JP3564693B2 - Perovskite-type composite oxide, method for producing the same, and solid oxide electrolyte fuel cell using the same - Google Patents

Perovskite-type composite oxide, method for producing the same, and solid oxide electrolyte fuel cell using the same Download PDF

Info

Publication number
JP3564693B2
JP3564693B2 JP06393198A JP6393198A JP3564693B2 JP 3564693 B2 JP3564693 B2 JP 3564693B2 JP 06393198 A JP06393198 A JP 06393198A JP 6393198 A JP6393198 A JP 6393198A JP 3564693 B2 JP3564693 B2 JP 3564693B2
Authority
JP
Japan
Prior art keywords
electrode
perovskite
composite oxide
type composite
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06393198A
Other languages
Japanese (ja)
Other versions
JPH11246220A (en
Inventor
義行 江渡
浩昭 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP06393198A priority Critical patent/JP3564693B2/en
Publication of JPH11246220A publication Critical patent/JPH11246220A/en
Application granted granted Critical
Publication of JP3564693B2 publication Critical patent/JP3564693B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、酸化物混合イオン伝導材として挙動する新規なペロブスカイト型複合酸化物及びその製造方法に係り、更に詳細には、炭酸水素系液体燃料又は天然ガス等を用いて発電する固体電解質型燃料電池において、ジルコニアやセリア等の固体電解質に対する空気極材料として用いることができ、しかも触媒作用を有するペロブスカイト型複合酸化物及びその製造方法、これを用いた電極触媒、電極及び燃料電池などに関する。
【0002】
【従来の技術】
従来から、炭化水素系液体燃料又は天然ガス等を用いて発電する固体電解質型燃料電池の空気極材料としては、白金、ロジウム及びパラジウム等の貴金属が用いられているが、コストが高く、また、使用環境によっては特性劣化が生じていた。特に、固体電解質型燃料電池の空気極触媒としても用いられる場合には、1000℃付近の温度で使用されることが想定されることから、耐久性の面からも、耐熱性に優れた空気極材料が望まれており、このため、耐熱性に優れ、空気極特性と高い混合イオン伝導性とを有するペロブスカイト型複合酸化物を空気極材料として用いる検討がなされている。
【0003】
かかる状況において、最近、高活性なペロブスカイト型複合酸化物として、LaCoO、LaMnO、LaSr0.8Mn0.2、LaGaO等が、物質工学工業技術研究所や東京大学工学系、電力中央研究所等から報告されている(電気化学会 秋期大会 講演予稿集97−東京)。また、特開平5−139750号公報には、日本電信電話株式会社から、AXOで表される酸化物超イオン伝導材料(代表例はBaScZrO)が提案されている。
【0004】
【発明が解決しようとする課題】
しかしながら、これら高活性なペロブスカイト型複合酸化物を用いても、イオン伝導が発現する温度域は未だ800℃以上であり、高温度領域や還元雰囲気下で長時間使用すると、かかる高活性な材料の場合ほどジルコニア系やセリア系固体電解質とペロブスカイト型複合酸化物とが反応してしまい、固体電解質/ペロブスカイト型複合酸化物界面の抵抗が増加したり、一部欠落等による構造欠陥が発生し、この結果、燃料電池の発電効率が低下する等の課題があった。
【0005】
また、ペロブスカイト型複合酸化物を燃料電池の空気極材料として用いる場合には、特にその触媒作用と電気伝導性を利用することになるが、この際、酸素イオン伝導体、即ち固体電解質と空気極材料との間における界面抵抗を減少させ、且つ密着性を確保しつつ、固体電解質/空気極材料界面での化学反応や熱応力による剥離等を抑制することが必要とされる。
【0006】
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、固体電解質との界面での固相反応を抑制し、良好な触媒作用を保持したまま耐熱性や耐久性を改善し、低温域での発電を実現できるペロブスカイト型複合酸化物、その製造方法並びにこれを用いた固体酸化物電解質型燃料電池及びその電極などを提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意研究した結果、Mgをドープするなど特定の金属元素を用いて一般式ABCOで表されるペロブスカイト型複合酸化物を構成したところ、イオン伝導性を向上するAサイトの格子欠陥と、触媒作用を担うBサイト原子の原子価とが有効に制御され、イオン伝導性を低温域で発現するペロブスカイト型複合酸化物が得られ、上記課題が解決されることを見出し、本発明を完成するに至った。
【0008】
即ち、本発明のペロブスカイト型複合酸化物は、次の一般式(1)
A’1−xA”B’1−yB”CO・・・(1)
(式中のA’はランタノイド元素、A”はA’以外のランタノイド元素、B’はアルミニウム族元素、B”は白金族元素、Cはアルカリ土類金属元素を示し、xは0<x<1、yは0<y<1を満足する数を示す。)で表されることを特徴とする。
【0009】
また、本発明の電極材料は、固体酸化物電解質型燃料電池の電極に用いられる電極材料であって、上述の如きペロブスカイト型複合酸化物を含有して成ることを特徴とする。
更に、本発明の電極触媒は、固体酸化物電解質型燃料電池の電極に用いられる電極触媒であって、上述の如きペロブスカイト型複合酸化物を含有して成ることを特徴とする。
【0010】
更にまた、本発明の燃料電池用電極は、固体酸化物電解質型燃料電池に用いられる電極であって、上記電極触媒を担持して成ることを特徴とする。
また、本発明の固体酸化物電解質型燃料電池は、上記電極材料を含有して成る空気極を備えること特徴とする。
【0011】
更に、本発明のペロブスカイト複合酸化物の製造方法は、上述の如きペロブスカイト型複合酸化物を製造するに当たり、
上記(1)式で表されるペロブスカイト型複合酸化物を構成する各種金属元素の硝酸塩又は炭酸塩に水熱反応を行ってモノオキシ炭酸塩を得、
得られたモノオキシ炭酸塩を空気中で焼成することを特徴とする。
【0012】
更にまた、本発明の燃料電池用電極の製造方法は、上記電極材料を含有して成る固体酸化物電解質型燃料電池用の電極を製造するに当たり、
上記電極材料を空気中で仮焼成し、得られた仮焼結粉を固体電解質基板に塗布し、次いで、空気中で焼成することを特徴とする。
【0013】
【作用】
本発明では、一般式ABCOで表されるペロブスカイト型複合酸化物において、AサイトにA’とA”の2種の所定元素を、BサイトにB’とB”の2種の所定元素を、更にCサイトに焼結助材として機能するMgを配した。
これにより、イオン伝導性を向上するAサイトの格子欠陥と、触媒作用を有し空気極に重要な貢献をするBサイト元素、特にPtとPdの原子価とが有効に制御されて電子−イオン混合伝導体の間の伝導特性が高められ、空気極特性が向上する。また、上記ペロブスカイト型複合酸化物とこれに接している固体電解質との固相反応が抑制されるので、空気極として挙動し得る本複合酸化物の耐久性や耐熱性が改善され、当該燃料電池の低温作動が可能となる。
【0014】
即ち、本発明では、イオン伝導材として挙動する上記ペロブスカイト型複合酸化物のAサイトにおける各金属のモル比率を変化させることにより、Bサイト金属元素の原子価が有効に制御され、その結果、電子状態の制御が行われる。
また、Aサイトに格子欠陥を持つペロブスカイト構造を構成することで、酸素の放出吸収能を向上させた結果、固体電解質/空気極(触媒)界面の内部抵抗が減少し、作動温度の低温化が図れる。
更に、ペロブスカイト型複合酸化物自体のシンタリング抑制効果により、耐久性及び耐熱性を改善できる。
【0015】
また、上記格子欠陥を導入した結果、一般に酸素移動に重要な収着酸素を増加させることができる。
かかる収着酸素には、(a)800℃以下の幅広い温度域で脱離し、Aサイトイオンの部分置換によって生じる酸素空孔に収着している酸素(α−酸素)と、(b)820℃付近で鋭いピーク状に脱離し、Bサイト元素の低原子価への還元に対応する酸素(β−酸素)の2種があり、この2種の酸素の存在により、結晶構造中に存在するPtとPdの安定化が図られるため、幅広い温度域において酸素の移動性が向上する。
【0016】
また、本発明のペロブスカイト型複合酸化物とアルミナ又はシリカゾルとを混合粉砕してスラリーとした後、固体電解質基板上に塗布し、焼結すれば、かかる構造中に存在する焼結助材であるMgとの相乗効果により、固体電解質基板に対して強力な密着性を持ち、燃料電池の起動停止によるヒートサイクルに対し、安定した性能を発揮し、電極触媒作用をも有する燃料電池用の空気極を得ることができる。
【0017】
【発明の実施の形態】
以下、本発明のペロブスカイト型複合酸化物について詳細に説明する。
上述の如く、本発明のペロブスカイト型複合酸化物は、酸化物複合イオン伝導材として機能し、具体的には、固体酸化物電解質型燃料電池における電極触媒及び電極材料として兼用可能であるが、特にかかる燃料電池の空気極を形成するのに好適である。
【0018】
本発明のペロブスカイト型複合酸化物は、次の一般式(1)
A’1−xA”B’1−yB”CO・・・(1)
(式中のA’はランタノイド元素、A”はA’以外のランタノイド元素、B’はアルミニウム族元素、B”は白金族元素、Cはアルカリ土類金属元素を示し、xは0<x<1、yは0<y<1を満足する数を示す。)で表される。
具体的には、A’としてはLa、A”としてはGd及び/又はDy、B’としてはAl、B”としてはPt及び/又はPd、CとしてはMgが好ましい。
また、(1)式において、xは0<x≦0.5、yは0<y≦0.2を満足する数であることが好ましく、xが0.5を超えると、また、yが0.2を超えても、効果の向上は期待できず、好ましくない。
【0019】
次に、本発明のペロブスカイト型複合酸化物の製造方法について説明する。
この複合酸化物は、上記(1)式に示された各種金属の硝酸塩又は炭酸塩を所定の化学量論比で混合し、出発塩として硝酸塩を用いた場合は、炭酸水素アンモニウム溶液中に添加し、一旦炭酸塩とした後、加熱水蒸気中で水熱反応によりモノオキシ炭酸塩を合成し、出発塩が炭酸塩の場合には、純水中に分散後、加熱水蒸気中で水熱反応によりモノオキシ炭酸塩を合成し、しかる後、得られたモノオキシ炭酸塩を空気中で焼成して得られる。
従って、(1)式に示されている各種構成金属元素、即ちLa、Gd、Dy、Pt及びPd等は、これらの硝酸塩又は炭酸塩由来のものであるといい得る。
【0020】
以下、上述の製造方法の代表例につき説明すると、まず、硝酸La、硝酸Gd又は硝酸Dy、硝酸Al及び硝酸Mgの混合溶液に、純水で約倍量に希釈したジニトロジアミノ白金、硝酸Pd又はジニトロジアミノPd溶液を添加し、十分に攪拌混合する。次いで、この混合溶液を、オートクレーブ中で予め純水に溶解、攪拌しておいた炭酸水素アンモニウムに添加する。全量を添加した後、オートクレーブ中に約110〜120℃、蒸気圧3kg/cmの水蒸気を密閉状態で導入する。
オートクレーブ内圧が1.1〜1.2kg/cm程度に達したところで水蒸気の導入量を調整し、2〜3時間反応を継続させる。水蒸気導入の必要がなくなってから約0.4〜0.5時間後に反応を終了する。そして、反応終了後、濾過、洗浄及び乾燥を行った後、空気中約500〜600℃で3〜5時間焼成して本発明のペロブスカイト型複合酸化物を得る。
【0021】
次に、本発明の電極触媒、電極材料及び燃料電池用空気極について説明する。上述の如く、本発明の電極触媒及び電極材料は、上記一般式(1)式に示したペロブスカイト型複合酸化物を含有する。
また、本発明の空気極は、本発明の電極触媒を本発明の電極材料若しくは他の電極材料に担持するか、又は本発明の電極材料のみを用いるか若しくは他の材料と混合して用いることにより、形成することができる。
【0022】
ここで、上記電極触媒、電極材料及び空気極は、ジルコニアやセリア、好ましくはイットリウム部分安定化ジツコニア等の固体電解質を用いる高温固体電解質型燃料電池において、かかる固体電解質に接した状態で使用される。
なお、本発明のペロブスカイト型複合酸化物を電極触媒として用いる場合、本発明の電極材料以外の他の電極材料の具体例としては、ジルコニアやチタニアを挙げることができる。
【0023】
また、本発明の空気極は、固体電解質基板に上記ペロブスカイト複合酸化物を塗布した後、空気中で焼成することにより作成できる。
この際、上記ペロブスカイト複合酸化物を単独で用いてもよいが、アルミナ又はシリカゾルと混合してもよく、かかる混合使用により、焼結助材成分たるMgとアルミナ等との相乗効果が得られ、固体電解質基板に対して強力な密着性をもって被覆できるようになり、より安定した作動を実現する燃料電池を得ることが可能になる。
【0024】
典型的には、かかるペロブスカイト型複合酸化物粉末を、10重量%以下のアルミナ又はシリカを含む塩酸酸性ゾルと、遊星型ボールミルで粉砕混合してスラリーを得、得られたスラリーを固体電解質基板に塗布した後、空気中約800〜850℃で焼結することにより、本発明の空気極を得ることができる。
なお、アルミナ、ジリカの含有量を10重量%以下としたのは、10重量%を超えると、ペロブスカイト成分量が相対的に低下することになり好ましくないためである。また、塩酸酸性ゾルを用いたのは、Clイオンの焼結助材効果を考慮したものである。
【0025】
【実施例】
以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0026】
(実施例1)
各元素の比率がLa0.9モル、Gd0.1モル、Al0.95モル、Pd0.05モル及びMg1.0モルになるように各元素の硝酸塩を混合した。即ち、硝酸ランタン[La(NO・6HO]389.6g、硝酸ガドリニウム[Gd(NO・6HO]45.1g、硝酸アルミニウム[Al(NO・9HO]356.4g、硝酸パラジウム[Pd(NO+HO]11.5g+11.5g、硝酸マグネシウム[Mg(NO・6HO]256.4gを純水1Lと混合し、十分に攪拌して混合溶液を得た。
【0027】
炭酸水素アンモニウム[NHHCO]261gを予めオートクレーブ中で純水0.5Lに溶解しておき、これを攪拌しながら上記混合溶液を投入した。混合溶液全量を投入した後、オートクレーブを密閉して攪拌を続けながら、オートクレーブ中に温度が約120℃、水蒸気圧が約2kg/cmの水蒸気を圧入し、オートクレーブ内圧が1.1kg/cmになった時点で水蒸気の供給を一旦停止した。
次いで、オートクレーブ内圧が1.1kg/cm、最大1.2kg/cmの条件を維持するように、水蒸気の供給量を調整しながら反応させた。水蒸気の供給開始から2時間で、内圧は水蒸気の供給を止めても1.1kg/cmを維持するようになった。この状態で0.5時間反応を継続した後、攪拌を止め、密閉を解除した。
【0028】
反応が終了したスラリー状水和物をオートクレーブから取り出し、吸引濾過して沈澱物を回収し、この沈澱物を純水を用いて洗浄した後、120℃のオーブン中で12時間乾燥した。
しかる後、上記乾燥粉末を、アルミナ製坩堝を用い、空気中500℃で5時間焼成して、触媒作用を有するペロブスカイト型複合酸化物粉末である本例の電極材料を得た。この電極材料の理論組成はLa0.9Gd0.1Al0.95Pd0.05MgOであった。組成を表1に示す。
【0029】
次に、本例の電極材料100gと8重量%塩酸酸性アルミナゾル(13gのベーマイトアルミナと10wt%塩酸水溶液87gの混合溶液)100gとを遊星型ボールミル(ポット及び、ボールはメノウ製)を用いて5時間粉砕混合し、ペロブスカイト型複合酸化物微粉末スラリーを得た。
得られたスラリー6.8gを、15cm角の固体電解質基板に酸化物として均一に塗布し、50℃で12時間乾燥後、空気中1200℃で焼結して本例の空気極Aを得た。この空気極A1枚当たりのPd使用量は137.4mgであり、単位面積当たりでは0.61mg/cmであった。空気極の組成を表2に示す。
【0030】
(実施例2)
La0.8モル、Gd0.2モル、即ち硝酸ランタン346.3g、硝酸ガドリニウム90.3gとした以外は、実施例1と同様の操作を繰り返し、本例の電極材料であるペロブスカイト型複合酸化物La0.8Gd0.2Al0.95Pd0.05MgOを得た。
また、得られた電極材料を用いて更に実施例1と同様の操作を繰り返し、本例の空気極Bを得た。この空気極B1枚当たりのPd使用量は136.3mgであり、単位面積当たりでは、0.606mg/cmであった。
【0031】
(実施例3)
La0.7モル、Gd0.3モル、即ち硝酸ランタン303g、硝酸ガドリニウム135.4gとした以外は、実施例1と同様の操作を繰り返し、本例の電極材料であるペロブスカイト型複合酸化物La0.7Gd0.3Al0.95Pd0.05MgOを得た。次いで、この電極材料を用いて更に実施例1と同様の操作を繰り返し、本例の空気極Cを得た。この空気C1枚当たりのPd使用量は135.3mgであり、単位面積当たりでは、0.601mg/cmであった。
【0032】
(実施例4)
La0.6モル、Gd0.4モル、即ち硝酸ランタン259.7g、硝酸ガドリニウム180.5gとした以外は、実施例1と同様の操作を繰り返し、本例の電極材料La0.6Gd0.4Al0.95Pd0.05MgOを得た。次いで、この電極材料を用いて更に実施例1と同様の操作を繰り返し、本例の空気極Dを得た。この空気極D1枚当たりのPd使用量は134.3mgであり、単位面積当たりでは、0.60mg/cmであった。
【0033】
(実施例5)
La0.5モル、Gd0.5モル、即ち硝酸ランタン216.5g、硝酸ガドリニウム225.7gとした以外は、実施例1と同様の操作を繰り返し、本例の電極材料La0.5Gd0.5Al0.95Pd0.05MgOを得た。更に、この電極材料を用いて実施例1と同様の操作を繰り返し、本例の空気極Eを得た。この空気極E1枚当たりのPd使用量は133.3mgであり、単位面積当たりでは、0.59mg/cmであった。
【0034】
(実施例6)
Al0.9モル、Pd0.1モル、即ち硝酸アルミニウム337.6g、[硝酸パラジウム+HO]23g+23gとした以外は、実施例2と同様の操作を繰り返し、本例の電極材料La0.8Gd0.2Al0.9Pd0.1MgOを得た。更に、この電極材料を用いて実施例1と同様の操作を繰り返し、本例の空気極Fを得た。この空気極F1枚当たりのPd使用量は268.3mgであり、単位面積当たりでは、1.19mg/cmであった。
【0035】
(実施例7)
Al0.85モル、Pd0.15モル、即ち硝酸アルミニウム318.9g、[硝酸パラジウム+HO]34.6g+34.6gとした以外は、実施例2と同様の操作を繰り返し、本例の電極材料La0.8Gd0.2Al0.85Pd0.15MgOを得た。更に、この電極材料を用いて実施例1と同様の操作を繰り返し、本例の空気極Gを得た。この空気極G1枚当たりのPd使用量は396.2mgであり、単位面積当たりでは、1.76mg/cmであった。
【0036】
(実施例8)
Al0.8モル、Pd0.2モル、即ち硝酸アルミニウム300.1g、[硝酸パラジウム+HO]46.1g+46.1gとした以外は、実施例2と同様の操作を繰り返し、本例の電極材料La0.8Gd0.2Al0.8Pd0.2MgOを得た。更に、この電極材料を用いて実施例1と同様の操作を繰り返し、本例の空気極Hを得た。この空気極H1枚当たりのPd使用量は520.15mgであり、単位面積当たりでは、2.3mg/cmであった。
【0037】
(実施例9)
Al0.975モル、Pt0.025モル、即ち硝酸アルミニウム365.75g、ジニトロジアミノ白金硝酸溶液(Pt=200g/kg溶液)24.5g+HO24・5gとした以外は、実施例2と同様の操作を繰り返し、本例の電極材料La0.8Gd0.2Al0.975Pt0.025MgOを得た。更に、この電極材料を用いて実施例1と同様の操作を繰り返し、本例の空気極Iを得た。この空気極I1枚当たりのPt使用量は125.4mgであり、単位面積当たりでは、0.56mg/cmであった。
【0038】
(実施例10)
Al0.95モル、Pt0.05モル、即ち硝酸アルミニウム356.4g、ジニトロジアミノ白金硝酸溶液48.8g+HO48.8gとした以外は、実施例2と同様の操作を繰り返し、本例の電極材料La0.8Gd0.2Al0.95Pt0.05MgOを得た。更に、この電極材料を用いて実施例1と同様の操作を繰り返し、本例の空気極Jを得た。この空気極J1枚当たりのPt使用量は245.4mgであり、単位面積当たりでは、1.09mg/cmであった。
【0039】
(実施例11)
Al0.925モル、Pt0.075モル、即ち硝酸アルミニウム347g、ジニトロジアミノ白金硝酸溶液73.0g+HO73.0gとした以外は、実施例2と同様の操作を繰り返し、本例の電極材料La0.8Gd0.2Al0.925Pt0.075MgOを得た。更に、この電極材料を用いて実施例1と同様の操作を繰り返し、本例の空気極Kを得た。この空気極K1枚当たりのPt使用量は362.1mgであり、単位面積当たりでは、1.61mg/cmであった。
【0040】
(実施例12)
Al0.9モル、Pt0.1モル、即ち硝酸アルミニウム337.6g、ジニトロジアミノ白金硝酸溶液97.5g+HO97.5gとした以外は、実施例2と同様の操作を繰り返し、本例の電極材料La0.8Gd0.2Al0.9Pt0.1MgOを得た。更に、この電極材料を用いて実施例1と同様の操作を繰り返し、本例の空気極Lを得た。この空気極L1枚当たりのPt使用量は475mgであり、単位面積当たりでは、2.11mg/cmであった。
【0041】
(実施例13)
La0.9モル、Dy0.1モル、Al0.95モル、Pd0.05モルの比率になるように各金属の硝酸塩を混合した。即ち、硝酸ランタン389.6g、硝酸ジスプロシウム[Dy(NO・5HO]43.9g、硝酸アルミニウム356.4g、[硝酸パラジウム+HO]11.5g+11.5g、硝酸マグネシウム256.4gを純水1Lと混合して十分に攪拌し、更に実施例1と同様の操作を繰り返し、本例の電極材料La0.9Dy0.1Al0.95Pd0.05MgOを得た。
次いで、この電極材料を用いて実施例1と同様の操作を繰り返し、本例の空気極Mを得た。この空気極M1枚当たりのPd使用量は137.3mgであり、単位面積当たりでは、0.61mg/cmであった。
【0042】
(実施例14)
La0.8モル、Dy0.2モル、即ち硝酸ランタン346.3g、硝酸ジスプロシウム87.7gとした以外は、実施例13と同様の操作を繰り返し、本例の電極材料La0.8Dy0.2Al0.95Pd0.05MgOを得た。更に、この電極材料を用いて実施例1と同様の操作を繰り返し、本例の空気極Nを得た。この空気極N1枚当たりのPd使用量は135.8mgであり、単位面積当たりでは、0.603mg/cmであった。
【0043】
(実施例15)
La0.7モル、Dy0.3モル、即ち硝酸ランタン313g、硝酸ジスプロシウム131.6gとした以外は、実施例13と同様の操作を繰り返し、本例の電極材料La0.7Dy0.3Al0.95Pd0.05MgOを得た。更に、この電極材料を用いて実施例1と同様の操作を繰り返し、本例の空気極Oを得た。この空気極O1枚当たりのPd使用量は134.5mgであり、単位面積当たりでは、0.60mg/cmであった。
【0044】
(実施例16)
La0.6モル、Dy0.4モル、即ち硝酸ランタン259.7g、硝酸ジスプロシウム175.4gとした以外は、実施例13と同様の操作を繰り返し、本例の電極材料La0.6Dy0.4Al0.95Pd0.05MgOを得た。更に、この電極材料を用いて実施例1と同様の操作を繰り返し、本例の空気極Pを得た。この空気極P1枚当たりのPd使用量は133.2mgであり、単位面積当たりでは、0.59mg/cmであった。
【0045】
(実施例17)
La0.5モル、Dy0.5モル、即ち硝酸ランタン216.5g、硝酸ジスプロシウム219.3gとした以外は、実施例13と同様の操作を繰り返し、本例の電極材料La0.5Dy0.5Al0.95Pd0.05MgOを得た。更に、この電極材料を用いて実施例1と同様の操作を繰り返し、本例の空気極Qを得た。この空気極Q1枚当たりのPd使用量は132mgであり、単位面積当たりでは、0.59mg/cmであった。
【0046】
(実施例18)
Al0.9モル、Pd0.1モル、即ち硝酸アルミニウム337.6g、[硝酸パラジウム+HO]23g+23gとした以外は、実施例14と同様の操作を繰り返し、本例の電極材料La0.8Dy0.2Al0.9Pd0.1MgOを得た。更に、この電極材料を用いて実施例1と同様の操作を繰り返し、本例の空気極Rを得た。この空気極R1枚当たりのPd使用量は267.2mgであり、単位面積当たりでは、1.19mg/cmであった。
【0047】
(実施例19)
Al0.85モル、Pd0.15モル、即ち硝酸アルミニウム318.9g、[硝酸パラジウム+HO]34.6g+34.6gとした以外は、実施例14と同様の操作を繰り返し、本例の電極材料La0.8Dy0.2Al0.85Pd0.15MgOを得た。更に、この電極材料を用いて実施例1と同様の操作を繰り返し、空気極Sを得た。この空気極S1枚当たりのPd使用量は394.6mgであり、単位面積当たりでは、1.75mg/cmであった。
【0048】
(実施例20)
Al0.8モル、Pd0.2モル、即ち硝酸アルミニウム300.1g、[硝酸パラジウム+HO]46.1g+46.1gとした以外は、実施例14と同様の操作を繰り返し、本例の電極材料La0.8Dy0.2Al0.8Pd0.2MgOを得た。更に、この電極材料を用いて実施例1と同様の操作を繰り返し、本例の空気極Tを得た。この空気極T1枚当たりのPd使用量は518mgであり、単位面積当たりでは、2.3mg/cmであった。
【0049】
(実施例21)
Al0.975モル、Pt0.025モル、即ち硝酸アルミニウム365.3g、ジニトロジアミノ白金硝酸溶液(Pt=200g/kg溶液)+HO24.5g+24.5gとした以外は、実施例14と同様の操作を繰り返し、本例の電極材料La0.8Dy0.2Al0.975Pt0.025MgOを得た。更に、この電極材料を用いて実施例1と同様の操作を繰り返し、本例の空気極Uを得た。この空気極U1枚当たりのPt使用量は124.9mgであり、単位面積当たりでは、0.56mg/cmであった。
【0050】
(実施例22)
Al0.95モル、Pt0.05モル、即ち硝酸アルミニウム356.4g、ジニトロジアミノ白金硝酸溶液+HO48.8g+48.8gとした以外は、実施例14と同様の操作を繰り返し、本例の電極材料La0.8Dy0.2Al0.95Pt0.05MgOを得た。更に、この電極材料を用いて実施例1と同様の操作を繰り返し、本例の空気極Vを得た。この空気極V1枚当たりのPt使用量は244.4mgであり、単位面積当たりでは、1.09mg/cmであった。
【0051】
(実施例23)
Al0.925モル、Pt0.075モル、即ち硝酸アルミニウム347g、ジニトロジアミノ白金硝酸溶液+HO73.0g+73.0gとした以外は、実施例14と同様の操作を繰り返し、本例の電極材料La0.8Dy0.2Al0.925Pt0.075MgOを得た。更に、この電極材料を用いて実施例1と同様の操作を繰り返し、本例の空気極Wを得た。この空気極W1枚当たりのPt使用量は360.6mgであり、単位面積当たりでは、1.60mg/cmであった。
【0052】
(実施例24)
Al0.9モル、Pt0.1モル、即ち硝酸アルミニウム337.6g、ジニトロジアミノ白金硝酸溶液+HO97.5g+97.5gとした以外は、実施例14と同様の操作を繰り返し、本例の電極材料La0.8Dy0.2Al0.9Pt0.1MgOを得た。更に、この電極材料を用いて実施例1と同様の操作を繰り返し、本例の空気極Xを得た。この空気極X1枚当たりのPt使用量は473mgであり、単位面積当たりでは、2.1mg/cmであった。
【0053】
(実施例25)
6%重量%Siを含む塩酸酸性シリカゾル100gを用いた以外は、実施例1と同様の操作を繰り返し、空気極Yを得た。この空気極Y1枚当たりのPd使用量は140.6mgであり、単位面積当たりでは、0.625mg/cmであった。
【0054】
(比較例1)
La0.8モル、Gd0.2モル、Al1.0モル、Mg1.0モルの比率とすべく、硝酸ランタン346.3g、硝酸ガドリニウム90.3g、硝酸アルミニウム375.1g、硝酸マグネシウム256.4gを純水1Lと混合し、十分に攪拌し、混合溶液を得た。この混合溶液について実施例1と同様の操作を繰り返し、ペロブスカイト型複合酸化物粉末を得た。この複合酸化物粉末の理論組成はLa0.8Gd0.2AlMgOである。
【0055】
次いで、得られたペロブスカイト型複合酸化物粉末にPd0.05モル、即ち硝酸パラジウム11.5gを純水100mlに溶解した溶液を混合し、十分に攪拌した後、120℃のオーブン中で3時間乾燥し、空気中500℃で2時間焼成して、本例の電極材料であるPd担持ペロブスカイト型複合酸化物粉末を得た。
【0056】
得られたPd担持ペロブスカイト型複合酸化物粉末100gと8重量%塩酸酸性アルミナゾル100gとを、遊星型ボールミルを用いて5時間粉砕混合し、Pd担持ペロブスカイト型複合酸化物微粉末スラリーを得た。
得られたスラリーを15cm角の固体電解質基板に酸化物として6.8gを均一に塗布し、50℃で12時間乾燥後、空気中850℃で焼結し、本例の空気極aを得た。この空気極a1枚当たりのPd使用量は135.6mgであり、単位面積当たりでは、0.602gm/cmであった。
【0057】
(比較例2)
La0.8モル、Dy0.2モル、即ち硝酸ランタン346.3g、硝酸ジスプロシウム87.7gとした以外は、比較例1と同様の操作を繰り返し、ペロブスカイト型複合酸化物La0.8Dy0.2AlMgOを得た。更に、比較例1と同様の操作を繰り返し、本例の電極材料であるPd担持ペロブスカイト型複合酸化物粉末を得た。
次いで、この電極材料を用いて比較例1と同様の操作を繰り返し、空気極bを得た。この空気極b1枚当たりのPd使用量は135mgであり、単位面積当たりでは、0.60mg/cmであった。
【0058】
(比較例3)
比較例1で得られたペロブスカイト型複合酸化物La0.8Gd0.2AlMgO粉末を用い、スラリー化した後、固体電解質基板に塗布して焼結し、本例の空気極cを得た。なお、この空気極cにはPtもPdも含まれていない。
【0059】
【表1】

Figure 0003564693
【0060】
【表2】
Figure 0003564693
【0061】
(特性評価)
実施例1〜24及び比較例1〜3で得られたペロブスカイト型複合酸化物たる電極材料を用いた空気極を使用して図1に示す測定用セルを組み立て、起電力の測定を行った。この測定の際には、本発明による貴金属元素包含型のものと、従来型のペロブスカイト型複合酸化物のものにおける起電力が、Nerunstの式による理論起電力に一致する温度を作動開始温度TNe(℃)とし、このTNe(℃)を特性評価の指標とした。
特性評価は、図1において、基準極に1atmの酸素を流し、測定極に10%O−Nガスを流した時の起電力を測定することにより行った。評価結果を表1に併記する。
【0062】
(耐久後特性評価)
実施例2、6、10、14、18、22及び比較例1、2で得られた空気極B、F、J、N、R、V及びa、bについて、空気雰囲気中1200℃で5時間耐久し、上記同様に起電力を測定し、作動開始温度の変化を求めた。得られた結果を表3に示す。
【0063】
【表3】
Figure 0003564693
【0064】
表3より、複合酸化物ヘのPd担持を行った比較例1及び2では、熱(耐久)によりPd結晶粒子の成長が起こるので、Pdを担持していないペロブスカイト型複合酸化物よりは低温で作動するものの、Pd等を結晶構造の中に取り込んだ構成の各実施例における空気極に比べると、大幅に劣化していることがわかる。
【0065】
【発明の効果】
以上説明してきたように、本発明によれば、Mgをドープするなど特定の金属元素を用いて一般式ABCOで表されるペロブスカイト型複合酸化物を構成することとしたため、固体電解質との界面での固相反応を抑制し、良好な触媒作用を保持したまま耐熱性や耐久性を改善し、低温域での発電を実現できるペロブスカイト型複合酸化物、その製造方法並びにこれを用いた固体酸化物電解質型燃料電池及びその電極などを提供することができる。
このため、従来の高温作動型固体電解質型燃料電池で考慮されていた、スタック化のための高耐熱材の使用等の必要性が無くなり、安価な材料の使用によるコスト低減が図れ、燃料電池システムの早期実用化が可能になり、代替燃料の利用及び環境保護等の効果が期待できる。
【図面の簡単な説明】
【図1】特性評価用の測定セルを示す模式図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel perovskite-type composite oxide that behaves as an oxide-mixed ionic conductive material and a method for producing the same, and more particularly, to a solid electrolyte type fuel that generates power using a hydrogen carbonate-based liquid fuel or natural gas. The present invention relates to a perovskite-type composite oxide which can be used as an air electrode material for a solid electrolyte such as zirconia and ceria in a battery and has a catalytic action, a method for producing the same, an electrode catalyst, an electrode, and a fuel cell using the same.
[0002]
[Prior art]
Conventionally, noble metals such as platinum, rhodium and palladium have been used as an air electrode material of a solid oxide fuel cell that generates electric power using a hydrocarbon-based liquid fuel or natural gas, but the cost is high, The characteristics deteriorated depending on the use environment. In particular, when used as an air electrode catalyst of a solid oxide fuel cell, it is assumed that the air electrode catalyst is used at a temperature of around 1000 ° C., and therefore, an air electrode having excellent heat resistance from the viewpoint of durability. Materials are desired, and therefore, studies are being made on using perovskite-type composite oxides having excellent heat resistance, air electrode characteristics, and high mixed ion conductivity as air electrode materials.
[0003]
Under such circumstances, LaCoO 2 has recently been used as a highly active perovskite-type composite oxide. 3 , LaMnO 3 , LaSr 0.8 Mn 0.2 O 3 , LaGaO 3 Have been reported by the National Institute of Materials Technology, the University of Tokyo, and the Central Research Institute of Electric Power Industry, etc. Japanese Patent Application Laid-Open No. Hei 5-139750 discloses that Nippon Telegraph and Telephone Corporation 3 B 2 XO 8 Oxide superionic conductive material represented by 3 Sc 2 ZrO 8 ) Has been proposed.
[0004]
[Problems to be solved by the invention]
However, even when these highly active perovskite-type composite oxides are used, the temperature range in which ionic conduction occurs is still 800 ° C. or higher, and when used for a long time in a high temperature range or a reducing atmosphere, such a highly active material becomes In some cases, the zirconia-based or ceria-based solid electrolyte reacts with the perovskite-type composite oxide, causing an increase in the resistance of the solid electrolyte / perovskite-type composite oxide interface, or the occurrence of structural defects such as partial omission. As a result, there have been problems such as a decrease in the power generation efficiency of the fuel cell.
[0005]
When a perovskite-type composite oxide is used as an air electrode material of a fuel cell, its catalytic action and electric conductivity are particularly utilized. In this case, an oxygen ion conductor, that is, a solid electrolyte and an air electrode are used. It is necessary to reduce separation attributable to a chemical reaction or thermal stress at the solid electrolyte / air electrode material interface while reducing the interfacial resistance between the material and the adhesiveness.
[0006]
The present invention has been made in view of such problems of the related art, and it is an object of the present invention to suppress a solid-phase reaction at an interface with a solid electrolyte and to maintain a good catalytic action. An object of the present invention is to provide a perovskite-type composite oxide capable of improving heat resistance and durability and realizing power generation in a low temperature range, a method for producing the same, a solid oxide electrolyte fuel cell using the same, and an electrode thereof.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-described problems, and as a result, have found that the general formula ABCO 3 When a perovskite-type composite oxide represented by the following formula is formed, lattice defects at the A site that improve ionic conductivity and the valency of the B site atom that plays a catalytic role are effectively controlled, and the ionic conductivity is reduced at a low temperature range. The present inventors have found that a perovskite-type composite oxide expressed by (1) and (2) can solve the above-mentioned problems, and have completed the present invention.
[0008]
That is, the perovskite-type composite oxide of the present invention has the following general formula (1)
A ' 1-x A " x B ' 1-y B " y CO 3 ... (1)
(A ′ in the formula is a lanthanoid element, A ″ is a lanthanoid element other than A ′, B ′ is an aluminum group element, B ″ is a platinum group element, C is an alkaline earth metal element, and x is 0 <x < 1, y is a number satisfying 0 <y <1).
[0009]
Further, the electrode material of the present invention is an electrode material used for an electrode of a solid oxide electrolyte fuel cell, and is characterized by containing the above-described perovskite-type composite oxide.
Furthermore, the electrode catalyst of the present invention is an electrode catalyst used for an electrode of a solid oxide electrolyte fuel cell, and is characterized by containing the above-described perovskite-type composite oxide.
[0010]
Furthermore, an electrode for a fuel cell of the present invention is an electrode used for a solid oxide electrolyte fuel cell, and is characterized by carrying the above-mentioned electrode catalyst.
Further, a solid oxide electrolyte fuel cell according to the present invention includes an air electrode containing the above electrode material.
[0011]
Further, the method for producing a perovskite composite oxide of the present invention, when producing a perovskite-type composite oxide as described above,
A monooxycarbonate is obtained by performing a hydrothermal reaction on nitrates or carbonates of various metal elements constituting the perovskite-type composite oxide represented by the above formula (1),
The obtained monooxycarbonate is calcined in the air.
[0012]
Furthermore, the method for producing an electrode for a fuel cell of the present invention, when producing an electrode for a solid oxide electrolyte fuel cell comprising the above electrode material,
The above electrode material is preliminarily fired in the air, the obtained temporarily sintered powder is applied to a solid electrolyte substrate, and then fired in the air.
[0013]
[Action]
In the present invention, the general formula ABCO 3 In the perovskite-type composite oxide represented by the following formula, two types of predetermined elements A 'and A "are used at the A site, two types of predetermined elements B' and B" are used at the B site, and a sintering aid is provided at the C site. Mg serving as a material was provided.
Thereby, the lattice defects of the A site for improving the ionic conductivity and the valences of the B site elements, particularly Pt and Pd, which have a catalytic action and make an important contribution to the air electrode, are effectively controlled, so that the electron-ion The conduction characteristics between the mixed conductors are improved, and the air electrode characteristics are improved. Further, since the solid-state reaction between the perovskite-type composite oxide and the solid electrolyte in contact with the composite oxide is suppressed, the durability and heat resistance of the composite oxide that can behave as an air electrode are improved, and Low temperature operation becomes possible.
[0014]
That is, in the present invention, the valence of the B-site metal element is effectively controlled by changing the molar ratio of each metal at the A site of the perovskite-type composite oxide that behaves as an ion conductive material. State control is performed.
Also, by constructing a perovskite structure having a lattice defect at the A site, the ability to release and absorb oxygen is improved. As a result, the internal resistance at the solid electrolyte / air electrode (catalyst) interface is reduced, and the operating temperature can be reduced. I can do it.
Furthermore, durability and heat resistance can be improved by the sintering suppression effect of the perovskite-type composite oxide itself.
[0015]
In addition, as a result of introducing the above-described lattice defects, sorbed oxygen generally important for oxygen transfer can be increased.
Such sorbed oxygen includes (a) oxygen (α-oxygen) desorbed in a wide temperature range of 800 ° C. or less and sorbed in oxygen vacancies generated by partial substitution of A-site ions, and (b) 820 There are two types of oxygen (β-oxygen) which desorb in a sharp peak at around ° C. and correspond to the reduction of the B-site element to a lower valence, and are present in the crystal structure due to the presence of these two types of oxygen. Since Pt and Pd are stabilized, the mobility of oxygen is improved in a wide temperature range.
[0016]
Further, after mixing and grinding the perovskite-type composite oxide of the present invention and alumina or silica sol to form a slurry, the slurry is applied on a solid electrolyte substrate and sintered, and is a sintering aid present in such a structure. Due to the synergistic effect with Mg, it has strong adhesion to the solid electrolyte substrate, exhibits stable performance against the heat cycle caused by starting and stopping the fuel cell, and has an electrode catalytic action. Can be obtained.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the perovskite-type composite oxide of the present invention will be described in detail.
As described above, the perovskite-type composite oxide of the present invention functions as an oxide composite ion-conductive material, and specifically, can be used also as an electrode catalyst and an electrode material in a solid oxide electrolyte fuel cell. It is suitable for forming an air electrode of such a fuel cell.
[0018]
The perovskite-type composite oxide of the present invention has the following general formula (1)
A ' 1-x A " x B ' 1-y B " y CO 3 ... (1)
(A ′ in the formula is a lanthanoid element, A ″ is a lanthanoid element other than A ′, B ′ is an aluminum group element, B ″ is a platinum group element, C is an alkaline earth metal element, and x is 0 <x < 1, y is a number satisfying 0 <y <1).
Specifically, La is preferred as A ', Gd and / or Dy as A ", Al as B', Pt and / or Pd as B", and Mg as C.
In the formula (1), x is preferably a number satisfying 0 <x ≦ 0.5, and y is preferably a number satisfying 0 <y ≦ 0.2. When x exceeds 0.5, y is also satisfied. If it exceeds 0.2, the effect cannot be expected to be improved, which is not preferable.
[0019]
Next, a method for producing the perovskite-type composite oxide of the present invention will be described.
This composite oxide is prepared by mixing nitrates or carbonates of various metals represented by the above formula (1) in a predetermined stoichiometric ratio, and adding nitrate to a solution of ammonium bicarbonate when nitrate is used as a starting salt. Then, once converted to a carbonate, a monooxycarbonate is synthesized by a hydrothermal reaction in heated steam. If the starting salt is a carbonate, the monooxycarbonate is dispersed in pure water and then subjected to hydrothermal reaction in heated steam to produce a monooxycarbonate. It is obtained by synthesizing carbonate and then calcining the obtained monooxycarbonate in air.
Therefore, it can be said that the various constituent metal elements shown in the formula (1), that is, La, Gd, Dy, Pt, Pd and the like are derived from these nitrates or carbonates.
[0020]
Hereinafter, a typical example of the above-mentioned production method will be described. Add the dinitrodiamino Pd solution and mix thoroughly. Next, this mixed solution is added to ammonium bicarbonate dissolved and stirred in pure water in an autoclave in advance. After the entire amount has been added, the mixture is placed in an autoclave at about 110 to 120 ° C. and a vapor pressure of 3 kg / cm. 2 Is introduced in a sealed state.
Autoclave internal pressure is 1.1-1.2kg / cm 2 When the degree is reached, the amount of introduced steam is adjusted, and the reaction is continued for 2 to 3 hours. The reaction is terminated about 0.4 to 0.5 hours after the introduction of steam becomes unnecessary. After completion of the reaction, filtration, washing, and drying are performed, and the mixture is calcined in air at about 500 to 600 ° C. for 3 to 5 hours to obtain a perovskite-type composite oxide of the present invention.
[0021]
Next, the electrode catalyst, the electrode material, and the fuel cell air electrode of the present invention will be described. As described above, the electrode catalyst and the electrode material of the present invention contain the perovskite-type composite oxide represented by the general formula (1).
Further, the air electrode of the present invention uses the electrode catalyst of the present invention on the electrode material of the present invention or another electrode material, or uses only the electrode material of the present invention or is mixed with other materials. Can be formed.
[0022]
Here, the above-mentioned electrode catalyst, electrode material, and air electrode are used in contact with such a solid electrolyte in a high-temperature solid oxide fuel cell using a solid electrolyte such as zirconia or ceria, preferably yttrium partially stabilized zirconia. .
When the perovskite-type composite oxide of the present invention is used as an electrode catalyst, specific examples of the electrode material other than the electrode material of the present invention include zirconia and titania.
[0023]
Further, the air electrode of the present invention can be formed by applying the above-described perovskite composite oxide to a solid electrolyte substrate, followed by firing in air.
At this time, the above-mentioned perovskite composite oxide may be used alone, but may be mixed with alumina or silica sol. By using such a mixture, a synergistic effect of the sintering aid components Mg and alumina is obtained, It becomes possible to coat the solid electrolyte substrate with strong adhesion, and it is possible to obtain a fuel cell that realizes more stable operation.
[0024]
Typically, the perovskite-type composite oxide powder is pulverized and mixed with a hydrochloric acid sol containing 10% by weight or less of alumina or silica by a planetary ball mill to obtain a slurry, and the obtained slurry is applied to a solid electrolyte substrate. After coating, sintering in air at about 800 to 850 ° C. can obtain the air electrode of the present invention.
The reason why the content of alumina and zirica is set to 10% by weight or less is that if it exceeds 10% by weight, the perovskite component amount relatively decreases, which is not preferable. The hydrochloric acid acidic sol was used because The sintering aid effect of ions is taken into account.
[0025]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[0026]
(Example 1)
The nitrate of each element was mixed such that the ratio of each element was La 0.9 mol, Gd 0.1 mol, Al 0.95 mol, Pd 0.05 mol and Mg 1.0 mol. That is, lanthanum nitrate [La (NO 3 ) 3 ・ 6H 2 O] 389.6 g, gadolinium nitrate [Gd (NO 3 ) 3 ・ 6H 2 O] 45.1 g, aluminum nitrate [Al (NO 3 ) 3 ・ 9H 2 O] 356.4 g, palladium nitrate [Pd (NO 3 ) 2 + H 2 O] 11.5 g + 11.5 g, magnesium nitrate [Mg (NO 3 ) 2 ・ 6H 2 O] 256.4 g was mixed with 1 L of pure water, and sufficiently stirred to obtain a mixed solution.
[0027]
Ammonium hydrogen carbonate [NH 4 HCO 3 261 g was previously dissolved in 0.5 L of pure water in an autoclave, and the above-mentioned mixed solution was charged with stirring. After charging the whole amount of the mixed solution, the autoclave was closed and the stirring was continued, and the temperature in the autoclave was about 120 ° C. and the steam pressure was about 2 kg / cm. 2 And the autoclave internal pressure is 1.1kg / cm 2 When it became, the supply of steam was temporarily stopped.
Next, the internal pressure of the autoclave is 1.1 kg / cm. 2 , Maximum 1.2kg / cm 2 The reaction was carried out while adjusting the supply amount of steam so as to maintain the condition of (1). Two hours after the start of the supply of steam, the internal pressure is 1.1 kg / cm even if the supply of steam is stopped. 2 Began to maintain. After continuing the reaction for 0.5 hour in this state, the stirring was stopped and the sealing was released.
[0028]
After the reaction was completed, the slurry-like hydrate was taken out of the autoclave, and the precipitate was collected by suction filtration. The precipitate was washed with pure water, and then dried in an oven at 120 ° C. for 12 hours.
Thereafter, the dried powder was calcined at 500 ° C. for 5 hours in air using an alumina crucible to obtain an electrode material of the present example, which is a perovskite-type composite oxide powder having a catalytic action. The theoretical composition of this electrode material is La 0.9 Gd 0.1 Al 0.95 Pd 0.05 MgO 3 Met. The composition is shown in Table 1.
[0029]
Next, 100 g of the electrode material of this example and 100 g of 8% by weight hydrochloric acid acidic alumina sol (a mixed solution of 13 g of boehmite alumina and 10% by weight of hydrochloric acid aqueous solution of 87 g) were mixed in a planetary ball mill (pots and balls were made of agate) using a planetary ball mill. The mixture was pulverized and mixed for an hour to obtain a perovskite-type composite oxide fine powder slurry.
The obtained slurry (6.8 g) was uniformly applied as an oxide on a 15 cm square solid electrolyte substrate, dried at 50 ° C. for 12 hours, and then sintered in air at 1200 ° C. to obtain an air electrode A of this example. . The amount of Pd used per air electrode A is 137.4 mg, and 0.61 mg / cm per unit area. 2 Met. Table 2 shows the composition of the air electrode.
[0030]
(Example 2)
The same operation as in Example 1 was repeated except that La was 0.8 mol and Gd was 0.2 mol, that is, 346.3 g of lanthanum nitrate and 90.3 g of gadolinium nitrate were used, and the perovskite-type composite oxide La as the electrode material of this example was used. 0.8 Gd 0.2 Al 0.95 Pd 0.05 MgO 3 Got.
Using the obtained electrode material, the same operation as in Example 1 was further repeated to obtain the air electrode B of this example. The used amount of Pd per one air electrode B is 136.3 mg, and 0.606 mg / cm per unit area. 2 Met.
[0031]
(Example 3)
The same operation as in Example 1 was repeated except that La was 0.7 mol and Gd was 0.3 mol, that is, 303 g of lanthanum nitrate and 135.4 g of gadolinium nitrate were used, and the perovskite-type composite oxide La as the electrode material of this example was used. 0.7 Gd 0.3 Al 0.95 Pd 0.05 MgO 3 Got. Subsequently, the same operation as in Example 1 was further repeated using this electrode material to obtain the air electrode C of this example. The amount of Pd used per air C sheet is 135.3 mg, and 0.601 mg / cm per unit area. 2 Met.
[0032]
(Example 4)
The same operation as in Example 1 was repeated except that La was 0.6 mol and Gd was 0.4 mol, that is, 259.7 g of lanthanum nitrate and 180.5 g of gadolinium nitrate were used. 0.6 Gd 0.4 Al 0.95 Pd 0.05 MgO 3 Got. Next, the same operation as in Example 1 was repeated using this electrode material to obtain an air electrode D of this example. The amount of Pd used per one air electrode D is 134.3 mg, and 0.60 mg / cm per unit area. 2 Met.
[0033]
(Example 5)
The same operation as in Example 1 was repeated except that 0.5 mol of La and 0.5 mol of Gd were used, that is, 216.5 g of lanthanum nitrate and 225.7 g of gadolinium nitrate, and the electrode material La of this example was repeated. 0.5 Gd 0.5 Al 0.95 Pd 0.05 MgO 3 Got. Further, the same operation as in Example 1 was repeated using this electrode material to obtain an air electrode E of this example. The amount of Pd used per one air electrode E was 133.3 mg, and 0.59 mg / cm per unit area. 2 Met.
[0034]
(Example 6)
0.9 mol of Al, 0.1 mol of Pd, that is, 337.6 g of aluminum nitrate, [palladium nitrate + H 2 O] The same operation as in Example 2 was repeated except that 23g + 23g was used, and the electrode material La of this example was used. 0.8 Gd 0.2 Al 0.9 Pd 0.1 MgO 3 Got. Further, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode F of this example. The amount of Pd used per air electrode F is 268.3 mg, and is 1.19 mg / cm per unit area. 2 Met.
[0035]
(Example 7)
0.85 mol of Al, 0.15 mol of Pd, that is, 318.9 g of aluminum nitrate, [palladium nitrate + H 2 O] The same operation as in Example 2 was repeated except that 34.6 g + 34.6 g was used, and the electrode material La of this example was used. 0.8 Gd 0.2 Al 0.85 Pd 0.15 MgO 3 Got. Further, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode G of this example. The amount of Pd used per air electrode G is 396.2 mg, and is 1.76 mg / cm per unit area. 2 Met.
[0036]
(Example 8)
0.8 mol of Al, 0.2 mol of Pd, that is, 300.1 g of aluminum nitrate, [palladium nitrate + H 2 O] The same operation as in Example 2 was repeated except that 46.1 g + 46.1 g was used, and the electrode material La of this example was used. 0.8 Gd 0.2 Al 0.8 Pd 0.2 MgO 3 Got. Further, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode H of this example. The amount of Pd used per one air electrode H is 520.15 mg, and is 2.3 mg / cm per unit area. 2 Met.
[0037]
(Example 9)
0.975 mol of Al, 0.025 mol of Pt, ie, 365.75 g of aluminum nitrate, 24.5 g of dinitrodiaminoplatinum nitric acid solution (Pt = 200 g / kg solution) + H 2 The same operation as in Example 2 was repeated except that O2 was set to 44.5 g, and the electrode material La of this example was used. 0.8 Gd 0.2 Al 0.975 Pt 0.025 MgO 3 Got. Further, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode I of this example. The amount of Pt used per one air electrode I was 125.4 mg, and 0.56 mg / cm per unit area. 2 Met.
[0038]
(Example 10)
0.95 mol of Al, 0.05 mol of Pt, ie, 356.4 g of aluminum nitrate, 48.8 g of dinitrodiaminoplatinum nitric acid solution + H 2 The same operation as in Example 2 was repeated except that O was set to 48.8 g, and the electrode material La of the present example was used. 0.8 Gd 0.2 Al 0.95 Pt 0.05 MgO 3 Got. Further, the same operation as in Example 1 was repeated using this electrode material to obtain an air electrode J of this example. The amount of Pt used per one air electrode J is 245.4 mg, and 1.09 mg / cm per unit area. 2 Met.
[0039]
(Example 11)
0.925 mol of Al, 0.075 mol of Pt, namely 347 g of aluminum nitrate, 73.0 g of dinitrodiaminoplatinic nitric acid solution + H 2 The same operation as in Example 2 was repeated except that O was 3.03.0 g, and the electrode material La of this example was repeated. 0.8 Gd 0.2 Al 0.925 Pt 0.075 MgO 3 Got. Further, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode K of this example. The amount of Pt used per air electrode K is 362.1 mg, and is 1.61 mg / cm per unit area. 2 Met.
[0040]
(Example 12)
0.9 mol of Al, 0.1 mol of Pt, ie, 337.6 g of aluminum nitrate, 97.5 g of dinitrodiaminoplatinum nitric acid solution + H 2 The same operation as in Example 2 was repeated except that O was 97.5 g, and the electrode material La of this example was repeated. 0.8 Gd 0.2 Al 0.9 Pt 0.1 MgO 3 Got. Further, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode L of this example. The amount of Pt used per one air electrode L is 475 mg, and 2.11 mg / cm per unit area. 2 Met.
[0041]
(Example 13)
Nitrate of each metal was mixed so as to have a ratio of 0.9 mol of La, 0.1 mol of Dy, 0.95 mol of Al, and 0.05 mol of Pd. That is, 389.6 g of lanthanum nitrate, dysprosium nitrate [Dy (NO 3 ) 3 ・ 5H 2 O] 43.9 g, aluminum nitrate 356.4 g, [palladium nitrate + H 2 O] 11.5 g + 11.5 g and 256.4 g of magnesium nitrate were mixed with 1 L of pure water and sufficiently stirred, and the same operation as in Example 1 was repeated to obtain an electrode material La of this example. 0.9 Dy 0.1 Al 0.95 Pd 0.05 MgO 3 Got.
Next, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode M of this example. The used amount of Pd per one air electrode M is 137.3 mg, and 0.61 mg / cm per unit area. 2 Met.
[0042]
(Example 14)
The same operation as in Example 13 was repeated except that 0.8 mol of La and 0.2 mol of Dy, that is, 346.3 g of lanthanum nitrate and 87.7 g of dysprosium nitrate were used, and the electrode material La of this example was repeated. 0.8 Dy 0.2 Al 0.95 Pd 0.05 MgO 3 Got. Further, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode N of this example. The used amount of Pd per one air electrode N is 135.8 mg, and 0.603 mg / cm per unit area. 2 Met.
[0043]
(Example 15)
The same operation as that of Example 13 was repeated except that La was 0.7 mol and Dy was 0.3 mol, that is, 313 g of lanthanum nitrate and 131.6 g of dysprosium nitrate were used. 0.7 Dy 0.3 Al 0.95 Pd 0.05 MgO 3 Got. Further, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode O of this example. The amount of Pd used per one air electrode O is 134.5 mg, and 0.60 mg / cm per unit area. 2 Met.
[0044]
(Example 16)
The same operation as that of Example 13 was repeated except that La was 0.6 mol and Dy was 0.4 mol, that is, 259.7 g of lanthanum nitrate and 175.4 g of dysprosium nitrate were used. 0.6 Dy 0.4 Al 0.95 Pd 0.05 MgO 3 Got. Further, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode P of this example. The amount of Pd used per one air electrode P is 133.2 mg, and 0.59 mg / cm per unit area. 2 Met.
[0045]
(Example 17)
The same operation as that of Example 13 was repeated except that La was 0.5 mol and Dy was 0.5 mol, that is, 216.5 g of lanthanum nitrate and 219.3 g of dysprosium nitrate were used. 0.5 Dy 0.5 Al 0.95 Pd 0.05 MgO 3 Got. Further, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode Q of this example. The amount of Pd used per one air electrode Q is 132 mg, and 0.59 mg / cm per unit area. 2 Met.
[0046]
(Example 18)
0.9 mol of Al, 0.1 mol of Pd, that is, 337.6 g of aluminum nitrate, [palladium nitrate + H 2 O] The same operation as in Example 14 was repeated except that 23g + 23g was used, and the electrode material La of this example was used. 0.8 Dy 0.2 Al 0.9 Pd 0.1 MgO 3 Got. Further, the same operation as in Example 1 was repeated using this electrode material to obtain an air electrode R of this example. The used amount of Pd per one air electrode R is 267.2 mg, and 1.19 mg / cm per unit area. 2 Met.
[0047]
(Example 19)
0.85 mol of Al, 0.15 mol of Pd, that is, 318.9 g of aluminum nitrate, [palladium nitrate + H 2 O] The same operation as in Example 14 was repeated except that 34.6 g + 34.6 g was used, and the electrode material La of this example was used. 0.8 Dy 0.2 Al 0.85 Pd 0.15 MgO 3 Got. Further, the same operation as in Example 1 was repeated using this electrode material to obtain an air electrode S. The amount of Pd used per air electrode S is 394.6 mg, and is 1.75 mg / cm per unit area. 2 Met.
[0048]
(Example 20)
0.8 mol of Al, 0.2 mol of Pd, that is, 300.1 g of aluminum nitrate, [palladium nitrate + H 2 O] The same operation as in Example 14 was repeated except that 46.1 g + 46.1 g was used, and the electrode material La of this example was used. 0.8 Dy 0.2 Al 0.8 Pd 0.2 MgO 3 Got. Further, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode T of this example. The amount of Pd used per one air electrode T is 518 mg, and 2.3 mg / cm per unit area. 2 Met.
[0049]
(Example 21)
0.975 mol of Al, 0.025 mol of Pt, that is, 365.3 g of aluminum nitrate, dinitrodiaminoplatinum nitric acid solution (Pt = 200 g / kg solution) + H 2 The same operation as in Example 14 was repeated except that O24.5 g + 24.5 g was used, and the electrode material La of this example was used. 0.8 Dy 0.2 Al 0.975 Pt 0.025 MgO 3 Got. Further, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode U of this example. The amount of Pt used per one air electrode U is 124.9 mg, and 0.56 mg / cm per unit area. 2 Met.
[0050]
(Example 22)
Al 0.95 mol, Pt 0.05 mol, that is, 356.4 g of aluminum nitrate, dinitrodiaminoplatinum nitric acid solution + H 2 The same operation as in Example 14 was repeated except that O48.8 g + 48.8 g was used, and the electrode material La of this example was used. 0.8 Dy 0.2 Al 0.95 Pt 0.05 MgO 3 Got. Further, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode V of this example. The amount of Pt used per air electrode V is 244.4 mg, and is 1.09 mg / cm per unit area. 2 Met.
[0051]
(Example 23)
Al 0.925 mol, Pt 0.075 mol, ie, 347 g of aluminum nitrate, dinitrodiaminoplatinum nitric acid solution + H 2 The same operation as in Example 14 was repeated except that O was changed to 73.0 g + 73.0 g, and the electrode material La of this example was repeated. 0.8 Dy 0.2 Al 0.925 Pt 0.075 MgO 3 Got. Further, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode W of this example. The amount of Pt used per air electrode W is 360.6 mg, and is 1.60 mg / cm per unit area. 2 Met.
[0052]
(Example 24)
Al 0.9 mol, Pt 0.1 mol, ie, 337.6 g of aluminum nitrate, dinitrodiaminoplatinum nitric acid solution + H 2 The same operation as in Example 14 was repeated except that O was changed to 97.5 g + 97.5 g, and the electrode material La of this example was repeated. 0.8 Dy 0.2 Al 0.9 Pt 0.1 MgO 3 Got. Further, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode X of this example. The amount of Pt used per one air electrode X is 473 mg, and 2.1 mg / cm per unit area. 2 Met.
[0053]
(Example 25)
An air electrode Y was obtained by repeating the same operation as in Example 1 except that 100 g of hydrochloric acid acidic silica sol containing 6% by weight of Si was used. The amount of Pd used per one air electrode Y is 140.6 mg, and 0.625 mg / cm per unit area. 2 Met.
[0054]
(Comparative Example 1)
To obtain a ratio of 0.8 mol of La, 0.2 mol of Gd, 1.0 mol of Al, and 1.0 mol of Mg, 346.3 g of lanthanum nitrate, 90.3 g of gadolinium nitrate, 375.1 g of aluminum nitrate, and 256.4 g of magnesium nitrate were purified. The mixture was mixed with 1 L of water and sufficiently stirred to obtain a mixed solution. The same operation as in Example 1 was repeated for this mixed solution to obtain a perovskite-type composite oxide powder. The theoretical composition of this composite oxide powder is La 0.8 Gd 0.2 AlMgO 3 It is.
[0055]
Next, a solution obtained by dissolving 0.05 mol of Pd, that is, 11.5 g of palladium nitrate in 100 ml of pure water was mixed with the obtained perovskite-type composite oxide powder, stirred sufficiently, and dried in an oven at 120 ° C. for 3 hours. Then, the mixture was calcined in air at 500 ° C. for 2 hours to obtain a Pd-supported perovskite-type composite oxide powder as the electrode material of this example.
[0056]
100 g of the obtained Pd-supported perovskite-type composite oxide powder and 100 g of 8% by weight hydrochloric acid acidic alumina sol were pulverized and mixed for 5 hours using a planetary ball mill to obtain a Pd-supported perovskite-type composite oxide fine powder slurry.
The obtained slurry was uniformly coated with 6.8 g of an oxide as an oxide on a 15 cm square solid electrolyte substrate, dried at 50 ° C. for 12 hours, and sintered in air at 850 ° C. to obtain an air electrode a of this example. . The amount of Pd used per air electrode a is 135.6 mg, and is 0.602 gm / cm per unit area. 2 Met.
[0057]
(Comparative Example 2)
The same operation as in Comparative Example 1 was repeated except that 0.8 mol of La and 0.2 mol of Dy, that is, 346.3 g of lanthanum nitrate and 87.7 g of dysprosium nitrate, were used, and the perovskite-type composite oxide La 0.8 Dy 0.2 AlMgO 3 Got. Further, the same operation as in Comparative Example 1 was repeated to obtain a Pd-supported perovskite-type composite oxide powder as the electrode material of this example.
Next, the same operation as in Comparative Example 1 was repeated using this electrode material to obtain an air electrode b. The amount of Pd used per air electrode b is 135 mg, and 0.60 mg / cm per unit area. 2 Met.
[0058]
(Comparative Example 3)
Perovskite-type composite oxide La obtained in Comparative Example 1 0.8 Gd 0.2 AlMgO 3 After the slurry was formed using the powder, the slurry was applied to a solid electrolyte substrate and sintered to obtain an air electrode c of this example. The air electrode c contains neither Pt nor Pd.
[0059]
[Table 1]
Figure 0003564693
[0060]
[Table 2]
Figure 0003564693
[0061]
(Characteristic evaluation)
The measurement cell shown in FIG. 1 was assembled using the air electrode using the electrode material as the perovskite-type composite oxide obtained in Examples 1 to 24 and Comparative Examples 1 to 3, and the electromotive force was measured. At the time of this measurement, the temperature at which the electromotive force of the noble metal-containing type oxide according to the present invention and that of the conventional perovskite-type composite oxide coincide with the theoretical electromotive force according to the Nerunst equation is set to the operation start temperature T. Ne (° C) and this T Ne (° C.) was used as an index for characteristic evaluation.
In the characteristic evaluation, in FIG. 1, 1 atm of oxygen was passed through the reference electrode, and 10% O 2 -N 2 The measurement was performed by measuring the electromotive force when flowing gas. The evaluation results are also shown in Table 1.
[0062]
(Evaluation of characteristics after durability)
The air electrodes B, F, J, N, R, V, and a and b obtained in Examples 2, 6, 10, 14, 18, and 22 and Comparative Examples 1 and 2 were aerated at 1200 ° C. for 5 hours in an air atmosphere. After endurance, the electromotive force was measured in the same manner as above, and the change in the operation start temperature was determined. Table 3 shows the obtained results.
[0063]
[Table 3]
Figure 0003564693
[0064]
From Table 3, in Comparative Examples 1 and 2 in which Pd was supported on the composite oxide, Pd crystal particles grew due to heat (durability), so that the temperature was lower than that of the perovskite-type composite oxide not supporting Pd. Although it operates, it can be seen that it is significantly deteriorated as compared with the air electrode in each embodiment in which Pd or the like is incorporated in the crystal structure.
[0065]
【The invention's effect】
As described above, according to the present invention, the general formula ABCO is used by using a specific metal element such as Mg doping. 3 The perovskite-type composite oxide represented by the formula (1) suppresses solid-state reactions at the interface with the solid electrolyte, improves heat resistance and durability while maintaining good catalytic action, It is possible to provide a perovskite-type composite oxide capable of realizing power generation, a method for producing the same, a solid oxide electrolyte fuel cell using the same, an electrode thereof, and the like.
This eliminates the necessity of using a high heat-resistant material for stacking, which was considered in the conventional high-temperature operation type solid electrolyte fuel cell, and reduces the cost by using inexpensive materials. Can be put to practical use early, and the effects of using alternative fuels and protecting the environment can be expected.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a measurement cell for evaluating characteristics.

Claims (12)

次の一般式(1)
A’1−xA”B’1−yB”CO・・・(1)
(式中のA’はランタノイド元素、A”はA’以外のランタノイド元素、B’はアルミニウム族元素、B”は白金族元素、Cはアルカリ土類金属元素を示し、xは0<x<1、yは0<y<1を満足する数を示す。)で表されることを特徴とするペロブスカイト型複合酸化物。
The following general formula (1)
A ′ 1−x A ″ x B ′ 1−y B ″ y CO 3 (1)
(A ′ in the formula is a lanthanoid element, A ″ is a lanthanoid element other than A ′, B ′ is an aluminum group element, B ″ is a platinum group element, C is an alkaline earth metal element, and x is 0 <x < 1, and y is a number satisfying 0 <y <1).
上記(1)式におけるA’がLa、A”がGd及び/又はDy、B’がAl、B”がPt及び/又はPd、CがMgであることを特徴とする請求項1記載のペロブスカイト型複合酸化物。The perovskite according to claim 1, wherein in formula (1), A 'is La, A "is Gd and / or Dy, B' is Al, B" is Pt and / or Pd, and C is Mg. Type composite oxide. 上記(1)式におけるxが0<x≦0.5、yが0<y≦0.2を満足することを特徴とする請求項1記載のペロブスカイト型複合酸化物。2. The perovskite-type composite oxide according to claim 1, wherein x in the formula (1) satisfies 0 <x ≦ 0.5 and y satisfies 0 <y ≦ 0.2. 固体酸化物電解質型燃料電池の電極に用いられる電極材料であって、請求項1〜3のいずれか1つの項に記載のペロブスカイト型複合酸化物を含有して成ることを特徴とする電極材料。An electrode material used for an electrode of a solid oxide electrolyte fuel cell, comprising the perovskite-type composite oxide according to any one of claims 1 to 3. 固体酸化物電解質型燃料電池の電極に用いられる電極触媒であって、請求項1〜3のいずれか1つの項に記載のペロブスカイト型複合酸化物を含有して成ることを特徴とする電極触媒。An electrocatalyst used for an electrode of a solid oxide electrolyte fuel cell, comprising the perovskite-type composite oxide according to any one of claims 1 to 3. 固体酸化物電解質型燃料電池に用いられる電極であって、請求項5記載の電極触媒を担持して成ることを特徴とする燃料電池用電極。An electrode for use in a solid oxide electrolyte fuel cell, wherein the electrode carries the electrode catalyst according to claim 5. 請求項4記載の電極材料を含有して成る空気極を備えること特徴とする固体酸化物電解質型燃料電池。A solid oxide electrolyte fuel cell comprising an air electrode containing the electrode material according to claim 4. 請求項6記載の電極を空気極として備えることを特徴とする固体酸化物電解質型燃料電池。A solid oxide electrolyte fuel cell comprising the electrode according to claim 6 as an air electrode. 請求項1〜3のいずれか1つの項に記載のペロブスカイト型複合酸化物を製造するに当たり、
上記(1)式で表されるペロブスカイト型複合酸化物を構成する各種金属元素の硝酸塩又は炭酸塩に水熱反応を行ってモノオキシ炭酸塩を得、
得られたモノオキシ炭酸塩を空気中で焼成することを特徴とするペロブスカイト型複合酸化物の製造方法。
In producing the perovskite-type composite oxide according to any one of claims 1 to 3,
A monooxycarbonate is obtained by performing a hydrothermal reaction on nitrates or carbonates of various metal elements constituting the perovskite-type composite oxide represented by the above formula (1),
A method for producing a perovskite-type composite oxide, wherein the obtained monooxycarbonate is calcined in the air.
請求項4記載の電極材料を含有して成る固体酸化物電解質型燃料電池用の電極を製造するに当たり、
上記電極材料を空気中で仮焼成し、得られた仮焼結粉を固体電解質基板に塗布し、次いで、空気中で焼成することを特徴とする燃料電池用電極の製造方法。
In producing an electrode for a solid oxide electrolyte fuel cell comprising the electrode material according to claim 4,
A method for producing an electrode for a fuel cell, wherein the electrode material is calcined in air, the calcined powder obtained is applied to a solid electrolyte substrate, and then calcined in air.
上記固体電解質基板への塗布を、上記電極材料をアルミナゾル又はシリカゾルと混練して得られたスラリーを上記固体電解質基板に塗布することにより行うことを特徴とする請求項10記載の燃料電池用電極の製造方法。The fuel cell electrode according to claim 10, wherein the application to the solid electrolyte substrate is performed by applying a slurry obtained by kneading the electrode material with alumina sol or silica sol to the solid electrolyte substrate. Production method. 上記アルミナゾル又はシリカゾルが塩酸酸性であり、アルミナ又はシリカの濃度が10重量%以下であることを特徴とする請求項11記載の燃料電池の製造方法。The method according to claim 11, wherein the alumina sol or the silica sol is acidic with hydrochloric acid, and the concentration of the alumina or silica is 10% by weight or less.
JP06393198A 1998-03-02 1998-03-02 Perovskite-type composite oxide, method for producing the same, and solid oxide electrolyte fuel cell using the same Expired - Lifetime JP3564693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06393198A JP3564693B2 (en) 1998-03-02 1998-03-02 Perovskite-type composite oxide, method for producing the same, and solid oxide electrolyte fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06393198A JP3564693B2 (en) 1998-03-02 1998-03-02 Perovskite-type composite oxide, method for producing the same, and solid oxide electrolyte fuel cell using the same

Publications (2)

Publication Number Publication Date
JPH11246220A JPH11246220A (en) 1999-09-14
JP3564693B2 true JP3564693B2 (en) 2004-09-15

Family

ID=13243598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06393198A Expired - Lifetime JP3564693B2 (en) 1998-03-02 1998-03-02 Perovskite-type composite oxide, method for producing the same, and solid oxide electrolyte fuel cell using the same

Country Status (1)

Country Link
JP (1) JP3564693B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3976181B2 (en) 2002-07-19 2007-09-12 東邦瓦斯株式会社 Solid oxide fuel cell single cell and solid oxide fuel cell using the same
JP4765094B2 (en) * 2003-03-28 2011-09-07 Dowaエレクトロニクス株式会社 Method for producing perovskite complex oxide

Also Published As

Publication number Publication date
JPH11246220A (en) 1999-09-14

Similar Documents

Publication Publication Date Title
US6800388B2 (en) Catalyst composition
US6129862A (en) Composite oxides of A-site defect type perovskite structure
EP1532710B1 (en) Perovskite-based fuel cell electrode and membrane
US6387338B1 (en) Preparation of multi-component Ce, Zr, Mox high oxygen-ion-conduct/oxygen-storage-capacity materials
CN101320814B (en) Electrolyte material of low temperature oxide fuel battery and preparation method thereof
US20090297923A1 (en) Sol-gel derived high performance catalyst thin films for sensors, oxygen separation devices, and solid oxide fuel cells
CN104934621B (en) A kind of Tailgas purifier of engine
WO2009156546A1 (en) Catalytic layer for oxygen activation on ionic solid electrolytes at high temperature
JPH08130018A (en) Electrode material for solid electrolyte
CN105655605B (en) Solid oxide fuel cell cathod catalyst, composite cathode material and preparation method thereof
Jing et al. Structure, synthesis, properties and solid oxide electrolysis cells application of Ba (Ce, Zr) O3 based proton conducting materials
CN108649235A (en) A kind of A laminated perovskite type electrode material and preparation method thereof
CN112186201B (en) Metal oxide cathode material, composite cathode material and battery
CN109772165A (en) A kind of tail gas clean-up reactor and preparation method thereof reacts pile with tail gas clean-up
JP4524791B2 (en) Solid oxide fuel cell
JP5283500B2 (en) Fuel cell cathode with large surface area
JP2003175337A (en) Exhaust gas cleaning ternary catalyst using a-site- detective perovskite compound oxide
JP3564693B2 (en) Perovskite-type composite oxide, method for producing the same, and solid oxide electrolyte fuel cell using the same
JP2002352809A (en) Guiding method of electrode active oxide into fuel pole for solid electrolyte fuel cell
CN111589452B (en) Tail gas combustion catalyst for solid oxide fuel cell system and preparation method thereof
JP3801010B2 (en) Electrode material, solid oxide fuel cell, solid oxide gas sensor, and method for producing electrode material
JP2005259518A (en) Assembly for electrochemical cell and electrochemical cell
CN113451594A (en) Cathode material of solid oxide fuel cell and preparation method thereof
JPH11165070A (en) Selective oxidation catalyst for co in gaseous hydrogen its production and removing method of co in gaseous hydrogen
JPH11307104A (en) Electrode catalyst for solid electrolyte type fuel cell and its manufacture

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 10

EXPY Cancellation because of completion of term