JP3564992B2 - Stator core of resin mold motor and method of manufacturing stator - Google Patents

Stator core of resin mold motor and method of manufacturing stator Download PDF

Info

Publication number
JP3564992B2
JP3564992B2 JP02469998A JP2469998A JP3564992B2 JP 3564992 B2 JP3564992 B2 JP 3564992B2 JP 02469998 A JP02469998 A JP 02469998A JP 2469998 A JP2469998 A JP 2469998A JP 3564992 B2 JP3564992 B2 JP 3564992B2
Authority
JP
Japan
Prior art keywords
resin
stator
stator core
wiring board
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02469998A
Other languages
Japanese (ja)
Other versions
JPH11225453A (en
Inventor
啓宇 川崎
学 出口
幸典 竹腰
鋼希 木枝
一重 伊沢
秀明 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP02469998A priority Critical patent/JP3564992B2/en
Publication of JPH11225453A publication Critical patent/JPH11225453A/en
Application granted granted Critical
Publication of JP3564992B2 publication Critical patent/JP3564992B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固定子鉄心に巻装された巻線をリード線に対して電気的に接続するためのプリント配線基板を有し、固定子鉄心及び巻線を絶縁樹脂でモールドした樹脂モールド電動機の固定子鉄心と固定子の製造方法に関するものである。
【0002】
【従来の技術】
上記したこの種の樹脂モールド電動機は、例えば実開平6―77458号公報に示されているような構成となっている。即ち、図4に示すように固定子2Aは、同形同大の複数枚のリング状の鉄心3の積層により構成された固定子鉄心1Aと、この固定子鉄心1Aに巻装された巻線5と、この巻線5をリード線6に対して電気的に接続するための固定子鉄心1Aの積層方向に配設されたプリント配線基板7とを有し、これらの外周りがプリント配線基板7の半田付けする側の半田付け面8を残して絶縁樹脂9でモールドされている。この固定子2Aの中心線上には回転軸27が軸受28により回転可能に両持ち支持され、この回転軸27に回転ヨーク29が嵌合され、回転ヨーク29に一体化された回転子鉄心30が固定子鉄心1Aに空隙を保持して対向している。
【0003】
こうした構成の樹脂モールド電動機の固定子2Aに関する絶縁樹脂9によるモールドは、従来においては図5に示すような固定側金型11と可動側金型12に別れた樹脂モールド金型13を使って実施されてきた。樹脂モールド金型13の可動側金型12には、モールド前の組付体としての固定子(以降ワークとも称す)14Aをセットする基準面15が、一方の軸受保持部16を成形する突出部17の端面に設けられている。固定側金型11には他方の軸受保持部16を成形する突出部19と、プリント配線基板7の片面に当る保持面20とが設けられている。合わせ面21で型合わせされた樹脂モールド金型13内には、固定子2Aのモールド部分の外郭をなす成形空間22が形出される。
【0004】
モールド前の固定子14Aは、固定子鉄心1Aの両端に鉄心絶縁材23を覆せ、その上に巻線5を巻装し、一方の鉄心絶縁材23の端に植設されたピン24に巻線5の端末をからげ、プリント配線基板7を、その鉄心絶縁材23の端面に載せて半田付けされた形態である。このワーク14Aを可動側金型12の成形空間22に、可動側金型12の基準面15に固定子鉄心1Aの反プリント配線基板側の端面である対基準面18が当接するところまで挿入し、ワーク14Aとともに可動側金型12を固定側金型11側に移動させ、固定側金型11と可動側金型12とを合わせ面21で合わせた状態で、注入口25から絶縁樹脂を成形空間22に注入してワーク14Aにモールド処理を施す。冷却期間をおいて固定側金型11と可動側金型12を開いて取り出せば絶縁樹脂9でモールドされた固定子2Aが得られる。
【0005】
【発明が解決しようとする課題】
上記のような従来の樹脂モールド電動機の固定子2Aにおいては、プリント配線基板7の半田付け面8にまで絶縁樹脂9が回り込み、そこに付着してしまって半田付けに支障を来すことがしばしば起きるといった問題点があった。その原因は、樹脂モールド金型13の基準面15からプリント配線基板7に当る保持面20までの寸法が、ワーク14Aの対基準面18からプリント配線基板7の半田付け面8までの寸法より大きいことである。即ち、図5に示すようにプリント配線基板7の半田付け面8が、樹脂モールド金型13内で保持される距離Pは、基準面15から固定子鉄心1Aの積厚Lと、鉄心絶縁材23の高さAと、プリント配線基板7の厚さBの合計の距離(P=L+A+B)である。
【0006】
鉄心3一枚毎の厚さのばらつきは大きく、積層枚数が多いほど積厚Lの値のばらつきも大きくり、その変化の最大分を見込んで樹脂モールド金型13の寸法を決めているため、樹脂モールド金型13の寸法はワーク14Aの寸法より大半が大きくなってしまう。変化の最大分を見込んで樹脂モールド金型13の寸法を決めているわけは、樹脂モールド金型13の距離Pがワーク14Aの距離Pより短くなってしまうと、型合わせしたときプリント配線基板7に応力が加わり、プリント配線基板7が割れてしまうからである。
【0007】
本発明は上記した従来の問題点を解消するためになされたもので、その課題とするところは、積層枚数が多くなっても樹脂モールド金型の基準面からプリント配線基板までの距離のばらつきを小さくでき、プリント配線基板の割れや半田付けに支障を来すことを少なくすることができる樹脂モールド電動機の固定子鉄心を開発することであり、プリント配線基板の割れや半田付けに支障を来すことを少なくすることができる樹脂モールド電動機の固定子の製造方法を開発することである。
【0008】
【課題を解決するための手段】
前記課題を達成するために請求項1の発明は、外周に溝を有する複数枚のリング状の鉄心の積層により構成された固定子鉄心と、固定子鉄心に巻装された巻線と、巻線をリード線に対して電気的に接続するための固定子鉄心の積層方向に配設されたプリント配線基板とを有し、これらの外周りを、プリント配線基板のリード線を半田付けする側の面を残して絶縁樹脂でモールドする樹脂モールド電動機の固定子におけるモールド前の固定子鉄心に、樹脂モールド金型の型込め時の基準となる基準面に当接させる対基準面をプリント配線基板に近い側の鉄心によって構成する手段を採用する。
【0009】
前記課題を達成するために請求項2の発明は、請求項1に係る前記手段における鉄心のうちのプリント配線基板に近い側の数枚を除いての内径を大きく構成し、内径が変化する段差部により対基準面を構成する手段を採用する。
【0010】
前記課題を達成するために請求項3の発明は、請求項1に係る前記手段における鉄心のうちのプリント配線基板に近い側の数枚を除いての外径を小さく構成し、外径が変化する段差部により対基準面を構成する手段を採用する。
【0011】
前記課題を達成するために請求項4の発明は、外周に溝を有する複数枚のリング状の鉄心の積層により構成された固定子鉄心と、固定子鉄心に巻装された巻線と、巻線をリード線に対して電気的に接続するための固定子鉄心の積層方向に配設されたプリント配線基板とを有し、これらの外周りを、プリント配線基板のリード線を半田付けする側の面を残して絶縁樹脂でモールドした樹脂モールド電動機の固定子を製造するにあたり、絶縁樹脂でモールドする前の固定子鉄心に、樹脂モールド金型の型込め時の基準となる基準面に当接する対基準面をプリント配線基板に近い側の鉄心によって構成し、この対基準面とプリント配線基板の半田付けする面とが樹脂モールド金型の成形空間側の面に当るようにしておいて絶縁樹脂を成形空間に注入してモールドする手段を採用する。
【0012】
前記課題を達成するために請求項5の発明は、請求項4に係る前記手段における鉄心のうちのプリント配線基板に近い側の数枚を除いての内径を大きく構成し、内径が変化する段差部により対基準面を構成する手段を採用する。
【0013】
前記課題を達成するために請求項6の発明は、請求項4に係る前記手段における鉄心のうちのプリント配線基板に近い側の数枚を除いての外径を小さく構成し、外径が変化する段差部により対基準面を構成する手段を採用する。
【0014】
前記課題を達成するために請求項7の発明は、請求項4に係る前記手段における固定子鉄心の巻線の巻かれない位置に、鉄心のうちのプリント配線基板に近い側の数枚を除いて貫通する穴を設け、この穴の穴底により対基準面を構成する手段を採用する。
【0015】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
実施の形態1.
図1に示すこの実施の形態1は、樹脂モールド電動機の固定子鉄心1及び固定子2の製造方法に関するものである。この固定子2は、外周に溝(図示しない)を有する複数枚のリング状の鉄心3,4の積層により構成された固定子鉄心1と、この固定子鉄心1の溝を介して巻装された巻線5と、この巻線5をリード線6に対して電気的に接続するための固定子鉄心1の積層方向に配設されたプリント配線基板7とを有し、これらの外周りがプリント配線基板7の半田付けする側の半田付け面8を残して絶縁樹脂9でモールドされている。
【0016】
この固定子2の中心線上に図示しない回転軸が軸受により回転可能に両持ち支持され、この回転軸に回転ヨークが嵌合され、回転ヨークに一体化された回転子鉄心が固定子鉄心1に空隙を保持して対向して組付けられて樹脂モールド電動機が構成される。なお、リード線6は、巻線5に直接的、あるいはコンデンサ(図示しない)を介して間接的に電気的に接続され、プリント配線基板7の半田付け面8に半田付けされる。この固定子2は固定子鉄心1に特徴をもつものであり、固定子鉄心1を構成している鉄心3,4のうちのプリント配線基板7に近い側の数枚の鉄心4を除いてその内径が大きく構成され、内径が変化する段差部10が構成されている。
【0017】
こうした構成の樹脂モールド電動機の固定子2に関する絶縁樹脂9によるモールドは、図1に示すような固定側金型11と可動側金型12に別れた樹脂モールド金型13を使って行なわれ、固定子2が製造される。樹脂モールド金型13の可動側金型12には、モールド前の組付体としての固定子(以降ワークとも称す)14をセットする基準面15が、一方の軸受保持部16を成形する突出部17の端面に設けられている。基準面15はワーク14の型込め時には固定子鉄心1の段差部10で構成される対基準面18に図1に示すように当接する。固定側金型11には他方の軸受保持部16を成形する突出部19と、プリント配線基板7の半田付け面8に当る保持面20とが設けられている。合わせ面21で型合わせされた樹脂モールド金型13内には、固定子2のモールド部分の外郭をなす成形空間22(図上では絶縁樹脂9で充填されている)が形出される。
【0018】
モールド前の固定子14は、固定子鉄心1の両端に絶縁樹脂により形成された鉄心絶縁材23を覆せ、その上に巻線5を巻装し、一方の鉄心絶縁材23の端に植設されたピン24に巻線5の端末をからげ、プリント配線基板7を、その鉄心絶縁材23の端面に載せて半田付けされた形態である。このワーク14を可動側金型12の成形空間22に、可動側金型12の基準面15に固定子鉄心1の段差部10で構成された対基準面18が当接するところまで挿入し、ワーク14とともに可動側金型12を固定側金型11側に移動させ、固定側金型11と可動側金型12とを合わせ面21で合わせた状態で、注入口25から絶縁樹脂を成形空間22に注入してワーク14にモールド処理を施す。一定の冷却期間をおいて固定側金型11と可動側金型12を開いて取り出せば絶縁樹脂9でモールドされた固定子2を製造することができる。
【0019】
型締め状態でワーク14のプリント配線基板7の半田付け面8が、樹脂モールド金型13内で保持される距離Qは、基準面15から固定子鉄心1の内径の小さい鉄心4の積厚Mと、鉄心絶縁材23の高さAと、プリント配線基板7の厚さBの合計の距離(Q=M+A+B)である。鉄心3,4一枚毎の厚さのばらつきは大きく、積層枚数が多いほど全体の積厚の値のばらつきも大きくなるが、対基準面18が内径の小さい鉄心4の端面で構成されているため、内径の小さい鉄心4の積厚Mは従来に比べ格段に小さい値になり、距離Qも短くなる。従って、樹脂モールド金型13の基準面15に対基準面18を当ててワーク14をセットしたときの、基準面15からプリント配線基板7の半田付け面8までの距離Qのばらつきには、内径の大きい鉄心3の積厚のばらつきは含まれないことになる。つまり、数枚の内径の小さい鉄心4の積厚のばらつきしか、モールド処理時のプリント配線基板7の位置に影響を及ぼさないので、絶縁樹脂9がプリント配線基板7の半田付け面8にまで回り込み、そこに付着してしまうことも少なく、また、型合わせしたときプリント配線基板7に応力が加わり、プリント配線基板7が割れてしまうようなことも少ない。従って、樹脂モールド電動機の固定子2の生産性と品質を向上させることができる。
【0020】
ここで、内径の小さい鉄心4の枚数の選定は、モールド時にその鉄心4に加わる応力に耐えうるかぎりにおいて、できるだけ少ない枚数として決定するか、可動側金型12と固定側金型11を合わせた時、従来技術の項で示した距離Pのばらつきでできるプリント配線基板7の半田付け面8と固定側金型11の保持面20との間にできる隙間を、内径の小さい鉄心4を弾性変形させて吸収できる枚数として決定すればよい。
【0021】
実施の形態2.
図2に示すこの実施の形態2も実施の形態1と同様に樹脂モールド電動機の固定子鉄心及び固定子の製造方法に関するものであり、基本的構成は実施の形態1と同じである。従って、実施の形態1と同じ部分については実施の形態1と同一の符号を用い、それらについての説明は省略する。
【0022】
図2に示す実施の形態2の固定子2は、固定子鉄心1の鉄心3,4のうちのプリント配線基板7に近い側の鉄心4の数枚を除いての外径を小さく構成し、外径が変化する段差部10により固定子鉄心1の外周部に対基準面18を構成したものである。可動側金型12にもこれに対応する位置に基準面15が設けられる。このように外周部に対基準面18を構成することにより、対基準面18の面積を大きく採れ、しかも安定した基準を得ることができる。これ以外の構成及び製造の仕方は実施の形態1と同じであり、実施の形態1と同様の作用効果を得ることができる。なお、外径に制限がある場合には、その制限の範囲内で段差部10の形状を変化させれば良い。
【0023】
実施の形態3.
図3に示すこの実施の形態3も実施の形態1と同様に樹脂モールド電動機の固定子鉄心及び固定子の製造方法に関するものであり、基本的構成は実施の形態1と同じである。従って、実施の形態1と同じ部分については実施の形態1と同一の符号を用い、それらについての説明は省略する。
【0024】
図3に示す実施の形態3の固定子2は、固定子鉄心1の巻線5の巻かれない任意の位置に、鉄心3,4のうちのプリント配線基板7に近い側の鉄心4の数枚を除いて他の鉄心3を貫通する穴26を設け、この穴26の穴底により対基準面18を構成したものである。可動側金型12にもこれに対応する位置にこの穴26に突入し対基準面18に当接する基準面15が設けられる。このように固定子鉄心1の半径方向の肉厚内に対基準面18を構成することにより、固定子鉄心1の内外径の制限を受けずに安定した基準を作ることができる。これ以外の構成及び製造の仕方は実施の形態1と同じであり、実施の形態1と同様の作用効果を得ることができる。
【0025】
【発明の効果】
以上実施の形態での説明からも明らかなように、請求項1,請求項2,請求項3の各発明によれば、積層枚数が多くなっても樹脂モールド金型の基準面からプリント配線基板までの距離のばらつきを小さくでき、プリント配線基板の割れや半田付けに支障を来すことを少なくすることができる樹脂モールド電動機の固定子鉄心が得られる。
【0026】
請求項4,請求項5,請求項6,請求項7の各発明によれば、プリント配線基板の割れや半田付けに支障を来すことを少なくすることができる樹脂モールド電動機の固定子の生産性の良い製造方法が得られる。
【図面の簡単な説明】
【図1】実施の形態1を示すモールド処理時の固定子を樹脂モールド金型とともに示す断面図である。
【図2】実施の形態2を示すモールド処理時の固定子を樹脂モールド金型とともに示す断面図である。
【図3】実施の形態3を示すモールド処理時の固定子を樹脂モールド金型とともに示す断面図である。
【図4】従来の樹脂モールド電動機を示す断面図である。
【図5】従来の樹脂モールド電動機のモールド処理時の固定子を樹脂モールド金型とともに示す断面図である。
【符号の説明】
1 固定子鉄心、 2 固定子、 3 鉄心、 4 鉄心、 5 巻線、 6リード線、 7 プリント配線基板、 8 半田付け面、 9 絶縁樹脂、 10 段差部、 13 樹脂モールド金型、 15 基準面、 18 対基準面、 20 保持面、 22 成形空間、 26 穴。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a resin-molded electric motor having a printed wiring board for electrically connecting a winding wound around a stator core to a lead wire, and molding the stator core and the winding with an insulating resin. The present invention relates to a method for manufacturing a stator core and a stator.
[0002]
[Prior art]
The above-described resin-molded electric motor has a configuration as shown in, for example, Japanese Utility Model Laid-Open No. Hei 6-77458. That is, as shown in FIG. 4, the stator 2A includes a stator core 1A formed by laminating a plurality of ring-shaped cores 3 of the same shape and size, and a winding wound around the stator core 1A. 5 and a printed wiring board 7 arranged in the stacking direction of the stator core 1A for electrically connecting the winding 5 to the lead wire 6, and the outer periphery of the printed wiring board 7 is 7 is molded with an insulating resin 9 except for the soldering surface 8 on the soldering side. On the center line of the stator 2A, a rotating shaft 27 is rotatably supported by bearings 28. A rotating yoke 29 is fitted to the rotating shaft 27, and a rotor core 30 integrated with the rotating yoke 29 is provided. It is opposed to the stator core 1A while holding a gap.
[0003]
Conventionally, the molding of the stator 2A of the resin-molded electric motor with the insulating resin 9 for the stator 2A is performed using a resin mold 13 separated into a fixed mold 11 and a movable mold 12 as shown in FIG. It has been. The movable side mold 12 of the resin mold 13 has a reference surface 15 on which a stator (hereinafter also referred to as a workpiece) 14A as an assembly before molding is formed. 17 are provided on the end face. The fixed-side mold 11 is provided with a projection 19 for forming the other bearing holding portion 16 and a holding surface 20 which is on one side of the printed wiring board 7. A molding space 22 that forms the outer periphery of the mold portion of the stator 2A is formed in the resin mold 13 that has been molded on the mating surface 21.
[0004]
Before molding, the stator 14A has the stator core 1A covered at both ends with a core insulating material 23, the winding 5 is wound thereon, and the stator 14A is wound around a pin 24 implanted at one end of the core insulating material 23. In this embodiment, the terminal of the wire 5 is tied, and the printed wiring board 7 is placed on the end face of the core insulating material 23 and soldered. The work 14A is inserted into the molding space 22 of the movable mold 12 until the reference surface 18 of the stator core 1A on the side opposite to the printed wiring board contacts the reference surface 15 of the movable mold 12. Then, the movable mold 12 is moved to the fixed mold 11 together with the work 14A, and the insulating resin is molded from the injection port 25 in a state where the fixed mold 11 and the movable mold 12 are fitted on the mating surface 21. The work 14A is injected into the space 22 and subjected to a molding process. When the fixed mold 11 and the movable mold 12 are opened and taken out after a cooling period, the stator 2A molded with the insulating resin 9 is obtained.
[0005]
[Problems to be solved by the invention]
In the conventional stator 2A of the resin-molded electric motor as described above, the insulating resin 9 often reaches the soldering surface 8 of the printed wiring board 7 and adheres there, which often hinders soldering. There was a problem of getting up. The reason is that the dimension from the reference surface 15 of the resin mold 13 to the holding surface 20 that hits the printed wiring board 7 is larger than the dimension from the reference surface 18 of the work 14A to the soldering surface 8 of the printed wiring board 7. That is. That is, as shown in FIG. 5, the distance P at which the soldering surface 8 of the printed wiring board 7 is held in the resin mold 13 is equal to the thickness L of the stator core 1A from the reference surface 15 and the core insulating material. 23 is the total distance (P = L + A + B) of the height A of 23 and the thickness B of the printed wiring board 7.
[0006]
The variation in the thickness of each iron core 3 is large, and the greater the number of laminations, the greater the variation in the value of the stack thickness L, and the size of the resin mold 13 is determined in anticipation of the maximum change. Most of the dimensions of the resin mold 13 are larger than the dimensions of the work 14A. The reason for determining the dimensions of the resin mold 13 in consideration of the maximum amount of change is that if the distance P of the resin mold 13 becomes shorter than the distance P of the work 14A, the printed wiring board 7 will Is applied, and the printed wiring board 7 is broken.
[0007]
The present invention has been made in order to solve the above-mentioned conventional problems, and an object of the present invention is to reduce the variation in the distance from the reference surface of the resin mold to the printed wiring board even when the number of laminations increases. The development of a stator core for a resin-molded electric motor that can be made smaller and less likely to cause cracks in the printed wiring board and hinder soldering. It is an object of the present invention to develop a method of manufacturing a stator for a resin-molded electric motor, which can reduce the above-mentioned problems.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 includes a stator core configured by laminating a plurality of ring-shaped cores each having a groove on an outer periphery, a winding wound around the stator core, and a winding. And a printed wiring board disposed in the stacking direction of the stator core for electrically connecting the wires to the lead wires. A resin-molded motor that is molded with insulating resin while leaving the surface of the printed circuit board The reference surface that makes contact with the stator core before molding on the stator core before molding in the stator of the electric motor A means constituted by an iron core on the side closer to is adopted.
[0009]
In order to achieve the above object, a second aspect of the present invention is the above-described means, wherein the inner diameter of the iron core except for a few of the iron cores on the side close to the printed circuit board is increased, and the step in which the inner diameter changes A means for forming a reference plane by means of a section is adopted.
[0010]
In order to achieve the above object, a third aspect of the present invention is to reduce the outer diameter of the core according to the first aspect except for a few of the iron cores on the side close to the printed circuit board, and the outer diameter varies. A means for forming a reference surface with a stepped portion is adopted.
[0011]
In order to achieve the above object, an invention according to claim 4 includes a stator core configured by laminating a plurality of ring-shaped cores each having a groove on an outer periphery, a winding wound around the stator core, and a winding. And a printed wiring board disposed in the stacking direction of the stator core for electrically connecting the wires to the lead wires. When manufacturing the stator of a resin-molded electric motor molded with insulating resin while leaving the surface of the resin, the stator core before molding with insulating resin is brought into contact with the reference surface, which is the reference when inserting the resin mold. The reference surface is constituted by the iron core on the side close to the printed wiring board, and the insulating resin is set such that the reference surface and the surface to be soldered of the printed wiring board are in contact with the surface on the molding space side of the resin mold. Into the molding space To adopt a means of molding Te.
[0012]
In order to achieve the above object, the invention according to claim 5 is characterized in that, in the means according to claim 4, the inner diameter of the iron core except for a few on the side close to the printed circuit board is increased, and the step in which the inner diameter changes is formed. A means for forming a reference plane by means of a section is adopted.
[0013]
In order to achieve the above object, the invention according to claim 6 is characterized in that the outer diameter of the iron core in the means according to claim 4 is reduced except for a few of the iron cores on the side close to the printed circuit board, and the outer diameter varies. A means for forming a reference surface with a stepped portion is adopted.
[0014]
In order to achieve the above object, the invention according to claim 7 is based on the means according to claim 4, except that a few of the iron cores on the side close to the printed wiring board are located at positions where the windings of the stator core are not wound. And a means for forming a reference surface with the bottom of the hole.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
Embodiment 1 shown in FIG. 1 relates to a method for manufacturing a stator core 1 and a stator 2 of a resin mold electric motor. The stator 2 is wound around a stator core 1 formed by laminating a plurality of ring-shaped cores 3 and 4 having a groove (not shown) on the outer periphery, and a groove of the stator core 1. And a printed wiring board 7 arranged in the stacking direction of the stator core 1 for electrically connecting the winding 5 to the lead wire 6. The printed wiring board 7 is molded with the insulating resin 9 except for the soldering surface 8 on the side to be soldered.
[0016]
A rotating shaft (not shown) is rotatably supported by bearings on the center line of the stator 2, a rotating yoke is fitted to the rotating shaft, and a rotor core integrated with the rotating yoke is attached to the stator core 1. The resin-molded electric motor is configured to be opposed to each other while maintaining the air gap. The lead wire 6 is electrically connected directly to the winding 5 or indirectly via a capacitor (not shown), and is soldered to the soldering surface 8 of the printed wiring board 7. The stator 2 has a feature in the stator core 1 except for a few cores 4 on the side close to the printed circuit board 7 among the cores 3 and 4 constituting the stator core 1. An inner diameter is configured to be large, and a step portion 10 whose inner diameter changes is configured.
[0017]
Molding of the stator 2 of the resin-molded electric motor having such a configuration with the insulating resin 9 is performed by using a resin mold 13 separated into a fixed mold 11 and a movable mold 12 as shown in FIG. The child 2 is manufactured. On the movable mold 12 of the resin mold 13, a reference surface 15 on which a stator (hereinafter also referred to as a work) 14 as an assembly before molding is provided, and a projecting portion for molding one bearing holding portion 16. 17 are provided on the end face. As shown in FIG. 1, the reference surface 15 comes into contact with a reference surface 18 formed by the step portion 10 of the stator core 1 when the work 14 is molded. The fixed-side mold 11 is provided with a projection 19 for forming the other bearing holding portion 16 and a holding surface 20 that contacts the soldering surface 8 of the printed wiring board 7. A molding space 22 (filled with the insulating resin 9 in the figure) is formed in the resin mold 13 that has been molded on the mating surface 21 and forms an outer contour of the mold portion of the stator 2.
[0018]
In the stator 14 before molding, both ends of the stator core 1 are covered with an iron core insulating material 23 formed of an insulating resin, the winding 5 is wound thereon, and implanted at one end of the one core insulating material 23. In this embodiment, the terminal of the winding 5 is wound around the pin 24, and the printed wiring board 7 is placed on the end surface of the core insulating material 23 and soldered. The workpiece 14 is inserted into the molding space 22 of the movable die 12 until the reference surface 18 formed by the step 10 of the stator core 1 abuts the reference surface 15 of the movable die 12, The movable mold 12 is moved together with the movable mold 12 to the fixed mold 11, and in a state where the fixed mold 11 and the movable mold 12 are joined together at the mating surface 21, the insulating resin is injected from the injection port 25 into the molding space 22. To mold the work 14. If the fixed mold 11 and the movable mold 12 are opened and taken out after a certain cooling period, the stator 2 molded with the insulating resin 9 can be manufactured.
[0019]
The distance Q at which the soldering surface 8 of the printed wiring board 7 of the work 14 is held in the resin mold 13 in the mold-clamped state is the thickness M of the iron core 4 having a small inner diameter of the stator core 1 from the reference surface 15. And the total distance (Q = M + A + B) of the height A of the core insulating material 23 and the thickness B of the printed wiring board 7. The variation in the thickness of each of the cores 3 and 4 is large, and the greater the number of stacked layers, the greater the variation in the overall thickness value. Therefore, the thickness M of the iron core 4 having a small inner diameter becomes much smaller than the conventional one, and the distance Q becomes shorter. Accordingly, when the workpiece 14 is set with the reference surface 18 facing the reference surface 15 of the resin mold 13, the variation in the distance Q from the reference surface 15 to the soldering surface 8 of the printed wiring board 7 includes the inner diameter. Does not include the variation in the thickness of the iron core 3 having a large value. In other words, only the variation of the stack thickness of the iron cores 4 having a small inner diameter affects the position of the printed wiring board 7 at the time of molding, so that the insulating resin 9 reaches the soldering surface 8 of the printed wiring board 7. Also, the printed wiring board 7 is less likely to be adhered to the printed wiring board 7 and the printed wiring board 7 is less likely to be broken when the mold is matched. Therefore, the productivity and quality of the stator 2 of the resin mold electric motor can be improved.
[0020]
Here, the number of the iron cores 4 having a small inner diameter is selected as small as possible as long as the stress applied to the iron cores 4 at the time of molding can be determined, or the movable mold 12 and the fixed mold 11 are combined. At the time, the gap between the soldering surface 8 of the printed wiring board 7 and the holding surface 20 of the fixed mold 11 formed by the variation of the distance P shown in the section of the prior art is used to elastically deform the iron core 4 having a small inner diameter. What is necessary is just to determine as the number which can be absorbed.
[0021]
Embodiment 2 FIG.
The second embodiment shown in FIG. 2 also relates to a method of manufacturing a stator core and a stator of a resin-molded electric motor similarly to the first embodiment, and has the same basic configuration as the first embodiment. Therefore, the same reference numerals are used for the same parts as in the first embodiment, and the description thereof is omitted.
[0022]
The stator 2 of the second embodiment shown in FIG. 2 has a small outer diameter except for some of the cores 3, 4 of the stator core 1 on the side closer to the printed wiring board 7, The reference surface 18 is formed on the outer peripheral portion of the stator core 1 by the step portion 10 whose outer diameter changes. A reference surface 15 is also provided at a position corresponding to the movable mold 12. By forming the reference surface 18 on the outer peripheral portion in this way, the area of the reference surface 18 can be made large and a stable reference can be obtained. Other configurations and manufacturing methods are the same as those of the first embodiment, and the same operation and effects as those of the first embodiment can be obtained. When there is a limit on the outer diameter, the shape of the step portion 10 may be changed within the limit.
[0023]
Embodiment 3 FIG.
Embodiment 3 shown in FIG. 3 also relates to a method of manufacturing a stator core and a stator of a resin-molded electric motor, similarly to Embodiment 1, and has the same basic configuration as Embodiment 1. Therefore, the same reference numerals are used for the same parts as in the first embodiment, and the description thereof is omitted.
[0024]
The stator 2 according to the third embodiment shown in FIG. 3 includes, at an arbitrary position where the winding 5 of the stator core 1 is not wound, the number of the cores 4 on the side closer to the printed circuit board 7 among the cores 3 and 4. Except for a single piece, a hole 26 penetrating the other iron core 3 is provided, and the bottom of the hole 26 forms the reference surface 18. The movable side mold 12 is also provided with a reference surface 15 which protrudes into the hole 26 and abuts against the reference surface 18 at a position corresponding thereto. By forming the reference surface 18 within the radial thickness of the stator core 1 in this manner, a stable reference can be created without being restricted by the inner and outer diameters of the stator core 1. Other configurations and manufacturing methods are the same as those of the first embodiment, and the same operation and effects as those of the first embodiment can be obtained.
[0025]
【The invention's effect】
As is apparent from the above description of the embodiment, according to the first, second and third aspects of the present invention, even when the number of stacked layers increases, the printed wiring board is not moved from the reference surface of the resin mold. Thus, it is possible to obtain a stator core of a resin-molded electric motor, which can reduce the variation in the distance to the printed wiring board and reduce the risk of breaking the printed wiring board and hindering the soldering.
[0026]
According to each of the fourth, fifth, sixth, and seventh aspects of the present invention, it is possible to produce a stator for a resin-molded electric motor, which can reduce breakage of a printed wiring board and hindrance to soldering. A good production method can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a stator during a molding process and a resin mold according to a first embodiment.
FIG. 2 is a cross-sectional view showing a stator during a molding process and a resin mold according to a second embodiment.
FIG. 3 is a cross-sectional view showing a stator during a molding process and a resin mold according to a third embodiment.
FIG. 4 is a sectional view showing a conventional resin mold electric motor.
FIG. 5 is a cross-sectional view showing a stator during a molding process of a conventional resin-molded electric motor together with a resin-molding mold.
[Explanation of symbols]
1 stator core, 2 stator, 3 core, 4 iron core, 5 winding, 6 lead wire, 7 printed wiring board, 8 soldering surface, 9 insulating resin, 10 stepped portion, 13 resin mold, 15 reference surface , 18 reference surface, 20 holding surface, 22 molding space, 26 holes.

Claims (7)

外周に溝を有する複数枚のリング状の鉄心の積層により構成された固定子鉄心と、この固定子鉄心に巻装された巻線と、この巻線をリード線に対して電気的に接続するための前記固定子鉄心の積層方向に配設されたプリント配線基板とを有し、これらの外周りを、前記プリント配線基板の前記リード線を半田付けする側の面を残して絶縁樹脂でモールドする樹脂モールド電動機の固定子におけるモールド前の前記固定子鉄心に、樹脂モールド金型の型込め時の基準となる基準面に当接する対基準面を前記プリント配線基板に近い側の鉄心によって構成したことを特徴とする樹脂モールド電動機の固定子鉄心。A stator core configured by laminating a plurality of ring-shaped cores having grooves on the outer periphery, a winding wound on the stator core, and electrically connecting the winding to a lead wire. And a printed wiring board arranged in the stacking direction of the stator core, and molding the outer periphery of the printed circuit board with an insulating resin except for a surface of the printed wiring board to which the lead wires are to be soldered. The stator core before molding in the stator of the resin-molded electric motor to be formed has a reference surface that is in contact with a reference surface serving as a reference when the resin mold is inserted by the core near the printed wiring board. A stator core for a resin-molded electric motor. 請求項1に記載の樹脂モールド電動機の固定子鉄心であって、鉄心のうちのプリント配線基板に近い側の数枚を除いての内径を大きく構成し、内径が変化する段差部により対基準面を構成したことを特徴とする樹脂モールド電動機の固定子鉄心。The stator core of the resin-molded electric motor according to claim 1, wherein the inner diameter of the core except for a few of the iron cores on the side closer to the printed wiring board is configured to be large, and the reference surface is formed by a step portion whose inner diameter changes. A stator core of a resin-molded electric motor, characterized in that: 請求項1に記載の樹脂モールド電動機の固定子鉄心であって、鉄心のうちのプリント配線基板に近い側の数枚を除いての外径を小さく構成し、外径が変化する段差部により対基準面を構成したことを特徴とする樹脂モールド電動機の固定子鉄心。The stator core of the resin-molded electric motor according to claim 1, wherein an outer diameter of the iron core is reduced except for a few of the iron cores on a side close to a printed wiring board, and the outer diameter is changed by a stepped portion. A stator core for a resin-molded electric motor, characterized by comprising a reference surface. 外周に溝を有する複数枚のリング状の鉄心の積層により構成された固定子鉄心と、この固定子鉄心に巻装された巻線と、この巻線をリード線に対して電気的に接続するための前記固定子鉄心の積層方向に配設されたプリント配線基板とを有し、これらの外周りを、前記プリント配線基板の前記リード線を半田付けする側の面を残して絶縁樹脂でモールドした樹脂モールド電動機の固定子を製造するにあたり、絶縁樹脂でモールドする前の前記固定子鉄心に、樹脂モールド金型の型込め時の基準となる基準面に当接する対基準面を前記プリント配線基板に近い側の鉄心によって構成し、この対基準面と前記プリント配線基板の半田付けする面とが前記樹脂モールド金型の成形空間側の面に当るようにしておいて前記絶縁樹脂を成形空間に注入してモールドすることを特徴とする樹脂モールド電動機の固定子の製造方法。A stator core configured by laminating a plurality of ring-shaped cores having grooves on the outer periphery, a winding wound on the stator core, and electrically connecting the winding to a lead wire. And a printed wiring board arranged in the stacking direction of the stator core, and molding the outer periphery of the printed circuit board with an insulating resin except for a surface of the printed wiring board to which the lead wires are to be soldered. In manufacturing the stator of the resin-molded electric motor, the stator core before being molded with the insulating resin is provided with a reference surface that is in contact with a reference surface serving as a reference when a resin mold is inserted into the printed wiring board. And the surface to be soldered of the printed wiring board is brought into contact with the surface on the molding space side of the resin mold so that the insulating resin is formed in the molding space. Inject Method for manufacturing a stator of the resin mold motor, characterized in that the mold. 請求項4に記載の樹脂モールド電動機の固定子の製造方法であって、鉄心のうちのプリント配線基板に近い側の数枚を除いての内径を大きく構成し、内径が変化する段差部により対基準面を構成することを特徴とする樹脂モールド電動機の固定子の製造方法。5. The method of manufacturing a stator for a resin-molded electric motor according to claim 4, wherein the inner diameter of the iron core is increased except for a few of the iron cores on the side closer to the printed wiring board, and the stepped portion having a changed inner diameter is formed. A method for manufacturing a stator of a resin-molded electric motor, comprising a reference plane. 請求項4に記載の樹脂モールド電動機の固定子の製造方法であって、鉄心のうちのプリント配線基板に近い側の数枚を除いての外径を小さく構成し、外径が変化する段差部により対基準面を構成することを特徴とする樹脂モールド電動機の固定子の製造方法。5. The method for manufacturing a stator of a resin-molded electric motor according to claim 4, wherein the outer diameter of the iron core is reduced except for a few of the iron cores on the side closer to the printed wiring board, and the stepped portion in which the outer diameter changes is provided. A method for manufacturing a stator of a resin-molded electric motor, comprising: 請求項4に記載の樹脂モールド電動機の固定子の製造方法であって、固定子鉄心の巻線の巻かれない位置に、鉄心のうちのプリント配線基板に近い側の数枚を除いて貫通する穴を設け、この穴の穴底により対基準面を構成することを特徴とする樹脂モールド電動機の固定子の製造方法。The method for manufacturing a stator of a resin-molded electric motor according to claim 4, wherein the stator core is penetrated to a position where the winding of the stator core is not wound, except for some of the cores on the side close to the printed circuit board. A method for manufacturing a stator of a resin-molded electric motor, wherein a hole is provided, and a bottom surface of the hole forms a reference surface.
JP02469998A 1998-02-05 1998-02-05 Stator core of resin mold motor and method of manufacturing stator Expired - Fee Related JP3564992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02469998A JP3564992B2 (en) 1998-02-05 1998-02-05 Stator core of resin mold motor and method of manufacturing stator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02469998A JP3564992B2 (en) 1998-02-05 1998-02-05 Stator core of resin mold motor and method of manufacturing stator

Publications (2)

Publication Number Publication Date
JPH11225453A JPH11225453A (en) 1999-08-17
JP3564992B2 true JP3564992B2 (en) 2004-09-15

Family

ID=12145433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02469998A Expired - Fee Related JP3564992B2 (en) 1998-02-05 1998-02-05 Stator core of resin mold motor and method of manufacturing stator

Country Status (1)

Country Link
JP (1) JP3564992B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5434962B2 (en) * 2011-05-27 2014-03-05 株式会社安川電機 Rotating electric machine, method for manufacturing rotating electric machine, and apparatus provided with rotating electric machine
US10476358B2 (en) * 2017-01-13 2019-11-12 General Electric Company Methods for manufacturing an electric machine
US10523096B2 (en) * 2017-01-13 2019-12-31 Ge Aviation Systems Llc Method for manufacturing a stator assembly of an electrical machine
US11177708B2 (en) 2017-01-13 2021-11-16 Ge Aviation Systems Llc Method for manufacturing an integrated stator and housing for an electrical machine
JP6835174B1 (en) * 2019-09-25 2021-02-24 株式会社明電舎 Stator and rotating machine

Also Published As

Publication number Publication date
JPH11225453A (en) 1999-08-17

Similar Documents

Publication Publication Date Title
JP3497276B2 (en) Inductance element and manufacturing method thereof
US20080179975A1 (en) Resolver and motor
US11502575B2 (en) Motor and air-conditioning apparatus
US20040021375A1 (en) Stepping motor and manufacturing method therefor
JP3564992B2 (en) Stator core of resin mold motor and method of manufacturing stator
JP3637763B2 (en) RESIN MOLD CIRCUIT BOARD AND ITS MANUFACTURING METHOD, AND ELECTRIC DEVICE HAVING RESIN MOLDED CIRCUIT BOARD AND ITS MANUFACTURING METHOD
JPH10126981A (en) Molded motor
JP3575997B2 (en) Method of manufacturing resin mold stator for brushless motor
JPH07288941A (en) Electric motor
JPH0879999A (en) Molded motor
JPH0797894B2 (en) Molded motor
JP2802161B2 (en) Stator of resin mold motor
JPH05207711A (en) Molded motor
CN219107165U (en) Motor and electronic equipment with motor
JPH0612937B2 (en) Electric motor
JPH0423500B2 (en)
JP2634001B2 (en) Thin coil
JPS63299747A (en) Motor
JPS6052565B2 (en) Manufacturing method of coil mold body
JPH04185253A (en) Stator of resin mold motor
JPS63299733A (en) Capacitor motor
JPS63299740A (en) Motor
JP2004112866A (en) Motor for washing machine or the like
JPH02174529A (en) Small motor
JPS63299736A (en) Motor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040531

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040720

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20041012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees