direction component is a main component. The results when the magnitude of the tensile strain is 1, 0, -1% are shown together. Here, 0% corresponds to the case of no strain, and -1% is the case where 1% tensile strain in the y-axis direction (or 1% compressive strain in the direction parallel to the x-axis direction) is applied. Corresponding to
[0013]
As is clear from FIG. 4, when a non-isotropic strain causing a compressive strain (or a tensile strain in the x-axis direction) in the y-axis direction is applied, the graph becomes as shown in A, and the optical density is reduced with a small carrier density. Since the gain is generated and the slope of A is large, it is understood that the increase in the optical gain with respect to the carrier density is also remarkably improved. Therefore, the threshold current density decreases. This is because the density of states near the top of the valence band decreases, so that the carrier density required for population inversion decreases, and when a compressive strain is applied in the y-axis direction, a wave function indicating the state of the top of the valence band. Shows a strong directionality in the y-axis direction and couples with the electric field vector of light, which means that the state contributing to the optical transition increases, and the injection current density required for laser oscillation may be small. It corresponds to that.
[0014]
On the other hand, when a non-isotropic strain causing tensile strain (or compressive strain in the x-axis direction) in the y-axis direction is applied, the threshold current density does not decrease as shown in graph C. This is because although the density of states near the upper end of the valence band is decreasing, the wave function indicating the state of the upper end of the valence band shows a strong directivity in the x-axis direction and does not couple with the electric field vector of light. Means that the number of states contributing to the laser is reduced, and this corresponds to the fact that the injection current density required for laser oscillation cannot be reduced.
[0015]
As described above, in FIGS. 1 to 4, GaN is used. However, in general, in a semiconductor light emitting device using a hexagonal compound semiconductor for an active layer, non-isotropic compressive strain is applied to the active layer to apply this strain. The light travels in a direction perpendicular to the direction in which the light travels. Therefore, by forming a resonator in the traveling direction of the light, a semiconductor laser having a low threshold current and a large optical gain can be manufactured.
[0016]
Similarly, when a non-isotropic tensile strain is applied to the active layer, light travels in a direction parallel to the strain. Therefore, if a resonator is formed in the traveling direction of the light, the threshold current is reduced. A semiconductor laser having a low optical gain and a large optical gain can be manufactured.
[0017]
As described above, in the resonator structure having the reflecting mirror surface in the quantum well layer, a non-isotropic strain causing a compressive strain in a direction parallel to the reflecting mirror surface (or a tensile strain in a direction perpendicular to the reflecting mirror surface) is provided. It can be seen that in the semiconductor laser using the added active layer, the oscillation threshold current becomes small.
[0018]
What has been described above is the case of a semiconductor laser. However, the case of an LED is a device that can control the direction of light. In other words, the LED emits light in the entire area, but as described above, the direction of light emission can be controlled by applying distortion. When a compressive strain (or a tensile strain in the x-axis direction) is applied in the y-axis direction, the light emission is in the y-axis direction.
[0019]
When there is no reflecting mirror surface like an LED, the active layer is sandwiched between layers of a material having a band gap larger than the band gap of the active layer (or a material having a refractive index smaller than the refractive index of the active layer), and is placed at the hetero interface. When light is confined in the vertical direction, the directionality of the wave function indicating the state of the upper end of the valence band can be controlled by the non-isotropic strain in the c-plane, and at the same time, the direction of the electric field vector of the light coupled thereto Can be controlled, and a directional light-emitting element having high luminance can be obtained.
[0020]
Hereinafter, the structure of a device in which non-isotropic strain is introduced into a GaN hexagonal compound semiconductor will be specifically described.
[0021]
FIG. 5 shows the structure of a semiconductor light emitting device having an AlGaN / GaN quantum well. A GaN buffer layer 102 is grown on an NGO (011) plane substrate 101 by a crystal growth method such as metal organic chemical vapor deposition, and then an n-type AlGaN cladding layer 103, an n-type AlGaN optical guide layer 104, and an AlGaN / An active layer 105, a p-type AlGaN optical guide layer 106, and a p-type AlGaN cladding layer 107 having a GaN quantum well structure are grown, and a part thereof is etched to an n-type AlGaN layer to form a cathode electrode 108 and an anode electrode. Here, NGO means NdGaO3, and the crystal system has a pseudo cubic structure.
[0022]
When the compressive strain 112 is selected in the y-axis direction, the light emission 110 is in the direction shown in the figure, and in the TE mode, the electric field vector 111 of the light is parallel to the c-plane. Accordingly, by applying the compressive strain 112 in the direction perpendicular to the traveling direction of the light in the c-plane or the pulling strain 113 in the direction parallel to the traveling direction of the light in the c-plane from the above description, a low threshold is obtained. A semiconductor laser having a value current can be obtained. When no resonator is formed, a light-emitting element having high luminance and directivity in the x-axis direction can be obtained.
[0023]
A method of applying a compressive strain in the y-axis direction of the GaN quantum well active layer 105 in the light emitting device of FIG. 5 will be described with reference to FIGS.
[0024]
FIG. 6 shows the crystal structure of NGO. As shown in the figure, a pseudo cubic structure in which the lattice constants of the a-axis and the b-axis are substantially equal. a = 5.428A, b = 5.495A, and c = 7.710A. FIG. 7 shows the (011) plane viewed from above. The base is a = 5.428A and the other two sides are isosceles triangles of √ (a 2 + b 2 + c 2 ) /2=5.457A.
[0025]
A crystal is grown on the (011) plane of this NGO substrate. For simplicity, the growth of the GaN layer will be described with reference to FIG. In FIG. 8, dotted circles indicate Ga atoms of the NGO substrate. N (nitrogen) is deposited on this. N is also attached to the center of the triangle connected by the dotted line. Ga follows the triangular dotted line. Thus, a hexagonal structure of GaN is formed.
[0026]
The original lattice constant of GaN is a = 3.189 A, as shown in FIG. 8B, but is √3 × a on the NGO substrate, and its size is 5.524 A. Then, as shown in FIG. 9, 5.524 A becomes 5.428 A in the x direction, so that a compressive strain is applied. Similarly, a compressive strain is applied to the grown GaN also in the y direction. When calculating the magnitude of the compressive strain in the x direction and the y direction,
ε xx = (5.524-5.428) /5.524
yy = (√3 / 2 × 5.524-√3 / 2 × 5.457) / (√3 / 2 × 5.524).
[0027]
ε = the ε xxyy = 0.53%. If ε = ε xx −ε yy = 0, the effect becomes isotropic and the effect of the present invention cannot be obtained. However, since ε = ε xx −ε yy ≠ 0, non-isotropic compression strain is generated. Have joined. Since the compressive strain is greater in the x-axis direction than in the y-axis direction, the light travels in the y-axis direction. Therefore, when forming a laser, a resonator may be formed in the y-axis direction.
[0028]
In the case of an LED, light emission having high directivity in the y-axis direction can be obtained.
As described above, when GaN is grown on an NGO substrate, a non-isotropic strain can be applied to the GaN layer in the x-axis direction and the y-axis direction. A light-emitting element having a small threshold current and a large optical gain can be obtained.
[0029]
(Embodiment 2)
In the first embodiment, the case where the active layer is formed in a plane perpendicular to the c-axis has been described. However, the present invention is not limited to this, and a structure having an active layer parallel to the c-axis may be used. Even in a structure in which the active layer is sandwiched between layers of a material having a bandgap larger than the bandgap of the active layer (or a material having a refractive index smaller than the refractive index of the active layer), the active layer and the active layer are separated by a strain in the c-plane. Since the wave function that strongly couples with the electric field vector of the parallel light can be set at the upper end of the valence band, a directional light-emitting element with high luminance can be obtained as in the first embodiment.
[0030]
The active layer has been described using GaN, but any hexagonal compound semiconductor may be used. The hexagonal compound semiconductor may have any of a wurtz-type structure, a 4H-type structure, and a 6H-type structure.
[0031]
【The invention's effect】
As described above, the present invention isotropically generates a compressive strain in a direction perpendicular to the light traveling direction or a tensile strain in a direction parallel to the light traveling direction in the c-plane of the hexagonal compound semiconductor. When the strain is not applied, the effective mass of the hole near the upper end of the valence band becomes small, and the state contributing to the optical transition increases, so that it is composed of a hexagonal compound semiconductor grown in the c-axis direction. By applying a non-isotropic strain that causes a compressive strain in a direction perpendicular to the light traveling direction or a tensile strain in a direction parallel to the light traveling direction, in the c-plane of the active layer. A semiconductor light emitting device having a low value current and a large optical gain can be realized.
[Brief description of the drawings]
FIG. 1 is a diagram showing an electronic band structure of a valence band of a GaN layer in an AlGaN / GaN quantum well. FIG. 2 is a view showing a compressive strain in a direction perpendicular to a traveling direction of light or a traveling direction of light in a c-plane. FIG. 3 is a view showing an electronic band structure of a valence band of a GaN layer in an AlGaN / GaN quantum well when a non-isotropic strain causing tensile strain is applied in a direction parallel to FIG. Electrons in the valence band of the GaN layer in an AlGaN / GaN quantum well when a compressive strain is generated in a direction perpendicular to the direction of travel or a non-isotropic strain is generated that generates a tensile strain in a direction parallel to the direction of travel of light. FIG. 4 is a view showing a band structure. FIG. 4 shows an injection current when a non-isotropic strain that causes a compressive strain in a direction perpendicular to the reflecting mirror surface or a tensile strain in a direction parallel to the reflecting mirror is applied to the c-plane. Shows strain dependence of the relationship between density and optical gain 5 is a structural diagram of an embodiment of the present invention. FIG. 6 is a crystal structure diagram of an NGO substrate. FIG. 7 is a plan view of a (011) plane of NGO. FIG. 8 is a diagram showing Ga atoms and N atoms grown on an NGO substrate. FIG. 9 is a diagram for explaining the interstitial distance of GaN grown on an NGO substrate.
Reference Signs List 101 NGO substrate 102 GaN buffer layer 103 n-type AlGaN cladding layer 104 n-type AlGaN light guide layer 105 AlGaN / GaN quantum well 106 p-type AlGaN light guide layer 107 p-type AlGaN cladding layer 108 cathode electrode 109 anode electrode 110 emission direction 111 Electric field vector of light 112 Direction of compressive strain 113 Direction of pulling strain

Claims (13)

c軸方向に成長させた活性層を有し、前記活性層が六方晶化合物半導体であり、かつ、前記活性層のc面内に、光の進行方向に垂直な方向に圧縮歪を生じさせる等方的でない歪が入っている半導体レーザ。an active layer grown in the c-axis direction, wherein the active layer is a hexagonal compound semiconductor, and a compressive strain is generated in a c-plane of the active layer in a direction perpendicular to a traveling direction of light. A semiconductor laser with non-directional distortion. 等方的でない歪が1軸性歪である請求項1に記載の半導体レーザ。2. The semiconductor laser according to claim 1, wherein the non-isotropic strain is a uniaxial strain. 発光する光の電場ベクトルがc面に平行である請求項1に記載の半導体レーザ。2. The semiconductor laser according to claim 1, wherein the electric field vector of the emitted light is parallel to the c-plane. c軸方向に成長させた活性層を有し、前記活性層が六方晶化合物半導体であり、かつ、前記活性層のc面内に、光の進行方向に平行な方向に引張歪を生じさせる等方的でない歪が入っている半導体レーザ。an active layer grown in the c-axis direction, wherein the active layer is a hexagonal compound semiconductor, and a tensile strain is generated in a c-plane of the active layer in a direction parallel to a traveling direction of light. A semiconductor laser with non-directional distortion. 等方的でない歪が1軸性歪である請求項4に記載の半導体レーザ。The semiconductor laser according to claim 4, wherein the non-isotropic strain is a uniaxial strain. 発光する光の電場ベクトルがc面に平行である請求項4に記載の半導体レーザ。The semiconductor laser according to claim 4, wherein an electric field vector of the emitted light is parallel to the c-plane. 六方晶化合物半導体であり、c面内に等方的でない歪を加えることにより発光する光の進行方向を制御することを特徴する半導体発光素子。A semiconductor light-emitting device, which is a hexagonal compound semiconductor and controls a traveling direction of emitted light by applying non-isotropic strain to a c-plane. c軸方向に成長させた活性層を有する請求項7に記載の半導体発光素子。The semiconductor light emitting device according to claim 7, further comprising an active layer grown in a c-axis direction. c軸方向に成長させた活性層の両側に光を閉じ込めるための異種の材料による層を有する請求項8に記載の半導体発光素子。The semiconductor light emitting device according to claim 8, further comprising a layer made of a different material for confining light on both sides of the active layer grown in the c-axis direction. c軸に垂直に成長させた活性層を有する請求項7に記載の半導体発光素子。The semiconductor light emitting device according to claim 7, further comprising an active layer grown perpendicular to the c-axis. c軸に垂直に成長させた活性層の両側に光を閉じ込めるための異種の材料による層を有する請求項10に記載の半導体発光素子。The semiconductor light emitting device according to claim 10, further comprising a layer made of a different material for confining light on both sides of the active layer grown perpendicular to the c-axis. 六方晶化合物半導体であり、c面内に等方的でない歪を加えることにより発光する光の進行方向を制御することを特徴する半導体発光素子。A semiconductor light-emitting device, which is a hexagonal compound semiconductor and controls a traveling direction of emitted light by applying non-isotropic strain to a c-plane. 発光する光の電場ベクトルが活性層と隣り合う層とのヘテロ界面に平行である請求項12に記載の半導体発光素子。13. The semiconductor light emitting device according to claim 12, wherein an electric field vector of the emitted light is parallel to a hetero interface between the active layer and an adjacent layer.
JP26520695A 1995-10-13 1995-10-13 Semiconductor laser and semiconductor light emitting device Expired - Fee Related JP3567550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26520695A JP3567550B2 (en) 1995-10-13 1995-10-13 Semiconductor laser and semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26520695A JP3567550B2 (en) 1995-10-13 1995-10-13 Semiconductor laser and semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH09107149A JPH09107149A (en) 1997-04-22
JP3567550B2 true JP3567550B2 (en) 2004-09-22

Family

ID=17414012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26520695A Expired - Fee Related JP3567550B2 (en) 1995-10-13 1995-10-13 Semiconductor laser and semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3567550B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3511372B2 (en) 1999-08-31 2004-03-29 シャープ株式会社 Semiconductor light emitting device and display device using the same
JP6408344B2 (en) * 2014-11-04 2018-10-17 Dowaエレクトロニクス株式会社 Group III nitride semiconductor epitaxial substrate and method for manufacturing the same, and group III nitride semiconductor light emitting device
JP6595682B2 (en) * 2018-09-20 2019-10-23 Dowaエレクトロニクス株式会社 Group III nitride semiconductor light emitting device

Also Published As

Publication number Publication date
JPH09107149A (en) 1997-04-22

Similar Documents

Publication Publication Date Title
KR101131380B1 (en) Semiconductor laser device and method for manufacturing same
US5828684A (en) Dual polarization quantum well laser in the 200 to 600 nanometers range
JP3955367B2 (en) Optical semiconductor device and manufacturing method thereof
US7977693B2 (en) Semiconductor light-emitting material with tetrahedral structure formed therein
JP3180743B2 (en) Nitride compound semiconductor light emitting device and method of manufacturing the same
Domen et al. Optical gain for wurtzite GaN with anisotropic strain in c plane
US7456422B2 (en) Semiconductor device
JP2724827B2 (en) Infrared light emitting device
CN103326242A (en) Active area of laser unit, semiconductor laser unit and manufacturing method of laser unit
JPS6288389A (en) Semiconductor light emitting element
US20210119420A1 (en) Nanocrystal surface-emitting lasers
US10965101B2 (en) Plasmonic quantum well laser
JPH09129974A (en) Semiconductor laser device
US5469458A (en) Surface-emitting semiconductor device
JPH09116225A (en) Semiconductor light emitting device
JP3567550B2 (en) Semiconductor laser and semiconductor light emitting device
CN108028294A (en) Semiconductor devices with internal field protection active area
JP3230576B2 (en) Semiconductor light emitting device
JP2708085B2 (en) Optical semiconductor device
JPS60145687A (en) Semiconductor laser
US5579331A (en) Delta-strained quantum-well semiconductor lasers and optical amplifiers
JPH08181386A (en) Semiconductor optical element
JPH1084170A (en) Quantum well semiconductor laser element
KR101019134B1 (en) Light Emitting Device and Method of Manufacturing the Same
US5844930A (en) Quantum wire lasers

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees