JP3564284B2 - Ultrasonic probe deterioration diagnosis method - Google Patents

Ultrasonic probe deterioration diagnosis method Download PDF

Info

Publication number
JP3564284B2
JP3564284B2 JP32641997A JP32641997A JP3564284B2 JP 3564284 B2 JP3564284 B2 JP 3564284B2 JP 32641997 A JP32641997 A JP 32641997A JP 32641997 A JP32641997 A JP 32641997A JP 3564284 B2 JP3564284 B2 JP 3564284B2
Authority
JP
Japan
Prior art keywords
ultrasonic probe
calibration
sample
ultrasonic
echo signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32641997A
Other languages
Japanese (ja)
Other versions
JPH11160293A (en
Inventor
純一 梶原
勝善 宮路
輝 森田
利光 高橋
隆 小條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP32641997A priority Critical patent/JP3564284B2/en
Publication of JPH11160293A publication Critical patent/JPH11160293A/en
Application granted granted Critical
Publication of JP3564284B2 publication Critical patent/JP3564284B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、試料の内部を検査する超音波検査装置に用いられる超音波プローブの耐用時間を予測したり、劣化した場合に信号を補正する技術に関する。
【0002】
【従来の技術】
従来から、図7に示すように、モータ1により回転する試料台2と、その試料台2にセットされた試料3に超音波を照射するとともに、試料3からの反射波(反射エコー)を受信する超音波プローブ4と、受信した反射波に基づいて試料の内部の状態を表わすAスコープ信号を出力する信号出力回路5と、そのAスコープ信号波形を表示するモニタ6とを備える超音波検査装置が知られている。試料3は2つの円筒3aと3bを互いの端面同士をレーザ溶接して接合したものである。なお、図7に示すように、水が満たされた水槽7内に試料3を設置して検査が行われるので、水槽7と試料台2との間にはシール8が設けられている。
【0003】
超音波プローブ4は音響レンズの一端面に圧電素子を接着し、そこに電極を張り付けたものである。その使用にあたっては、圧電素子にバースト信号やインパルス信号を印加して音響レンズから超音波を試料に向けて照射し、試料からの反射波を音響レンズを介して圧電素子で受信して電気信号に変換するものである。
【0004】
このような超音波プローブは経年変化により性能が劣化することが知られている。そこで従来は、検査に先立って特定の距離に設置した校正用試料に超音波を照射し、その反射波の校正用エコー信号レベルによって劣化の状態を把握している。たとえば、所定時間使用した後で測定した校正用エコー信号強度レベルVuが新品の状態で測定した校正用エコー強度信号レベルVrとなるように調節ダイアルでゲインを調節している。
【0005】
【発明が解決しようとする課題】
しかしながら、このような調節ダイアルによる校正作業は煩雑である上、超音波プローブの耐用時間を予測することができないので、使用中の超音波プローブがどの程度使用に耐えるかを予測することは難しかった。
【0006】
本発明の目的は、超音波プローブの耐用時間を予測するようにした超音波プローブの劣化診断方法を提供することにある。
【0007】
【課題を解決するための手段】
一実施の形態を示す図1および図2に対応付けて説明する。
(1)請求項1の発明は、試料TPに超音波を照射しその反射波を受信してエコー信号を出力する超音波プローブ13の劣化診断方法に適用される。そして、校正用試料に超音波プローブ13から超音波を照射したときに超音波プローブ13から出力される校正用エコー信号を記憶する工程と、記憶工程を時間をおいて複数回行って得られた校正用エコー信号の時系列データに基づいて超音波プローブ13の劣化特性曲線を予測する工程と、この劣化特性曲線に基づいて超音波プローブ13の耐用時間を算出する工程とを備えることにより、上記目的を達成する。
(2)請求項2の発明は、請求項1の劣化診断方法において、劣化特性曲線が超音波プローブ13の使用限度を表わす信号強度とクロスするポイントを検出して現時点からの耐用時間を算出することを特徴とする。
【0008】
なお、記課題を解決するための手段の項では、本発明を分かり易くするために実施の形態の図を用いたが、これにより本発明が実施の形態に限定されるものではない。
【0009】
【発明の実施の形態】
以下、図面を参照して、本発明の実施の形態について詳細に説明する。図1は本発明による劣化診断方法が適用された超音波検査装置を示している。この超音波検査装置は、試料TPがセットされる試料台11と、この試料台11を回転駆動するモータ12と、超音波信号を試料TPに向けて照射するとともに試料TPからの反射波を受信する超音波プローブ13と、超音波プローブ13で受信した反射波信号(以後、エコー信号と呼ぶ)を増幅して検波する増幅検波回路14と、この増幅検波回路14から出力されるエコー信号のうち予め定められたゲート期間内におけるピーク値を検出するピーク検出回路15と、CPU、メモリ、A/D変換器、D/A変換器などの周辺機器で構成される制御回路16と、エコー信号をAスコープ表示したり、検出結果を表示するモニタ17と、モータ12の回転角度位置を検出するエンコーダ20と、モータ12を駆動するためのドライバ21とで構成されている。また、超音波検査装置を起動する電源スイッチ18Aと、検査モードもしくは校正モードを選択するモード選択スイッチ18Bと、電源スイッチ18Aがオフでもバックアップ電源で記憶内容を保持する不揮発性メモリ19とを備えている。
【0010】
この実施の形態では、検査前の校正作業により、超音波プローブ13の劣化によるエコー信号の強度低下を補正するとともに、耐用時間を予測して作業者に報知する。校正作業は、超音波プローブ13を校正用試料と特定の距離だけ離して超音波を照射させ、校正用試料の表面からの反射波を校正エコー信号として検出することにより行われる。
【0011】
図2は校正処理手順を示すフローチャート、図3は検査処理手順を示すフローチャートであり、超音波検査装置の電源スイッチ18Aがオンするとスタートプログラムによって行われる。作業者がモード選択スイッチ18Bを操作して校正モードを選択するとステップS21で校正モードと判定してステップS22に進む。ステップS22で変数iに1を加算してステップS23に進む。この変数iは、校正モードにより取込まれた校正エコー信号の回数を表わすために使用され、不揮発性メモリ19に記憶される。この変数iは、超音波プローブ13を交換したときに作業者によってリセットされる。また、この実施の形態では、超音波プローブ13の耐用時間を稼働時間を使用して算出するため、新品の状態からの電源スイッチ18Aのオン継続時間が計測され、この計測時間も不揮発性メモリ19に記憶される。不揮発性メモリ19には後述する補正係数αも記憶される。
【0012】
ステップS23で超音波プローブ13から校正用試料に超音波を照射する。超音波プローブ13で受信した反射波信号のピーク値はピーク検出回路15で検出される。校正時は校正用試料の表面からのエコー信号のピーク値を検出するようにゲートがかけられる。ステップS24でピーク検出回路15からの信号を制御回路16に取込み、A/D変換して校正エコー信号強度Vuiとして記憶する。校正エコー信号強度Vuiは不揮発性メモリ19に記憶される。ステップS24において、変数iが1のときに得られる信号強度Vu1が校正基準強度として用いられる。ステップS25において、新品の超音波プローブ13に対して予め得られた校正基準強度Vu1を、今回の校正作業で新たに検出した校正エコー信号強度Vuiで除すことにより補正係数αを算出し、この補正係数αを不揮発性メモリ19に記憶する。
【0013】
ここで、校正作業において得られる校正用エコー信号強度と稼働時間は、たとえば図4に示すように変数iに対応付けてメモリ20に記憶される。
【0014】
ステップS26において、2回前までの校正エコー信号強度Vu(i−2),Vu(i−1)を読み出し、時系列データVu(i−2),Vu(i−1),Vuiの強度に基づいて最小二乗法により劣化曲線DCを算出した上で、ステップS27において、耐用時間T2を算出する。
【0015】
図5は超音波プローブ13の稼働時間に応じてエコーレベルが低下する様子を示すグラフである。現時点t10において取込まれた校正エコー信号強度をVU10とする。Vu9,Vu8がそれぞれ1回前の時点t9、2回前の時点t8で得られた校正エコー信号強度である。Vu10,Vu9,Vu8の3つの強度レベルを用いて最小二乗法によりエコーレベルの低下特性、すなわち超音波プローブ13の劣化特性C1を算出する。そして、超音波プローブ13が正常に使用できる限度として予め設定された使用限度強度Vmと、劣化特性C1がクロスするポイントCRを求め、このクロスポイントCRに対応する時点tfと現時点t10との差を耐用時間T2として算出する。
【0016】
ステップS28では、図5のグラフをモニタ17に表示する。モニタ17上には、現在までの稼働時間T1と耐用時間T2がグラフとともに表示される。
【0017】
図2のステップS21で検査モードと判定されると、図3のステップS1に進む。ステップS1でモータ12を駆動し、ステップS2で試料TPが1回転したと判定されるとステップS3に進む。これは回転が安定してから計測を始めるための手順であり、エンコーダ20からのパルス信号のカウント値に基づいて行われる。ステップS3では、エンコーダ20から出力されるパルス信号の立ち上がりに同期させて超音波プローブ13から超音波信号を試料に向けて発射し、試料TPからのエコー信号を受信する。受信したエコー信号は増幅検波回路14で増幅検波されてピーク検出回路15に送られる。
【0018】
図6は超音波検査信号とエコー信号の一例である。波形W1が超音波検査信号、W2が試料TPの表面から反射する表面エコー信号、W3が試料TPの表面から所定深さにある欠陥や剥離からの反射エコー信号である。ピーク検出回路15は試料TPの表面から所定深さのエコー信号にゲートをかけてそのピーク値を検出して制御回路16に送る。ステップS4では、エンコーダ20からのパルス信号に応じた回転角度位置に対応づけて、ピーク検出回路15で検出されたピーク値をA/D変換してメモリに格納する。
【0019】
ステップS5において、エンコーダ20からのパルス信号のカウント値に基づいて試料TPが1回転したかを判定し、1回転していなければステップS3、ステップS4を繰り返して、たとえば1000個のデータをサンプリングする。ステップS5で1回転したことが判定されると、ステップS6に進み、メモリされたピーク値に補正係数αを乗じて補正する。ステップS7では、取込んだピーク値データの強度レベルを、検出した試料の回転角度位置に対応付けてモニタ17に表示する。ステップS8で試料が合格品か不良品かを評価して図3の処理を終了する。評価の方法は種々提案されているが、ここでは発明と直接関係がないので説明を省略する。
【0020】
このような実施の形態では、検査に先立って校正作業を行い、超音波プローブ13の劣化に応じた補正係数αを算出し、ピーク検出回路15で検出されてメモリに記憶された検査用エコー信号強度を補正係数で補正するようにしたので、従来のように、手動で調節ダイアルを操作してゲインを毎回設定する必要がなく、作業性が向上する。また、この校正作業時に超音波プローブ13の耐用時間が算出されるので、作業者は使用中の超音波プローブをどの程度まで使用できるかを予測することができる。
【0021】
以上では、図3のステップS4でメモリに記憶した検査用ピーク値にステップS6において補正係数αを乗じて超音波プローブ13の劣化を補償するようにしたが、超音波プローブ13の検波増幅回路14のゲインを補正係数αを用いて変更するようにしてもよい。劣化特性を最低3つの信号強度に基づいた最小二乗法で算出するようにしたが、その他の方法で劣化特性を予測してもよい。
【0022】
【発明の効果】
以上説明したように、本発明によれば、検査に先立って超音波プローブの校正用試料に対する校正用エコー信号強度の経年変化による低下の程度から劣化特性を算出し、この劣化特性に基づいて耐用時間を算出するようにしたので、使用中の超音波プローブがどの位使用できるかを推定することができる。
【図面の簡単な説明】
【図1】本発明に係る超音波検査装置の一実施の形態のブロック図
【図2】超音波検査装置の校正作業の処理手順例を示すフローチャート
【図3】図2の超音波検査装置の検査処理手順例を示すフローチャート
【図4】変数iと稼働時間と校正エコー信号強度の記憶方式を説明する図
【図5】超音波プローブの劣化特性を示すグラフ
【図6】超音波検査信号、表面エコー信号、欠陥信号を示す図
【図7】超音波検査装置を説明する図
【符号の説明】
11 試料台
12 モータ
13 超音波プローブ
15 ピーク検出回路
16 制御回路
17 モニタ
18A 電源スイッチ
18B モード選択スイッチ
19 不揮発性メモリ
TP 試料
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technique for estimating the useful life of an ultrasonic probe used in an ultrasonic inspection apparatus for inspecting the inside of a sample and correcting a signal when the ultrasonic probe is deteriorated.
[0002]
[Prior art]
Conventionally, as shown in FIG. 7, a sample table 2 rotated by a motor 1 and a sample 3 set on the sample table 2 are irradiated with ultrasonic waves and a reflected wave (reflected echo) from the sample 3 is received. An ultrasonic inspection apparatus comprising: an ultrasonic probe 4 for performing an operation, a signal output circuit 5 for outputting an A-scope signal representing the internal state of the sample based on the received reflected wave, and a monitor 6 for displaying the A-scope signal waveform It has been known. The sample 3 is obtained by joining two cylinders 3a and 3b by laser welding their end faces. As shown in FIG. 7, since the sample 3 is placed in the water tank 7 filled with water and the inspection is performed, a seal 8 is provided between the water tank 7 and the sample table 2.
[0003]
The ultrasonic probe 4 has a piezoelectric element adhered to one end surface of an acoustic lens, and an electrode is attached thereto. In use, a burst signal or impulse signal is applied to the piezoelectric element, ultrasonic waves are emitted from the acoustic lens toward the sample, and the reflected wave from the sample is received by the piezoelectric element via the acoustic lens and converted into an electric signal. It is something to convert.
[0004]
It is known that the performance of such an ultrasonic probe deteriorates due to aging. Therefore, conventionally, an ultrasonic wave is applied to a calibration sample placed at a specific distance prior to the inspection, and the state of deterioration is grasped by the calibration echo signal level of the reflected wave. For example, the gain is adjusted by an adjustment dial so that the calibration echo signal intensity level Vu measured after a predetermined period of use has become the calibration echo intensity signal level Vr measured in a new state.
[0005]
[Problems to be solved by the invention]
However, since the calibration work using such an adjustment dial is complicated and the lifetime of the ultrasonic probe cannot be predicted, it is difficult to predict how long the ultrasonic probe in use withstands use. .
[0006]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for diagnosing deterioration of an ultrasonic probe, which predicts the service life of the ultrasonic probe.
[0007]
[Means for Solving the Problems]
A description will be given in association with FIGS. 1 and 2 showing one embodiment.
(1) The invention of claim 1 is applied to a method for diagnosing deterioration of the ultrasonic probe 13 which irradiates an ultrasonic wave to the sample TP, receives a reflected wave thereof, and outputs an echo signal. The step of storing the calibration echo signal output from the ultrasonic probe 13 when the calibration sample is irradiated with ultrasonic waves from the ultrasonic probe 13, and the step of storing the calibration echo signal are performed a plurality of times at intervals. By providing a step of predicting a deterioration characteristic curve of the ultrasonic probe 13 based on the time-series data of the calibration echo signal, and a step of calculating a useful time of the ultrasonic probe 13 based on the deterioration characteristic curve, Achieve the goal.
(2) According to the invention of claim 2, in the deterioration diagnosis method of claim 1, a point at which the deterioration characteristic curve crosses the signal strength indicating the use limit of the ultrasonic probe 13 is detected, and the service life from the present time is calculated. It is characterized by the following.
[0008]
In the section of the means for solving the problems described above, the drawings of the embodiments are used to make the present invention easy to understand, but the present invention is not limited to the embodiments.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Figure 1 shows an ultrasonic inspection device degradation diagnostic method according to the present invention is applied. The ultrasonic inspection apparatus includes a sample stage 11 on which a sample TP is set, a motor 12 for driving the sample stage 11 to rotate, irradiating an ultrasonic signal toward the sample TP, and receiving a reflected wave from the sample TP. Ultrasonic probe 13, an amplified detection circuit 14 for amplifying and detecting a reflected wave signal (hereinafter referred to as an echo signal) received by the ultrasonic probe 13, and an echo signal output from the amplified detection circuit 14. A peak detection circuit 15 for detecting a peak value within a predetermined gate period, a control circuit 16 including peripheral devices such as a CPU, a memory, an A / D converter, and a D / A converter; A monitor 17 for displaying an A scope or a detection result, an encoder 20 for detecting a rotation angle position of the motor 12, and a driver 21 for driving the motor 12 are provided. It has been made. In addition, a power switch 18A for activating the ultrasonic inspection apparatus, a mode selection switch 18B for selecting an inspection mode or a calibration mode, and a non-volatile memory 19 for holding stored contents with a backup power supply even when the power switch 18A is turned off. I have.
[0010]
In this embodiment, the calibration work before the inspection corrects the decrease in the intensity of the echo signal due to the deterioration of the ultrasonic probe 13 and predicts the service life and notifies the worker. The calibration is performed by irradiating the ultrasonic probe 13 with an ultrasonic wave at a specific distance from the calibration sample and detecting a reflected wave from the surface of the calibration sample as a calibration echo signal.
[0011]
FIG. 2 is a flowchart showing a calibration processing procedure, and FIG. 3 is a flowchart showing an inspection processing procedure, which is performed by a start program when the power switch 18A of the ultrasonic inspection apparatus is turned on. When the operator operates the mode selection switch 18B to select the calibration mode, the mode is determined to be the calibration mode in step S21, and the process proceeds to step S22. In step S22, 1 is added to the variable i, and the flow advances to step S23. This variable i is used to represent the number of calibration echo signals taken in the calibration mode, and is stored in the nonvolatile memory 19. This variable i is reset by the operator when the ultrasonic probe 13 is replaced. Further, in this embodiment, since the service life of the ultrasonic probe 13 is calculated using the operating time, the ON duration of the power switch 18A from a new state is measured. Is stored in The nonvolatile memory 19 also stores a correction coefficient α described later.
[0012]
In step S23, the ultrasonic probe 13 irradiates the calibration sample with ultrasonic waves. The peak value of the reflected wave signal received by the ultrasonic probe 13 is detected by the peak detection circuit 15. At the time of calibration, a gate is applied so as to detect the peak value of the echo signal from the surface of the calibration sample. In step S24, the signal from the peak detection circuit 15 is taken into the control circuit 16, A / D converted, and stored as the calibration echo signal intensity Vui. The calibration echo signal intensity Vui is stored in the nonvolatile memory 19. In step S24, the signal strength Vu1 obtained when the variable i is 1 is used as the calibration reference strength. In step S25, the correction coefficient α is calculated by dividing the calibration reference intensity Vu1 obtained in advance for the new ultrasonic probe 13 by the calibration echo signal intensity Vui newly detected in the current calibration work. The correction coefficient α is stored in the nonvolatile memory 19.
[0013]
Here, the calibration echo signal intensity and the operating time obtained in the calibration work are stored in the memory 20 in association with the variable i, for example, as shown in FIG.
[0014]
In step S26, the calibration echo signal intensities Vu (i-2) and Vu (i-1) up to two times before are read out, and the intensity of the time-series data Vu (i-2), Vu (i-1), Vui is obtained. After calculating the deterioration curve DC by the least-squares method based on this, in step S27, the useful time T2 is calculated.
[0015]
FIG. 5 is a graph showing how the echo level decreases according to the operating time of the ultrasonic probe 13. The intensity of the calibration echo signal captured at the current time t10 is defined as VU10. Vu9 and Vu8 are calibration echo signal intensities obtained at time t9 one time before and time t8 two times before, respectively. Using the three intensity levels of Vu10, Vu9, and Vu8, the echo level lowering characteristic, that is, the deterioration characteristic C1 of the ultrasonic probe 13, is calculated by the least squares method. Then, a use limit strength Vm preset as a limit that the ultrasonic probe 13 can be used normally and a point CR at which the deterioration characteristic C1 crosses are obtained, and the difference between the time tf and the current time t10 corresponding to the cross point CR is calculated. It is calculated as the service time T2.
[0016]
In step S28, the graph of FIG. On the monitor 17, the operating time T1 and the durable time T2 up to the present are displayed together with a graph.
[0017]
If it is determined in step S21 in FIG. 2 that the inspection mode is set, the process proceeds to step S1 in FIG. The motor 12 is driven in step S1, and if it is determined in step S2 that the sample TP has made one rotation, the process proceeds to step S3. This is a procedure for starting the measurement after the rotation is stabilized, and is performed based on the count value of the pulse signal from the encoder 20. In step S3, the ultrasonic probe 13 emits an ultrasonic signal toward the sample in synchronization with the rising edge of the pulse signal output from the encoder 20, and receives an echo signal from the sample TP. The received echo signal is amplified and detected by the amplification detection circuit 14 and sent to the peak detection circuit 15.
[0018]
FIG. 6 is an example of an ultrasonic inspection signal and an echo signal. A waveform W1 is an ultrasonic inspection signal, W2 is a surface echo signal reflected from the surface of the sample TP, and W3 is a reflected echo signal from a defect or peeling at a predetermined depth from the surface of the sample TP. The peak detection circuit 15 applies a gate to the echo signal of a predetermined depth from the surface of the sample TP, detects the peak value, and sends it to the control circuit 16. In step S4, the peak value detected by the peak detection circuit 15 is A / D converted and stored in the memory in association with the rotational angle position corresponding to the pulse signal from the encoder 20.
[0019]
In step S5, it is determined whether the sample TP has made one rotation based on the count value of the pulse signal from the encoder 20, and if not, steps S3 and S4 are repeated to sample, for example, 1000 data. . If it is determined in step S5 that one rotation has been made, the process proceeds to step S6, in which the peak value stored in the memory is multiplied by a correction coefficient α for correction. In step S7, the intensity level of the acquired peak value data is displayed on the monitor 17 in association with the detected rotation angle position of the sample. In step S8, it is evaluated whether the sample is an acceptable or defective product, and the processing in FIG. 3 is completed. Although various evaluation methods have been proposed, they are not directly related to the present invention and will not be described.
[0020]
In such an embodiment, a calibration operation is performed prior to the inspection, a correction coefficient α corresponding to the deterioration of the ultrasonic probe 13 is calculated, and the inspection echo signal detected by the peak detection circuit 15 and stored in the memory is calculated. Since the intensity is corrected by the correction coefficient, there is no need to manually operate the adjustment dial to set the gain every time as in the related art, thereby improving workability. In addition, since the service life of the ultrasonic probe 13 is calculated during this calibration operation, the operator can predict how much the ultrasonic probe in use can be used.
[0021]
In the above description, the inspection peak value stored in the memory in step S4 of FIG. 3 is multiplied by the correction coefficient α in step S6 to compensate for the deterioration of the ultrasonic probe 13, but the detection amplification circuit 14 of the ultrasonic probe 13 May be changed using the correction coefficient α. Although the deterioration characteristic is calculated by the least square method based on at least three signal intensities, the deterioration characteristic may be predicted by another method.
[0022]
【The invention's effect】
As described above, according to the present invention, prior to the inspection, the deterioration characteristic is calculated from the degree of deterioration of the calibration echo signal intensity for the calibration sample of the ultrasonic probe due to aging, and the durability is determined based on the deterioration characteristic. Since the time is calculated, it is possible to estimate how long the ultrasonic probe in use can be used.
[Brief description of the drawings]
FIG. 1 is a block diagram of an embodiment of an ultrasonic inspection apparatus according to the present invention. FIG. 2 is a flowchart showing an example of a processing procedure of a calibration operation of the ultrasonic inspection apparatus. FIG. FIG. 4 is a flowchart illustrating an example of an inspection processing procedure. FIG. 4 is a diagram illustrating a storage method of a variable i, an operation time, and a calibration echo signal intensity. FIG. 5 is a graph illustrating deterioration characteristics of an ultrasonic probe. FIG. 7 illustrates a surface echo signal and a defect signal. FIG. 7 illustrates an ultrasonic inspection apparatus.
11 Sample stand 12 Motor 13 Ultrasonic probe 15 Peak detection circuit 16 Control circuit 17 Monitor 18A Power switch 18B Mode selection switch 19 Non-volatile memory TP Sample

Claims (2)

試料に超音波を投射しその反射波を受信してエコー信号を出力する超音波プローブの劣化診断方法において、
校正用試料に前記超音波プローブから超音波を照射したときに前記超音波プローブから出力される校正用エコー信号を記憶する工程と、
前記記憶工程を時間をおいて複数回行って得られた前記校正用エコー信号の時系列データに基づいて前記超音波プローブの劣化特性曲線を予測する工程と、
この劣化特性曲線に基づいて前記超音波プローブの耐用時間を算出する工程とを備えることを特徴とする超音波プローブの劣化診断方法。
In a method of diagnosing deterioration of an ultrasonic probe, which projects an ultrasonic wave on a sample, receives a reflected wave thereof, and outputs an echo signal,
A step of storing a calibration echo signal output from the ultrasonic probe when the calibration sample is irradiated with ultrasonic waves from the ultrasonic probe,
A step of predicting a deterioration characteristic curve of the ultrasonic probe based on time-series data of the calibration echo signal obtained by performing the storage step a plurality of times at intervals,
Calculating a service life of the ultrasonic probe based on the deterioration characteristic curve.
請求項1の劣化診断方法において、
前記劣化特性曲線が前記超音波プローブの使用限度を表わす信号強度とクロスするポイントを検出して現時点からの耐用時間を算出することを特徴とする超音波プローブの劣化診断方法。
The deterioration diagnosis method according to claim 1,
A method for diagnosing deterioration of an ultrasonic probe, comprising detecting a point where the deterioration characteristic curve crosses a signal intensity indicating a use limit of the ultrasonic probe and calculating a useful time from the present time.
JP32641997A 1997-11-27 1997-11-27 Ultrasonic probe deterioration diagnosis method Expired - Lifetime JP3564284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32641997A JP3564284B2 (en) 1997-11-27 1997-11-27 Ultrasonic probe deterioration diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32641997A JP3564284B2 (en) 1997-11-27 1997-11-27 Ultrasonic probe deterioration diagnosis method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004110023A Division JP3981366B2 (en) 2004-04-02 2004-04-02 Degradation correction method for ultrasonic probe and ultrasonic inspection method

Publications (2)

Publication Number Publication Date
JPH11160293A JPH11160293A (en) 1999-06-18
JP3564284B2 true JP3564284B2 (en) 2004-09-08

Family

ID=18187590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32641997A Expired - Lifetime JP3564284B2 (en) 1997-11-27 1997-11-27 Ultrasonic probe deterioration diagnosis method

Country Status (1)

Country Link
JP (1) JP3564284B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7341758B2 (en) * 2003-04-24 2008-03-11 General Electric Company Method for preparing and ultrasonically testing a thermal-spray coated article
DE602005014490D1 (en) 2004-08-31 2009-06-25 Toshiba Kk Apparatus for diagnosing an ultrasound probe, ultrasound diagnostic apparatus, and method for diagnosing an ultrasound probe
JP4738103B2 (en) * 2004-08-31 2011-08-03 株式会社東芝 Ultrasonic probe diagnostic apparatus and ultrasonic diagnostic apparatus
JP5405230B2 (en) * 2009-08-11 2014-02-05 株式会社東芝 Ultrasonic diagnostic apparatus, control method of ultrasonic diagnostic apparatus, and ultrasonic probe management system
JP5669023B2 (en) * 2012-05-23 2015-02-12 新日鐵住金株式会社 Method for adjusting flaw detection sensitivity of ultrasonic probe

Also Published As

Publication number Publication date
JPH11160293A (en) 1999-06-18

Similar Documents

Publication Publication Date Title
CA2469742C (en) Method and apparatus for assessing the quality of spot welds
US8833167B2 (en) Sensor device and method for operating a sensor device
JP3564284B2 (en) Ultrasonic probe deterioration diagnosis method
JP2007252529A (en) Ultrasonic diagnostic system, and operation verification method for ultrasonic transducer array
JP5112942B2 (en) Ultrasonic flaw detection method and apparatus
JP2008082864A (en) Ultrasonic flaw detector and ultrasonic flaw detecting method
JP3981366B2 (en) Degradation correction method for ultrasonic probe and ultrasonic inspection method
JP5754872B2 (en) Ultrasonic diagnostic equipment
WO2014020910A1 (en) Method for measuring degree of fusion, and ultrasound flaw detection device
JP5042153B2 (en) Inspection method by ultrasonic flaw detection method and inspection system by ultrasonic flaw detection method
JP4871656B2 (en) Ultrasonic probe and ultrasonic flaw detector
US11179833B2 (en) Tightening device
JPH10206400A (en) Ultrasonic detection element for automatically controlled window screen cleaning system
JPH07140242A (en) Ultrasonic sensor
JP5600980B2 (en) Ultrasonic measurement method and ultrasonic measurement apparatus
JPH07190995A (en) Method and device for detecting welding defect by ultrasonic wave
JPS6235618B2 (en)
JP2012211826A (en) Ultrasonic inspection device and method
JP2005147770A (en) Ultrasonic flaw detector
JP3564283B2 (en) Ultrasonic inspection method and apparatus
JP3604547B2 (en) Ultrasonic inspection apparatus and sample detection method thereof
JP3462748B2 (en) Ultrasonic inspection method and apparatus
JP2007024618A (en) Noise measurement device
JP3968443B2 (en) Health diagnosis method and system for equipment subjected to thermal shock
JP2007121175A (en) Displacement sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160611

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term