JP3566989B2 - Active matrix type liquid crystal display device and driving method thereof - Google Patents

Active matrix type liquid crystal display device and driving method thereof Download PDF

Info

Publication number
JP3566989B2
JP3566989B2 JP19924794A JP19924794A JP3566989B2 JP 3566989 B2 JP3566989 B2 JP 3566989B2 JP 19924794 A JP19924794 A JP 19924794A JP 19924794 A JP19924794 A JP 19924794A JP 3566989 B2 JP3566989 B2 JP 3566989B2
Authority
JP
Japan
Prior art keywords
liquid crystal
electrode
voltage
pixel
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19924794A
Other languages
Japanese (ja)
Other versions
JPH0862578A (en
Inventor
益幸 太田
正彦 安藤
克己 近藤
昌人 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19924794A priority Critical patent/JP3566989B2/en
Priority to TW084108342A priority patent/TW289097B/zh
Priority to CN95116615A priority patent/CN1099046C/en
Priority to KR1019950026063A priority patent/KR100394760B1/en
Priority to US08/519,101 priority patent/US5831707A/en
Publication of JPH0862578A publication Critical patent/JPH0862578A/en
Priority to US09/179,859 priority patent/US6108065A/en
Application granted granted Critical
Publication of JP3566989B2 publication Critical patent/JP3566989B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、視野角が広くかつ低消費電力のアクティブマトリクス型液晶表示装置に関する。
【0002】
【従来の技術】
液晶に印加する電界の方向を基板界面にほぼ平行な方向とする表示方式は、広視野角,低負荷容量等の特徴を持ち、アクティブマトリクス型液晶表示装置に関して有望な技術である。前者の特徴に関しては、特表平5−505247 号公報に、後者の特徴に関しては特公昭63−21907 号公報に記載されている。
【0003】
【発明が解決しようとする課題】
特公昭63−21907 号公報の提案の中で、次段の行電極に基準電極を兼用させた例がある。この構成は、寄生容量を低減でき、低負荷であり、低消費電力のアクティブマトリクス型液晶表示装置を得ることができ、かつ、配置電極数が少なく高歩留まりで製造でき、さらに画素領域を有効に開口領域に活用できる。しかし、提案の構成には、トランジスタ素子の特性及び液晶素子の光学特性に関する記述がなく、通常のトランジスタ素子の特性では、液晶に印加する電圧が常に片極性(基準電極電位に対して表示用電極電位が常に正極性)である直流駆動しか行うことができない。だが、液晶は直流駆動すると、劣化が激しく耐用時間が著しく低下する、また、残留電荷が蓄積され残像現象が生じ画質が劣化するという問題があった。
【0004】
本発明の目的は、広視野角,低負荷で低消費電力を実現できる表示方式を用いたアクティブマトリクス型液晶表示装置において、高歩留まり,高開口率、かつ、耐用時間が長く、高画質なアクティブマトリクス型液晶表示装置を提供することにある。
【0005】
【課題を解決するための手段】
前記目的を達成するために、本発明は以下を特徴とするアクティブマトリクス型液晶表示装置を構成したものである。
【0006】
(1)第一および第二の基板間に液晶組成物が挿入され、前記第一の基板には、マトリクス状に配置された複数の走査電極と複数の信号電極により複数の画素部が構成されており、前記画素部には前記走査電極と前記信号電極に電気的に接続されたスイッチングトランジスタ素子が設けられており、前記液晶組成物の配向状態と偏光手段により入射光の透過率または反射率を変調することができるアクティブマトリクス型液晶表示装置において、前記スイッチングトランジスタ素子には画素電極が接続され、前記画素電極と、該スイッチングトランジスタ素子に接続された走査電極に隣接した走査電極は、前記第一の基板面と前記第二の基板面にほぼ平行な電界を印加するように配置され、前記両電極により液晶組成物層の液晶分子の長軸方向を基板面とほぼ平行を保ちながら動作でき、前記スイッチングトランジスタ素子のしきい値V TH と、入射光の透過率または反射率を最大に変調するために液晶組成物に印加する電圧V ON の関係がV TH >|V ON |を満足するように構成し、信号電極電圧の平均値であるセンタ電圧を、走査電極電圧をオフ電圧にしたときに起こる画素電極電圧V S の変動量ΔV S (+)とΔV S (−)の平均値だけ走査電極電圧のオフ電圧V GL より高く設定し、液晶駆動電圧V LC を実質的に正負対称となるように設定したことを特徴とする。
【0007】
(2)前記ゲート電極には、ドレイン電極の長手方向に伸びた突起が形成されており、前記突起と画素電極により液晶組成物層の液晶分子の長軸方向を基板面とほぼ平行を保ちながら動作でき、前記突起がドレイン電極と隣接するように
構成されている。
【0009】
【作用】
次に本発明の作用を説明する。
【0010】
アクティブマトリクス型液晶表示装置の駆動は液晶に印加する電圧をアクティブ素子をスイッチし、表示用電極(以下画素電極と称する)に電圧を充電,保持することによって駆動する。一画素の液晶素子から見るとデューティ比1で駆動されていることになるので、高コントラストで、高速応答の駆動ができる。液晶を交流駆動するために基準電極に対して画素電極に充電される電圧波形が交流波形となるようにドレイン電極から映像信号を充電する。
【0011】
アクティブマトリクス型液晶表示装置に用いられている代表的なアクティブ素子として、アモルファスシリコン薄膜トランジスタ(a−SiTFT),ポリシリコン薄膜トランジスタ(p−SiTFT)がある。これらのトランジスタ素子は、ゲート電圧が0V付近でドレイン電流が流れ始める特性を有する。すなわち、ゲートしきい値電圧VTHが0V付近である。しかし、ゲート電圧のオフレベルを基準電圧として用いると、トランジスタ素子では基準電圧に対して負の電圧は充電しても保持できない。なぜなら、ゲート電圧のオフレベルが画素電極電位よりも高いレベルにあるので、ゲートしきい値電圧VTHが0V付近のトランジスタ素子はオン状態になり、画素電極電位はゲート電圧のオフレベルまでリークしてしまうためである。したがって、液晶を交流駆動するためには、基準電極を別に設け、基準電圧はゲート電圧のオフレベルよりも高いレベルに設定しなければならない。しかし、図1に示されるようなドレイン電流−ゲート電圧特性を有する本発明のトランジスタを用いることによって、ゲート電極を基準電極,ゲート電圧のオフレベルを基準電圧として用いても負の電圧を充電,保持することができ交流駆動が可能となる。本発明のトランジスタはゲートしきい値電圧VTHが液晶に印加する最大電圧VON(入射光の透過率または反射率を最大にする画素電極とゲート電極の間の電圧、または、入射光の透過率または反射率を最小にする画素電極とゲート電極の間の電圧)を超えることが特徴である。これにより、ゲート電圧のオフレベルを基準にして、負の電圧VONを充電した後、トランジスタはオフ状態になり負の電圧VONを保持することができる。したがって、液晶を交流駆動することができ、基板面に平行な電界を印加する表示方式において、高歩留まり、高開口率、かつ耐用時間が長く、残留現象が発生しない高画質のアクティブマトリクス型液晶表示装置を得ることができる。
【0012】
【実施例】
本発明を実施例により具体的に説明する。
【0013】
〔実施例1〕
基板は厚みが1.1mm で表面を研磨した透明なガラス基板を2枚用いる。これらの基板のうち一方の基板の上に薄膜トランジスタを形成し、更にその上の最表面に配向膜を形成した。本実施例では配向膜としてポリイミドを採用し、その上を液晶を配向させるためのラビング処理をした。他方の基板上にもポリイミドを塗布し同様のラビング処理をした。上下界面上のラビング方向は互いにほぼ平行で、かつ印加電界方向とのなす角度を85度(φLC1=φLC2=85°)とした。これらの基板間に誘電率異方性Δεが正でその値が14.8(1KHz)であり、屈折率異方性Δnが0.0865(589nm,20℃)のネマチック液晶組成物を挟んだ。ギャップdは球形のポリマビーズを基板間に分散して挟持し、液晶封入状態で3.6μm とした。よってΔn・dは0.311μm である。2枚の偏光板〔日東電工社製G1220DU 〕でパネルを挟み、一方の偏光板の偏光透過率をラビング方向より若干小さな角度、即ち、φP1=85°(即ち、φLC=φP1)に設定し、他方をそれに直交、即ち、φP2=−5°とした。これにより、液晶層に電界を印加し、光強度を変調する電極(後述の画素電極と隣接する走査電極の一部)間のギャップを12μmとしたとき、図2に示すような低電圧(VOFF=0V )で暗状態、高電圧(VON=5.2V )で明状態をとるノーマリクローズ特性を得た。なお、誘電率異方性Δεが正の液晶を用いたが、負の液晶を用いてもよく、本発明の液晶材料に関する条件を満足すればよい。
【0014】
次に、薄膜トランジスタ及び各種電極の構造を図3に示す。図3(a)は基板面に垂直な方向から見た正面図、図3(b),(c)は側断面図を示す。薄膜トランジスタ素子14は画素電極(ソース電極)3,信号電極(ドレイン電極)2,走査電極(ゲート電極)1、及びアモルファスシリコン13から構成される。薄膜トランジスタは逆スタガ構造とし、走査電極1を最下層に形成し、ゲート絶縁膜5を介して信号電極2と画素電極3を同一の金属層をパターン化して構成した。蓄積容量素子15は、画素電極3と前行の走査電極11でゲート絶縁膜5を挟む構造として形成した。画素電極は正面図(図3(a))において、走査電極1から垂直方向に伸びた突起部分6の間に配置されている。液晶層の液晶分子の配向は、主に画素電極3と突起部分6の間の水平方向の電界Eによって制御される。光は、画素電極3と突起部分6の間を透過し、液晶層に入射され、変調される。なお、本実施例では、信号電極の長手方向を垂直方向,走査電極の長手方向を水平方向として定義している。また、本実施例では前行の走査電極から突起を出したが、後行の走査配線から出してもよい。
【0015】
画素ピッチは水平方向(すなわち信号電極間)は110μm,垂直方向(すなわち走査電極間)は330μmとした。電極幅は、走査電極,信号電極をそれぞれ10μm,9μmとした。一方、画素電極、及び前行の走査電極11の突起部分6の幅はそれぞれ8μmとした。また画素電極3と信号電極の間隔を6μmとした。これらの電極幅は画素電極3と突起部分6の間隙部を4分割して設けたとき、画素電極3と突起部分6の電極ギャップdSGが12μmと成るように決定した。また、コントラストを向上するため、不要な間隙部(画素電極3と突起部分6の間以外の間隙部)には絶縁性のブラックマトリクスを形成した。
【0016】
なお、本実施例では画素を4分割しているが、ギャップdSGに関する条件が本発明を満足するように構成されればよく、分割数は限定しない。
【0017】
画素数は640×3本の信号電極と480本の走査電極とにより640×3×480個とし、R(赤),G(緑),B(青)の3色のカラーフィルタを薄膜トランジスタ素子群を有する基板と対向する基板上に垂直方向に縦長の縦ストライプ状に形成し、カラー化した。複数画素から構成されるパネルの部分を図13に示す。カラーフィルタの上には表面を平坦化する透明樹脂を積層してある。
【0018】
また、薄膜トランジスタのゲート電極(走査電極)にクロム(Cr),ゲート絶縁膜には窒化シリコン膜を用い、膜厚350nmとし、アモルファスシリコン膜厚15nmで構成した。この構成で図1のようなドレイン電流I−ゲート電圧V特性を得た。ゲートしきい値電圧VTHは9.3Vである。ゲートしきい値電圧VTHの制御に関しては様々のパラメータがあるが、本実施例では、アモルファスシリコン膜厚を薄膜化することによって高電圧側にシフトさせ、ゲートしきい値電圧VTHを制御した。図4にゲートしきい値電圧VTHのアモルファスシリコン膜厚依存性を示す。ここで、ゲートしきい値電圧VTHが液晶に印加する最大電圧|VON|以上となるアモルファスシリコン膜厚は100nm以下である。また、本実施例の薄膜トランジスタ素子では、サブスレショルド領域の傾きs=dV/dlog(I)は0.9 であり、ドレイン電流I=1×10−13A以下の非導通状態を維持できるゲート電圧Vの最大値は5.7V である。したがって、本実施例のトランジスタ素子は液晶に印加する最大電圧VONが5.7V まで適用可能であり、前述のように、本実施例のセル構成(液晶材料)ではdSG=12μmの時、明状態にするために液晶層に印加する電圧VONは5.2V であるので、ゲートのオフレベルを基準にして負の電圧(−5.2V )を画素電極に充電しても十分保持動作できる。サブスレッショルド領域の傾きsはトランジスタ特性により変化するが、VTH>|VON|の条件は、s>0としている。また、ゲートしきい値電圧VTHは、図1(a)においてVTH<V<V+VTHの範囲で、ドレイン電流の平方根√Iをゲート電圧Vに対してプロットし、直線近似した時に、その直線とゲート電圧V軸との交点のゲート電圧Vと定義している。なお、オーミックコンタクトをとるために信号電極2および画素電極3とアモルファスシリコン13との間には、n+型アモルファスシリコンを形成している。また、本実施例では、半導体膜の薄膜化によってゲートしきい値電圧を制御したが、ゲート電極材料,ゲート絶縁膜,半導体膜等の材料選択,ドーピング,バックチャネル制御等による制御を行う方法もあり、それらの一つまたは組合せで制御しても良く、ゲートしきい値電圧に関する条件を満足していれば、本発明の範囲内である。また、本実施例では、逆スタガ構造で薄膜トランジスタを構成したが、トランジスタの断面構造は正スタガ構造,コプレーナ構造でも良く特に限定はしない。また、図5に示すように本発明の液晶表示パネル20のTFT基板上に垂直走査回路18,映像信号駆動回路19を接続し、電源回路,コントローラ17から走査信号電圧,映像信号電圧,タイミング信号を供給し、アクティブマトリクス駆動した。図6に本発明の駆動波形を示す。走査電極電圧を図6(a)に、信号電極電圧を図6(b)に画素電極電圧(ソース電圧)を図6(c)に示す。走査電極電圧Vは、パルス幅34.5μs で繰返し周期は16.6ms の矩形波で、パルスのオン電圧VGH(ハイレベル)は22V,オフ電圧VGL(ローレベル)は0Vに設定した。液晶に印加する最大電圧は5.2V であるので、信号電極電圧Vは、センタ電圧VD−CENTERを中心に表示階調に従い±5.2V まで印加する。センタ電圧VD−CENTERは、走査電極電圧をオフ電圧したときに起こる画素電極電圧Vが変動量ΔV(+)とΔV(−)の平均値だけ走査電極電圧のオフ電圧VGLより高く設定し、液晶駆動電圧VLC(前行の走査電極と画素電極の間の電圧:≒V−VGL )が実質的(実効的)に正負対称となるように設定した。画素電極電圧を観測した結果、VD−CENTER=2Vに設定した。画素電極電位の最低電位VSLは−5.2Vであり、薄膜トランジスタのゲート電圧(V−V)は5.2Vとなりドレイン電流I=7×10−14Aであるので、画素電極電位を十分に保持することができる。また、画素電極電位の正極側の充電電圧VSH=VDHは7.2Vであり、走査電極電圧のオンレベルは20Vであるので、ゲート電圧(V−V)=14.8V となりドレイン電流I=4×10−7A であるので十分にオン状態になり充電動作できる。オン電流/オフ電流の比は約7桁あり、上記の条件で十分なスイッチング動作をしているといえる。
【0019】
本実施例では、広視野角,低負荷といった特徴を持つ基板面に平行な電界を印加する表示方式で、基準電極を形成しないため、配線数が減少し、配線交差数も減少するので歩留まりが向上する。
【0020】
特に、本発明では、VTHが9.3Vと|VON|=5.2Vを超えるようにすることで、ゲート電圧のオフレベルを基準にして負の電圧を充電保持することができ、液晶を交流駆動することが可能になる。したがって、耐用時間が長くなり、また、残像現象が発生しない高画質のアクティブマトリクス型液晶表示装置を得ることができる。
【0021】
〔実施例2〕
本実施例の構成は下記の要件を除けば、実施例1と同等である。
【0022】
本実施例の薄膜トランジスタ及び各種電極の構造を図7に示す。図7(a)は基板面に垂直な方向から見た正面図、図7(b),(c)は側断面図を表す。本実施例では、走査電極1から垂直方向に突起部分を信号電極に隣接するように構成した。
【0023】
本実施例では、信号電極2と画素電極3の間に走査電極の突起部分6を配置した。この時、電極幅は、走査電極,信号電極をそれぞれ10μmとし、画素電極、及び走査電極11の突起部分6の幅はそれぞれ9μmとした。また画素電極3と信号電極の間隔を3.5μm とした。画素電極3と突起部分6の電極ギャップdSGは実施例1と同様に12μmと成る。
【0024】
信号電極2と画素電極3の間に走査電極の突起部分6を配置したため、信号電極からの電気力線のほとんどが走査電極の突起部分に終端する。走査電極は自行を充電するための期間を除くほとんどの期間でオフ電圧で一定になるように走査回路ドライバから電位を付与されているので、信号電極の電圧変動を吸収し、信号電極の電圧変動が画素電極の電圧におよぼす影響は激減する。したがって、信号電極の電圧が映像信号によって変動しても、画素電極の電圧は変化しないので、信号電極と画素電極のクロストーク、特に垂直方向に発生するすじ状の画質不良(縦スミア)がなくなる。
【0025】
以上、本実施例では実施例1と同等の効果が得られ、さらにクロストークのない高画質のアクティブマトリクス型液晶表示装置を得ることができる。
【0026】
【発明の効果】
本発明によれば、広視野角,低負荷といった特徴を持つ基板面に平行な電界を液晶に印加し光を変調する表示方式において、配線数の減少により高い歩留まりで量産可能,高開口率、かつ、交流駆動することにより耐用時間が長く、残像減少が発生しない高画質のアクティブマトリクス型液晶表示装置が得られる。
【図面の簡単な説明】
【図1】本発明の実施例1のトランジスタ素子の電気特性図。
【図2】本発明の実施例1の液晶表示の電気光学特性図。
【図3】本発明の実施例1の画素部の構成を示す説明図。
【図4】アモルファスシリコン薄膜トランジスタ素子のゲートしきい値電圧のアモルファスシリコン膜厚依存性を示す特性図。
【図5】本発明の実施例1のシステムの回路図。
【図6】本発明の実施例1の駆動波形図。
【図7】本発明の実施例2の画素部の説明図。
【符号の説明】
1…走査電極、2…信号電極、3…画素電極、5…ゲート絶縁膜、6…突起部分、13…アモルファスシリコン、14…薄膜トランジスタ素子、15…蓄積容量素子、17…コントローラ、18…垂直走査回路、19…映像信号駆動回路、20…液晶表示パネル。
[0001]
[Industrial applications]
The present invention relates to an active matrix liquid crystal display device having a wide viewing angle and low power consumption.
[0002]
[Prior art]
The display method in which the direction of the electric field applied to the liquid crystal is substantially parallel to the interface between the substrates has characteristics such as a wide viewing angle and a low load capacitance, and is a promising technology for an active matrix liquid crystal display device. The former feature is described in JP-A-5-505247, and the latter feature is described in JP-B-63-21907.
[0003]
[Problems to be solved by the invention]
In the proposal of Japanese Patent Publication No. Sho 63-21907, there is an example in which a reference electrode is used also for the next row electrode. This configuration can reduce the parasitic capacitance, reduce the load, obtain an active matrix type liquid crystal display device with low power consumption, can be manufactured with a small number of electrodes, can be manufactured at a high yield, and can effectively use the pixel area. Can be used for open areas. However, the proposed configuration does not describe the characteristics of the transistor element and the optical characteristics of the liquid crystal element. In the characteristics of the normal transistor element, the voltage applied to the liquid crystal is always unipolar (the display electrode potential is higher than the reference electrode potential). Only a DC drive in which the potential is always positive) can be performed. However, when the liquid crystal is driven by direct current, there is a problem that the liquid crystal is greatly deteriorated and the service life is remarkably reduced, and furthermore, the residual charge is accumulated and an afterimage phenomenon occurs to deteriorate the image quality.
[0004]
SUMMARY OF THE INVENTION It is an object of the present invention to provide an active matrix type liquid crystal display device using a display method capable of realizing low power consumption with a wide viewing angle and low load, a high yield, a high aperture ratio, a long life time, and a high image quality. It is to provide a matrix type liquid crystal display device.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an active matrix type liquid crystal display device having the following features.
[0006]
(1) A liquid crystal composition is inserted between a first substrate and a second substrate, and a plurality of pixel portions are formed on the first substrate by a plurality of scanning electrodes and a plurality of signal electrodes arranged in a matrix. A switching transistor element electrically connected to the scanning electrode and the signal electrode in the pixel portion, and a transmittance or a reflectance of incident light depending on an alignment state of the liquid crystal composition and a polarizing means. In the active matrix type liquid crystal display device, a pixel electrode is connected to the switching transistor element, and the pixel electrode and a scanning electrode adjacent to a scanning electrode connected to the switching transistor element are connected to the second electrode. The two substrates are disposed so as to apply an electric field substantially parallel to one substrate surface and the second substrate surface, and the two electrodes form a long axis of liquid crystal molecules of the liquid crystal composition layer. The possible while remaining substantially parallel to the substrate surface, wherein the switching and the threshold V TH of the transistor elements, the relationship between the voltage V ON applied to the liquid crystal composition to modulate the maximum transmittance or reflectance of the incident light Satisfies V TH > | V ON |, and the pixel voltage V S generated when the scan electrode voltage is turned off when the center voltage, which is the average value of the signal electrode voltage, is turned off. Is set to be higher than the off voltage VGL of the scan electrode voltage by an average value of the variation amounts ΔV S (+) and ΔV S (−) of the scan electrode , and the liquid crystal drive voltage VLC is set to be substantially symmetrical between positive and negative. Features.
[0007]
(2) The gate electrode has a projection extending in the longitudinal direction of the drain electrode, and the major axis of the liquid crystal molecules of the liquid crystal composition layer is kept substantially parallel to the substrate surface by the projection and the pixel electrode. Operable and configured such that the protrusion is adjacent to the drain electrode.
[0009]
[Action]
Next, the operation of the present invention will be described.
[0010]
The active matrix type liquid crystal display device is driven by switching the voltage applied to the liquid crystal to the active element, and charging and holding the voltage on the display electrode (hereinafter referred to as pixel electrode). When viewed from the liquid crystal element of one pixel, it is driven at a duty ratio of 1, so that high-contrast, high-speed response driving can be performed. The video signal is charged from the drain electrode so that the voltage waveform charged to the pixel electrode with respect to the reference electrode in order to drive the liquid crystal by AC is an AC waveform.
[0011]
Typical active elements used in an active matrix type liquid crystal display device include an amorphous silicon thin film transistor (a-SiTFT) and a polysilicon thin film transistor (p-SiTFT). These transistor elements have a characteristic that the drain current starts to flow when the gate voltage is around 0V. That is, the gate threshold voltage V TH is around 0V. However, when the off-level of the gate voltage is used as the reference voltage, the transistor element cannot hold a negative voltage with respect to the reference voltage even when charged. Because the off level of the gate voltage is higher than the pixel electrode potential, the transistor element whose gate threshold voltage V TH is around 0 V is turned on, and the pixel electrode potential leaks to the off level of the gate voltage. This is because Therefore, in order to drive the liquid crystal by AC, a reference electrode must be separately provided, and the reference voltage must be set to a level higher than the off level of the gate voltage. However, by using the transistor of the present invention having a drain current-gate voltage characteristic as shown in FIG. 1, even if the gate electrode is used as a reference electrode and the off-level of the gate voltage is used as a reference voltage, a negative voltage is charged. It can be held and AC drive is possible. In the transistor of the present invention, the gate threshold voltage V TH is the maximum voltage V ON applied to the liquid crystal (the voltage between the pixel electrode and the gate electrode that maximizes the transmittance or reflectance of incident light, or the transmission of incident light). (A voltage between the pixel electrode and the gate electrode) that minimizes the reflectance or the reflectance. Thus, after charging the negative voltage V ON with reference to the off level of the gate voltage, the transistor is turned off and can maintain the negative voltage V ON . Therefore, in a display method in which a liquid crystal can be AC-driven and an electric field parallel to the substrate surface is applied, a high-yield active-matrix liquid crystal display with high yield, a high aperture ratio, a long lifetime, and no residual phenomenon occurs. A device can be obtained.
[0012]
【Example】
The present invention will be specifically described with reference to examples.
[0013]
[Example 1]
As the substrate, two transparent glass substrates having a thickness of 1.1 mm and a polished surface are used. A thin film transistor was formed on one of these substrates, and an alignment film was further formed on the uppermost surface thereof. In this embodiment, polyimide is used as the alignment film, and a rubbing process is performed thereon to align the liquid crystal. The other substrate was also coated with polyimide and subjected to the same rubbing treatment. The rubbing directions on the upper and lower interfaces were substantially parallel to each other, and the angle between the rubbing directions and the direction of the applied electric field was 85 degrees (φ LC1 = φ LC2 = 85 °). A nematic liquid crystal composition having a positive dielectric anisotropy Δε of 14.8 (1 KHz) and a refractive index anisotropy Δn of 0.0865 (589 nm, 20 ° C.) is sandwiched between these substrates. . The gap d was formed by dispersing and holding spherical polymer beads between the substrates, and was 3.6 μm in a liquid crystal sealed state. Therefore, Δn · d is 0.311 μm. The panel is sandwiched between two polarizing plates [G1220DU manufactured by Nitto Denko Corporation], and the polarization transmittance of one of the polarizing plates is set to an angle slightly smaller than the rubbing direction, that is, φ P1 = 85 ° (that is, φ LC = φ P1 ). And the other was orthogonal to it, ie, φ P2 = -5 °. Accordingly, when an electric field is applied to the liquid crystal layer and a gap between electrodes for modulating light intensity (a part of a scanning electrode adjacent to a pixel electrode described later) is 12 μm, a low voltage (V) as shown in FIG. OFF = 0V) and a normally closed characteristic which takes a dark state at a high voltage (V ON = 5.2V). Although a liquid crystal having a positive dielectric anisotropy Δε is used, a negative liquid crystal may be used, as long as the condition regarding the liquid crystal material of the present invention is satisfied.
[0014]
Next, the structures of the thin film transistor and various electrodes are shown in FIG. FIG. 3A is a front view seen from a direction perpendicular to the substrate surface, and FIGS. 3B and 3C are side sectional views. The thin film transistor element 14 includes a pixel electrode (source electrode) 3, a signal electrode (drain electrode) 2, a scanning electrode (gate electrode) 1, and amorphous silicon 13. The thin film transistor had an inverted staggered structure, the scanning electrode 1 was formed in the lowermost layer, and the signal electrode 2 and the pixel electrode 3 were formed by patterning the same metal layer via the gate insulating film 5. The storage capacitor 15 was formed as a structure in which the gate insulating film 5 was sandwiched between the pixel electrode 3 and the scanning electrode 11 in the previous row. The pixel electrodes are arranged between the protruding portions 6 extending vertically from the scanning electrodes 1 in the front view (FIG. 3A). The orientation of the liquid crystal molecules in the liquid crystal layer is controlled mainly by the horizontal electric field E between the pixel electrode 3 and the projection 6. Light is transmitted between the pixel electrode 3 and the protruding portion 6, is incident on the liquid crystal layer, and is modulated. In this embodiment, the longitudinal direction of the signal electrode is defined as the vertical direction, and the longitudinal direction of the scanning electrode is defined as the horizontal direction. Further, in the present embodiment, the projection is provided from the scanning electrode in the preceding row, but may be provided from the scanning wiring in the following row.
[0015]
The pixel pitch was 110 μm in the horizontal direction (ie, between signal electrodes) and 330 μm in the vertical direction (ie, between scan electrodes). The electrode width was 10 μm and 9 μm for the scanning electrode and the signal electrode, respectively. On the other hand, the width of the pixel electrode and the width of the protruding portion 6 of the scanning electrode 11 in the previous row were each set to 8 μm. The distance between the pixel electrode 3 and the signal electrode was 6 μm. These electrode widths were determined so that the electrode gap d SG between the pixel electrode 3 and the projection 6 was 12 μm when the gap between the pixel electrode 3 and the projection 6 was divided into four. Further, in order to improve the contrast, an insulating black matrix was formed in unnecessary gap portions (gap portions other than between the pixel electrode 3 and the protruding portion 6).
[0016]
In this embodiment, the pixel is divided into four, but the condition regarding the gap d SG may be configured so as to satisfy the present invention, and the number of divisions is not limited.
[0017]
The number of pixels is 640 × 3 × 480 with 640 × 3 signal electrodes and 480 scanning electrodes, and three color filters of R (red), G (green), and B (blue) are used as a thin film transistor element group. It was formed in a vertically elongated vertical stripe shape on the substrate facing the substrate having the above, and was colored. FIG. 13 shows a part of a panel including a plurality of pixels. A transparent resin for flattening the surface is laminated on the color filter.
[0018]
In addition, chromium (Cr) was used for the gate electrode (scanning electrode) of the thin film transistor, and a silicon nitride film was used for the gate insulating film. To obtain a gate voltage V G characteristics - drain current I D as shown in FIG. 1 in this configuration. The gate threshold voltage V TH is 9.3V. There are various parameters for controlling the gate threshold voltage V TH , but in this embodiment, the amorphous silicon film thickness is shifted to a higher voltage side by reducing the film thickness, and the gate threshold voltage V TH is controlled. . FIG. 4 shows the dependency of the gate threshold voltage V TH on the thickness of the amorphous silicon film. Here, the amorphous silicon film thickness at which the gate threshold voltage V TH is equal to or higher than the maximum voltage | V ON | applied to the liquid crystal is 100 nm or less. Further, in the thin film transistor element of this embodiment, the inclination of the subthreshold region s = dV G / dlog (I D) is 0.9, maintaining the following non-conducting state drain current I D = 1 × 10 -13 A the maximum value of the gate voltage V G to be is 5.7 V. Therefore, the transistor element of the present embodiment can be applied up to the maximum voltage V ON applied to the liquid crystal of 5.7 V. As described above, in the cell configuration (liquid crystal material) of the present embodiment, when d SG = 12 μm, Since the voltage V ON applied to the liquid crystal layer in order to bring the pixel into a bright state is 5.2 V, even if the pixel electrode is charged with a negative voltage (−5.2 V) based on the off level of the gate, a sufficient holding operation is performed. it can. Although the slope s of the subthreshold region changes depending on the transistor characteristics, the condition of V TH > | V ON | is s> 0. The gate threshold voltage V TH is in the range of V TH <V G <V D + V TH in FIG. 1 (a), the square root √I D of the drain current is plotted against the gate voltage V G, a straight line when approximating, it is defined as the gate voltage V G of intersection of the straight line and the gate voltage V G axis. Note that n + type amorphous silicon is formed between the signal electrode 2 and the pixel electrode 3 and the amorphous silicon 13 to make ohmic contact. In this embodiment, the gate threshold voltage is controlled by reducing the thickness of the semiconductor film. However, a method of controlling the material by selecting the material of the gate electrode material, the gate insulating film, the semiconductor film, and the like, doping, and controlling the back channel may be used. Yes, it may be controlled by one or a combination of them, and it is within the scope of the present invention if the condition regarding the gate threshold voltage is satisfied. Further, in this embodiment, the thin film transistor is configured with the inverted staggered structure, but the cross-sectional structure of the transistor may be a normal staggered structure or a coplanar structure, and is not particularly limited. As shown in FIG. 5, a vertical scanning circuit 18 and a video signal driving circuit 19 are connected on a TFT substrate of a liquid crystal display panel 20 of the present invention, and a scanning signal voltage, a video signal voltage, and a timing signal are supplied from a power supply circuit and a controller 17. And active matrix drive was performed. FIG. 6 shows a driving waveform of the present invention. FIG. 6A shows the scanning electrode voltage, FIG. 6B shows the signal electrode voltage, and FIG. 6C shows the pixel electrode voltage (source voltage). The scan electrode voltage V G is a rectangular wave having a pulse width of 34.5 μs and a repetition period of 16.6 ms. The pulse ON voltage V GH (high level) is set to 22 V, and the OFF voltage V GL (low level) is set to 0 V. . Since the maximum voltage applied to the liquid crystal is a 5.2V, the signal electrode voltage V D is applied to ± 5.2V in accordance with the display gradation around a center voltage V D-CENTER. Center voltage V D-CENTER, the pixel electrode voltage V S that occurs when a scanning electrode voltage and turn-off voltage variation [Delta] V S (+) and [Delta] V S - than the off voltage V GL of the average value only scan electrode voltage () set high, the liquid crystal drive voltage V LC (the voltage between the front row of scan electrodes and the pixel electrode: ≒ V S -V GL) is set to be positive and negative symmetrical substantially (effective). As a result of observing the pixel electrode voltage, VD-CENTER was set to 2V. Since the minimum potential V SL of the pixel electrode potential is -5.2V, the gate voltage of the thin film transistor (V G -V S) is a 5.2V next drain current I D = 7 × 10 -14 A , the pixel electrode potential Can be held sufficiently. The charging voltage V SH = V DH of the positive electrode side of the pixel electrode potential is 7.2V, the on-level of the scanning electrode voltage is at 20V, the gate voltage (V G -V S) = 14.8V next drain Since the current ID is 4 × 10 −7 A, the current is sufficiently turned on and the charging operation can be performed. The ratio of on-current / off-current is about 7 digits, and it can be said that a sufficient switching operation is performed under the above conditions.
[0019]
In the present embodiment, a display method in which a parallel electric field is applied to the substrate surface having features such as a wide viewing angle and a low load is employed. Since no reference electrode is formed, the number of wirings is reduced, and the number of wiring intersections is also reduced. improves.
[0020]
In particular, in the present invention, by setting V TH to exceed 9.3 V and | V ON | = 5.2 V, it is possible to charge and hold a negative voltage based on the off level of the gate voltage, Can be AC-driven. Therefore, it is possible to obtain a high-quality active matrix type liquid crystal display device which has a long service life and does not cause an afterimage phenomenon.
[0021]
[Example 2]
The configuration of this embodiment is the same as that of the first embodiment except for the following requirements.
[0022]
FIG. 7 shows the structure of the thin film transistor and various electrodes of this embodiment. FIG. 7A is a front view seen from a direction perpendicular to the substrate surface, and FIGS. 7B and 7C are side sectional views. In this embodiment, the protruding portion is configured to be adjacent to the signal electrode in the vertical direction from the scanning electrode 1.
[0023]
In this embodiment, the projection 6 of the scanning electrode is arranged between the signal electrode 2 and the pixel electrode 3. At this time, the electrode width was 10 μm for each of the scanning electrode and the signal electrode, and the widths of the projections 6 of the pixel electrode and the scanning electrode 11 were each 9 μm. The distance between the pixel electrode 3 and the signal electrode was 3.5 μm. The electrode gap d SG between the pixel electrode 3 and the projection 6 is 12 μm as in the first embodiment.
[0024]
Since the protruding portion 6 of the scanning electrode is arranged between the signal electrode 2 and the pixel electrode 3, most of the lines of electric force from the signal electrode terminate at the protruding portion of the scanning electrode. Since the scanning electrode is supplied with a potential from the scanning circuit driver so as to be constant at the off-voltage for most of the period except for the period for charging its own row, the voltage fluctuation of the signal electrode is absorbed, and the voltage fluctuation of the signal electrode is absorbed. Has a drastically reduced effect on the voltage of the pixel electrode. Therefore, even if the voltage of the signal electrode fluctuates due to the video signal, the voltage of the pixel electrode does not change, so that there is no crosstalk between the signal electrode and the pixel electrode, in particular, a striped image quality defect (vertical smear) occurring in the vertical direction. .
[0025]
As described above, in this embodiment, the same effects as those of the first embodiment can be obtained, and a high-quality active matrix liquid crystal display device without crosstalk can be obtained.
[0026]
【The invention's effect】
According to the present invention, in a display system in which an electric field parallel to a substrate surface having characteristics such as a wide viewing angle and a low load is applied to a liquid crystal to modulate light, mass production can be performed at a high yield by reducing the number of wirings, a high aperture ratio, In addition, a high-quality active-matrix liquid crystal display device that has a long service life and does not cause a decrease in afterimages can be obtained by AC driving.
[Brief description of the drawings]
FIG. 1 is an electrical characteristic diagram of a transistor element according to Example 1 of the present invention.
FIG. 2 is an electro-optical characteristic diagram of a liquid crystal display of Example 1 of the present invention.
FIG. 3 is an explanatory diagram illustrating a configuration of a pixel unit according to the first embodiment of the present invention.
FIG. 4 is a characteristic diagram showing the dependence of the gate threshold voltage of an amorphous silicon thin film transistor element on the amorphous silicon film thickness.
FIG. 5 is a circuit diagram of a system according to the first embodiment of the present invention.
FIG. 6 is a driving waveform diagram according to the first embodiment of the present invention.
FIG. 7 is an explanatory diagram of a pixel portion according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Scan electrode, 2 ... Signal electrode, 3 ... Pixel electrode, 5 ... Gate insulating film, 6 ... Projection part, 13 ... Amorphous silicon, 14 ... Thin film transistor element, 15 ... Storage capacitance element, 17 ... Controller, 18 ... Vertical scanning Circuit, 19: video signal drive circuit, 20: liquid crystal display panel.

Claims (2)

第一および第二の基板間に液晶組成物が挿入され、前記第一の基板には、マトリクス状に配置された複数の走査電極と複数の信号電極により複数の画素部が構成されており、前記画素部には前記走査電極と前記信号電極に電気的に接続されたスイッチングトランジスタ素子が設けられており、前記液晶組成物の配向状態と偏光手段により入射光の透過率または反射率を変調することができるアクティブマトリクス型液晶表示装置において、
前記スイッチングトランジスタ素子には画素電極が接続され、前記画素電極と、該スイッチングトランジスタ素子に接続された走査電極に隣接した走査電極は前記第一の基板面と前記第二の基板面にほぼ平行な電界を印加するように配置され、前記両電極により液晶組成物層の液晶分子の長軸方向を基板面とほぼ平行を保ちながら動作でき、前記スイッチングトランジスタ素子のしきい値VTHと、入射光の透過率または反射率を最大に変調するために液晶組成物に印加する電圧VONの関係がVTH>|VON|を満足するように構成し、信号電極電圧の平均値であるセンタ電圧を、走査電極電圧をオフ電圧にしたときに起こる画素電極電圧VS の変動量ΔVS(+)とΔV S (−)の平均値だけ走査電極電圧のオフ電圧VGLより高く設定し、液晶駆動電圧VLCを実質的に正負対称となるように設定したことを特徴とするアクティブマトリクス型液晶表示装置。
A liquid crystal composition is inserted between the first and second substrates, and the first substrate has a plurality of pixel portions formed by a plurality of scanning electrodes and a plurality of signal electrodes arranged in a matrix, The pixel portion is provided with a switching transistor element electrically connected to the scanning electrode and the signal electrode, and modulates an alignment state of the liquid crystal composition and a transmittance or a reflectance of incident light by a polarizing unit. Active matrix type liquid crystal display device,
A pixel electrode is connected to the switching transistor element, and the pixel electrode and a scanning electrode adjacent to a scanning electrode connected to the switching transistor element are substantially parallel to the first substrate surface and the second substrate surface. is arranged to apply a electric field, the long axis direction of liquid crystal molecules of the liquid crystal composition layer can while remaining substantially parallel to the substrate surface by the electrodes, and the threshold V TH of the switching transistor element, the incident relationship between the voltage V oN applied to the liquid crystal composition to modulate the transmittance or reflectance of light in maximum V TH> | V oN | configured to satisfy the center is the average value of the signal electrode voltage The voltage is set to be higher than the off voltage VGL of the scan electrode voltage by an average value of the variation amounts ΔV S (+) and ΔV S (−) of the pixel electrode voltage V S that occur when the scan electrode voltage is turned off. liquid Active matrix liquid crystal display device which is characterized in that set to be substantially symmetrical positive and negative drive voltage V LC.
請求項1において、前記ゲート電極には、ドレイン電極の長手方向に伸びた突起が形成されており、前記突起と前記画素電極により液晶組成物層の液晶分子の長軸方向を基板面とほぼ平行を保ちながら動作でき、前記突起が前記ドレイン電極と隣接するように構成されているアクティブマトリクス型液晶表示装置。2. The device according to claim 1, wherein the gate electrode has a projection extending in a longitudinal direction of the drain electrode, and the major axis direction of liquid crystal molecules of the liquid crystal composition layer is substantially parallel to the substrate surface by the projection and the pixel electrode. An active matrix type liquid crystal display device which is operable while maintaining the same, and wherein the protrusion is configured to be adjacent to the drain electrode.
JP19924794A 1994-08-24 1994-08-24 Active matrix type liquid crystal display device and driving method thereof Expired - Lifetime JP3566989B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP19924794A JP3566989B2 (en) 1994-08-24 1994-08-24 Active matrix type liquid crystal display device and driving method thereof
TW084108342A TW289097B (en) 1994-08-24 1995-08-10
CN95116615A CN1099046C (en) 1994-08-24 1995-08-23 Active matrix type liquid crystal display device
KR1019950026063A KR100394760B1 (en) 1994-08-24 1995-08-23 Active Matrix Liquid Crystal Display
US08/519,101 US5831707A (en) 1994-08-24 1995-08-24 Active matrix type liquid crystal display apparatus
US09/179,859 US6108065A (en) 1994-08-24 1998-10-28 Parallel field liquid crystal display with counter electrodes connected to the scan lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19924794A JP3566989B2 (en) 1994-08-24 1994-08-24 Active matrix type liquid crystal display device and driving method thereof

Publications (2)

Publication Number Publication Date
JPH0862578A JPH0862578A (en) 1996-03-08
JP3566989B2 true JP3566989B2 (en) 2004-09-15

Family

ID=16404622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19924794A Expired - Lifetime JP3566989B2 (en) 1994-08-24 1994-08-24 Active matrix type liquid crystal display device and driving method thereof

Country Status (1)

Country Link
JP (1) JP3566989B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998023995A1 (en) * 1996-11-27 1998-06-04 Hitachi, Ltd. Active matrix liquid crystal display
JP3129293B2 (en) 1998-08-13 2001-01-29 日本電気株式会社 Liquid crystal display
JP3661443B2 (en) 1998-10-27 2005-06-15 株式会社日立製作所 Active matrix liquid crystal display device
JP2001109014A (en) * 1999-10-05 2001-04-20 Hitachi Ltd Active matrix liquid crystal display device

Also Published As

Publication number Publication date
JPH0862578A (en) 1996-03-08

Similar Documents

Publication Publication Date Title
US6108065A (en) Parallel field liquid crystal display with counter electrodes connected to the scan lines
JP3143925B2 (en) Active matrix type liquid crystal display
US6067141A (en) Liquid crystal display device with reduced viewing angle dependency
JP3296426B2 (en) Liquid crystal display device and method of manufacturing the same
US7868956B2 (en) LCD device having gate line extension and common line recess of equal areas
US8587619B2 (en) Display apparatus and method of driving the same
KR100780714B1 (en) Licuid crystal display device
US7511776B2 (en) Liquid crystal electro-optical device and method of driving the same
KR100513607B1 (en) Active matrix type liquid crystal display device
US6055028A (en) Liquid crystal electro-optical device
JPH08286176A (en) Liquid crystal display device
KR20020015003A (en) Active matrix liquid crystal display device
KR100308103B1 (en) LCD display
KR101101007B1 (en) Liquid Crystal Display
JPH11258624A (en) Liquid crystal display device
JP3819561B2 (en) Liquid crystal display
JP3566989B2 (en) Active matrix type liquid crystal display device and driving method thereof
JP3583755B2 (en) Active matrix type liquid crystal display
JP3598583B2 (en) Active matrix type liquid crystal display
US8547515B2 (en) Display substrate with pixel electrode having V-shape and trapezoidal protrusions, a method of manufacturing the same and a display apparatus having the same
US6342936B1 (en) Liquid crystal display device
JP3625283B2 (en) Active matrix liquid crystal display device
JPH06230414A (en) Liquid crystal display element
EP1384226B1 (en) REDUCING THE BIAS ON Spatial LIGHT MODULATORS
KR100627107B1 (en) Multi-Domain Liquid Crystal Display Device and Method of Fabricating the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term