JP3563923B2 - Desulfurizing agent and method for producing the same - Google Patents

Desulfurizing agent and method for producing the same Download PDF

Info

Publication number
JP3563923B2
JP3563923B2 JP16954697A JP16954697A JP3563923B2 JP 3563923 B2 JP3563923 B2 JP 3563923B2 JP 16954697 A JP16954697 A JP 16954697A JP 16954697 A JP16954697 A JP 16954697A JP 3563923 B2 JP3563923 B2 JP 3563923B2
Authority
JP
Japan
Prior art keywords
oxide
desulfurizing agent
silica
weight
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16954697A
Other languages
Japanese (ja)
Other versions
JPH11519A (en
Inventor
俊邦 世良
野島  繁
洲崎  誠
雅昭 内田
勉 大串
雅弘 古野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16954697A priority Critical patent/JP3563923B2/en
Publication of JPH11519A publication Critical patent/JPH11519A/en
Application granted granted Critical
Publication of JP3563923B2 publication Critical patent/JP3563923B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、重質油、その蒸留残渣、石炭等をガス化して得られる高温還元性ガスに含まれる硫黄化合物を乾式で吸収除去するために使用される脱硫剤及びその製造方法に関する。
【0002】
【従来の技術】
近年、クリーン燃料の価格高騰を抑制する観点から、石炭や重質油の利用技術開発が進められており、これらを原料とするガス化ガスを複合発電あるいは燃料電池の燃料としたり、化学合成原料にすることが行われている。
【0003】
このガス化には、石炭や重質油等の原料によって、数100〜数1000ppmの硫黄化合物が含まれており、公害防止上あるいは後流機器の腐食防止上から硫黄化合物を除去する必要がある。
【0004】
硫化水素(HS)、硫化カルボニル(COS)などの硫黄化合物を除去するには、乾式法が熱効率面から有利なために主流となっており、この乾式法では、400〜600℃での吸収性能が優れる酸化鉄(Fe)を主成分とする脱硫剤が一般的に使用されている。酸化鉄は、石炭ガス化ガスのような加圧下でも、400〜600℃の高温で硫黄化合物を吸収して硫化鉄(FeS)となり、しかも450〜650℃の高温で再生させることにより、Feに戻る特性を有している。これにより、廃熱の有効利用による熱効率向上を図りながら高脱硫性能を維持することが可能となる。
【0005】
しかし、Feだけからなる脱硫剤によって脱硫及び再生反応を繰り返すと、分子量変化により崩壊する。このため、長期間の使用に耐える強度を有するように、アルミナ、シリカ、チタニア、シリカアルミナ等の多孔質無機耐火物にFeを担持して、実用的な形状に成形された状態で使用されている。又、ガス化ガスはダストを含有しているため、脱硫剤を流動化させる流動床方式あるいは脱硫剤を移動させる移動床方式によってダストによる種々の問題に対応している。
【0006】
ところが、このような加圧下での固体(脱硫剤)の搬送移動には、塔槽類、配管類の磨耗による長期信頼性に難点があり、この難点を回避するため、本発明者らは固定床方式を開発してきた。この場合、固定床方式に適用する脱硫剤は、他方式に比べて使用中の適宜な交換ができないところから、長期耐久性が要求されるため、高脱硫性能の他に長期の耐SOx性、耐熱性も必要になる。
【0007】
このような観点から、本発明者らは、酸化鉄とシリカ(これらの前駆体を含む)を調合し、この調合体を酸化チタンと混合して成形し、この成形体を脱硫剤を再生する際の再生温度以上、例えば600〜800℃の温度で焼成して製造される脱硫剤を提案した(特開平1−135535号公報)。
【0008】
しかし酸化鉄(Fe)は(1)式で表される脱硫反応におけるHS平衡濃度から吸収反応に限界がある。例えば石炭ガス化ガス(Hを8%、HOを5%含む。)におけるHS平衡濃度は下記表1に示すように、酸化鉄(Fe)が高脱硫性能を発現する400〜600℃では20ppm以上であり、上記温度範囲でガスを脱硫する場合には20ppm以下にすることはできない。なお、HSと共存しているCOSの平衡濃度は無視できる程小さく、HSとの反応で考えて差し支えない。
Fe+2HS+H→2FeS+3HO (1)
【0009】
【表1】

Figure 0003563923
【0010】
【発明が解決しようとする課題】
表1に併記した酸化銅(CuO)及び酸化亜鉛(ZnO)は、酸化鉄(Fe)と同様に脱硫剤としての機能を有する化合物である。ところがこれらの化合物のHS平衡濃度は、表1から判るように、酸化鉄(Fe)よりはるかに低く、高温域での高脱硫性能発現には有利となるが、再生反応における脱着性能は概して悪い。特に酸化銅(CuO)は硫酸塩化するため、繰り返し使用による経時的な性能低下は避けられない。
【0011】
これに対し、酸化亜鉛(ZnO)は再生温度を酸化鉄(Fe)より高い600〜800℃とすることにより、脱着性能が向上するため、高温高性能の脱硫剤として有望であるが、再生反応熱による温度上昇(通常200℃程度)を考慮した場合、酸化亜鉛(ZnO)を用いた脱硫剤としては酸化鉄(Fe)以上の耐熱性が要求される。
【0012】
この酸化亜鉛(ZnO)の特質を補完するため、酸化鉄(Fe)と組み合わせることによって、脱硫適用温度を広域化することが考えられる。このためには、酸化亜鉛(ZnO)と酸化鉄(Fe)との混合あるいはジンクフェライト(ZnFe=ZnO・Fe)を適用する手段がある。しかし、脱硫及び再生の繰り返しに対して長期の耐久性を維持するために、脱硫剤には高性能の他に耐熱性が要求され、酸化鉄(Fe)との組み合わせだけでなく、さらに実用的な成形技術を確立する必要がある。
【0013】
本発明は、このような従来の酸化鉄(Fe)系脱硫剤が有している脱硫性能の限界を克服し、酸化鉄(Fe)に代わる酸化亜鉛(ZnO)の高脱硫性能を発現することができる脱硫剤及びその製造方法を提供することを目的とする

【0014】
【課題を解決するための手段】
本発明者らは、400〜600℃の幅広い温度領域での高脱硫性能を発現させるための研究を重ねたところ、酸化亜鉛(ZnO)と酸化鉄(Fe)との二元系が有効であり、しかも双方の酸化鉄を単に混合するよりも、ジンクフェライト(ZnFe)の形態にして用いる方が熱安定性に優れることを見出し、更に、この熱安定性を増すためにシリカとの共存が有効であることを見出した。又、脱硫剤の成形担体として、酸化チタン(TiO)を用いることが有効であり、しかも酸化チタンはアナターゼ型でも適用可能であるが、更に脱硫の高性能化と耐久性向上を図るためには、酸化珪素(SiO)と酸化チタン(TiO)との結合物を使用することが有効であることを見出し、本発明を完成したものである。
【0015】
すなわち、第1の発明の脱硫剤は、酸化鉄と酸化亜鉛とが合計で5〜40重量%、シリカが5〜20重量%、酸化チタン及び/又は酸化ジルコニウムが35〜85重量%を含有していることを特徴とする。
【0016】
第2の発明の脱硫剤は、第1の発明において酸化鉄と酸化亜鉛がジンクフェライトを形成していることを特徴とする。
【0017】
第3の発明の脱硫剤の製造方法は、鉄塩及び亜鉛塩の混合物を中和して沈殿物を生成し、シリカ及び/又はシリカの前駆体を混合し、比表面積が120m/g以下のチタンシリケート、比表面積が80m/g以下の酸化ジルコニウム及びこれらの混合物からなる群から選ばれた担体を混合して成形し、乾燥し、焼成することを特徴とする。
【0018】
第4の発明の脱硫剤の製造方法は、第3の発明において沈殿物を乾燥し焼成した後シリカ及び/又はシリカの前駆体を混合する、又は、沈殿物を乾燥しシリカ及び/又はシリカの前駆体を混合した後焼成することを特徴とする。
【0019】
第5の発明の脱硫剤の製造方法は、第3又は第4の発明において焼成を800〜1000℃で行うことを特徴とする。
【0020】
【発明の実施の形態】
本発明の脱硫剤は、約400〜600℃の幅広い温度領域、特に600℃近辺での高脱硫性能を発現すると同時に、長期使用における熱安定性を賦与するために、酸化亜鉛と酸化鉄とをシリカ及び/又はその前駆体と調合しておき、チタンシリケート等の酸化チタン及び/又は酸化ジルコニウムと調合して製造するものである。
【0021】
酸化亜鉛及びその前駆体としては、焼成することによって酸化亜鉛となる硝酸亜鉛、硫酸亜鉛、塩化亜鉛、炭酸亜鉛、水酸化亜鉛などが挙げられる。
【0022】
酸化鉄及びその前駆体としては、焼成することによって酸化鉄となる硝酸鉄、硫酸鉄、塩化鉄、炭酸鉄、水酸化鉄などの他に、鉄鉱石、黄土、鉄製品の洗浄廃液からの回収で副生する酸化鉄などが挙げられる。
【0023】
本発明の脱硫剤は、具体的には、酸化亜鉛及び酸化鉄の前駆体であるこれらの塩化合物を溶液状態で均一に混合し、アンモニア水で中和して水酸化物を沈殿させ、この水酸化物を脱水し、乾燥後、800〜1000℃の温度で焼成することによってジンクフェライト(ZnFe)とする。このジンクフェライトをシリカ及び/又はその前駆体と均一に混合することにより安定化させる処理を行う。その後、熱的に安定なチタンシリケート等の酸化チタン及び/又は酸化ジルコニウムと混合し、成形して、乾燥し、焼成することにより、硫黄化合物の吸収成分としての酸化鉄と酸化亜鉛が600℃近辺の高温領域で熱的に安定であり、且つ耐SOx性を含有する脱硫剤を製造することができる。
【0024】
ここで酸化亜鉛と酸化鉄の前駆体から得られる水酸化物を焼成することなく、シリカ及び/又はその前駆体と均一に混合した後に、800〜1000℃の温度で焼成しても同等の脱硫剤を製造することができる。
【0025】
本発明において、熱安定性に優れた酸化亜鉛と酸化鉄の調製に使用されるシリカの前駆体としては、少量にもかかわらず安定化の作用を発揮する点でシリカゾル、ケイ酸水溶液などの溶液が好ましいが、ホワイトカーボンのような微細なシリカ粒子粉末でも、その効果は認められる。
【0026】
酸化チタンは、酸化チタン単独よりもチタンシリケートのような酸化チタン複合体が好ましい。脱硫剤の適用温度を考慮すると、800〜1000℃で焼成することによってチタン酸化物が得られるものであれば、どのようなチタン含有物でもよいが、シリカとの結合により熱的に安定化しているチタンシリケート(TiSiO(=Ti0・SiO))であって、チタンシリケートの比表面積が120m/g以下のものが好適である。
単独の酸化チタンとしては、アナターゼ型、ルチル型あるいは結晶性の低い酸化チタンのいずれも適用できるが、酸化チタンは高温状態で結晶性が徐々に低下して比表面積が小さくなっていくので、前記の熱的に安定化している酸化チタン複合体に比較して熱的安定性に劣る。例えばアナターゼ型の酸化チタンの比表面積は通常80m/g以下、ルチル型のそれは15m/g以下であり、結晶性が低くなるにつれてそれらの熱的に安定な期間が短くなる。
【0027】
酸化ジルコニウムの原料としては、焼成することにより酸化物となるジルコニウム含有物なら何でも良いが、硝酸ジルコニウム、硝酸ジルコニル、水酸化ジルコニウム、塩化ジルコニウムなどが挙げられる。酸化ジルコニウムとしてはこれら酸化ジルコニウムの原料を焼成して得られたもの又はジルコニア粉末が好ましい。この場合、酸化チタンと同様に800℃以上の熱安定性を有する酸化ジルコニウムが好ましく、酸化ジルコニウムの比表面積も80m/g以下のものを使用する。
【0028】
以上の原料は、成形助剤としての粘土、ガラス繊維及び可塑剤とともに混合し、ハニカム状、円柱状、球状などの任意の形状にするために押出成形され、乾燥、焼成することにより脱硫剤が製造される。
【0029】
本発明の脱硫剤に含有される酸化亜鉛と酸化鉄は、成形品の強度、脱硫性能などを考慮すると、焼成して得られる脱硫剤全量に対し5〜40重量%、好ましくは15〜35重量%である。特に、ジンクフェライトを製造過程で形成する観点からは、酸化亜鉛と酸化鉄とは等重量であることが望ましい。これらの含有量が5重量%以下では脱硫剤充填量が著しく増加し、また40重量%以上では脱硫剤強度が極端に低下する。
【0030】
シリカの調合量を酸化亜鉛及び酸化鉄の合計よりも多くすることは、脱硫性能の低下、酸化チタンや酸化ジルコニウムの作用(COSの加水分解反応)の妨害となるために好ましくなく、シリカは焼成して得られる脱硫剤全量に対し5〜20重量%が良好である。
【0031】
【実施例】
(実施例1)
硝酸鉄(Fe(NO・9HO)23.1kgと硝酸亜鉛(Zn(NO・6HO)16.7kgとにイオン交換水40kgを加え、1時間撹拌後、15重量%のアンモニア水35.5kgを加えてpH7.5として、水酸化鉄と水酸化亜鉛の共沈物を調製した。この共沈物をろ過脱水後、イオン交換水で洗浄し、乾燥後、シリカを20重量%含有するシリカゾル溶液14.7kgを添加して混合し、噴霧乾燥後、800℃で5時間焼成した。
【0032】
この焼成物5.3kgに対し、予め800℃で5時間焼成した比表面積105m/gのチタンシリケート粉末(TiO/SiO=80/20重量%)14.1kg及びガラス繊維1.1kgを混合した。
【0033】
次いで、この混合粉体にイオン交換水9リットル、ポリエチレンオキサイド150g及びカルボキシメチルセルロース131gを加え、15重量%のアンモニア水によってpH8.0に調整した。
【0034】
この混合物を1時間混練し、水分含有率が37重量%になるように調節後、オーガマシンタイプの押出機で押出成形し、一辺75mm、長さ600mmの直方体状のハニカム構造の成形物(ピッチ5.1mm、壁厚1.3mm)を成形した。この時の押し出し速度は、分速1020mmと良好であった。そして、常温で1日乾燥後、50℃で5日間乾燥し、その後、900℃で5時間焼成して脱硫剤とした。この脱硫剤は、亀裂の発生がなく、しかも成形性は良好であった。
【0035】
得られた脱硫剤の組成は、酸化亜鉛(ZnO)10.0重量%、酸化鉄(Fe)10.0重量%、シリカ(SiO)20.0重量%、酸化チタン(TiO)55.0重量%、ガラス繊維5.0重量%であった。
このハニカム構造の脱硫剤を表2に示す試験条件によって脱硫及び再生の繰り返し試験を20回行った後、脱硫性能、ガス流れ方向の圧壊強度を測定した。図1は、繰り返し試験前(フレッシュ)と20回繰り返し試験後での脱硫剤中の吸収成分(ZnO、Fe)含有当たりの硫黄化合物吸着量を示し、試験の前後での変化はほとんどなく、繰り返し使用が可能であることがわかる。
【0036】
【表2】
Figure 0003563923
【0037】
(実施例2)
硝酸鉄(Fe(NO・9HO)23.1kgと硝酸亜鉛(Zn(NO・6HO)16.7kgとにイオン交換水40kgを加え、1時間撹拌後、15重量%のアンモニア水35.5kgを加えてpH7.5として、水酸化鉄と水酸化亜鉛の共沈物を調製した。この共沈物をろ過脱水後、イオン交換水で洗浄し、乾燥後、シリカを20重量%を含有するシリカゾル溶液14.7kgを添加して混合し、噴霧乾燥後、800℃で5時間焼成した。
【0038】
この焼成物5.3kgに対し、予め800℃で5時間焼成した比表面積105m/gのチタンシリケート粉末13.9kgと比表面積78m/gの酸化ジルコニウム200g及びガラス繊維1.1kgを混合した。
【0039】
次いで、この混合粉体にイオン交換水9リットル、ポリエチレンオキサイド150g及びカルボキシメチルセルロース131gを加え、以後、実施例1と同様にしてハニカム構造の脱硫剤を製造した。
【0040】
得られた脱硫剤の組成は、酸化亜鉛(ZnO)10.0重量%、酸化鉄(Fe)10.0重量%、シリカ(SiO)20.0重量%、酸化チタン(TiO)54.0重量%、酸化ジルコニウム(ZrO)1.0重量%、ガラス繊維5.0重量%であった。
【0041】
(実施例3)
硝酸鉄(Fe(NO・9HO)23.1kgと硝酸亜鉛(Zn(NO・6HO)16.7kgとにイオン交換水40kgを加え、1時間撹拌後、15重量%のアンモニア水35.5kgを加えてpH7.5として、水酸化鉄と水酸化亜鉛の共沈物を調製した。この共沈物をろ過脱水後、イオン交換水で洗浄し、乾燥後、シリカを20重量%含有するシリカゾル溶液14.7kgを添加して混合し、噴霧乾燥後、800℃で5時間焼成した。
【0042】
この焼成物5.3kgに対し、予め800℃で5時間焼成した比表面積105m/gのチタンシリケート粉末7.1kgと比表面積78m/gの酸化ジルコニウム7.0g及びガラス繊維1.1kgを混合した。
次いで、この混合粉体にイオン交換水9リットル、ポリエチレンオキサイド150g及びカルボキシメチルセルロース131gを加え、以後、実施例1と同様にしてハニカム構造の脱硫剤を製造した。
【0043】
得られた脱硫剤の組成は、酸化亜鉛(ZnO)10.0重量%、酸化鉄(Fe)10.0重量%、シリカ(SiO)13.4重量%、酸化チタン(TiO)27.4重量%、酸化ジルコニウム(ZrO2)34.2重量%、ガラス繊維5.0重量%であった。
【0044】
(実施例4)
硝酸鉄(Fe(NO・9HO)23.1kgと硝酸亜鉛(Zn(NO・6HO)16.7kgとにイオン交換水40kgを加え、1時間撹拌後、15重量%のアンモニア水35.5kgを加えてpH7.5として、水酸化鉄と水酸化亜鉛の共沈物を調製した。この共沈物をろ過脱水後、イオン交換水で洗浄し、乾燥後、シリカを20重量%含有するシリカゾル溶液14.7kgを添加して混合し、110℃で5時間乾燥した。
【0045】
この乾燥物7.4kgに対し、予め800℃で5時間焼成した比表面積105m/gのチタンシリケート粉末13.9kgと比表面積78m/gの酸化ジルコニウム200g及びガラス繊維1.1kgを混合した。
【0046】
次いで、この混合粉体にイオン交換水9リットル、ポリエチレンオキサイド150g及びカルボキシメチルセルロース131gを加え、以後、実施例1と同様にしてハニカム構造の脱硫剤を製造した。
【0047】
得られた脱硫剤の組成は、酸化亜鉛(ZnO)10.0重量%、酸化鉄(Fe)10.0重量%、シリカ(SiO)20.0重量%、酸化チタン(TiO)54.0重量%、酸化ジルコニウム(ZrO)1.0重量%、ガラス繊維5.0重量%であった。
【0048】
(比較例1)
硝酸鉄(Fe(NO・9HO)46.2kgにイオン交換水40kgを加え、1時間撹拌後、15重量%のアンモニア水35.5kgを加えてpH7.5として、水酸化鉄の沈殿を得た。この沈殿をろ過脱水後、イオン交換水で洗浄し、乾燥後、シリカを20重量%含有するシリカゾル溶液14.7kgを添加して混合し、噴霧乾燥後、800℃で5時間焼成した。
【0049】
この焼成物5.3kgに対し、予め800℃で5時間焼成した比表面積105m/gのチタンシリケート粉末14.1kg及びガラス繊維1.1kgを混合した。
【0050】
次いで、この混合粉体にイオン交換水9リットル、ポリエチレンオキサイド150g及びカルボキシメチルセルロース131gを加え、以後、実施例1と同様にしてハニカム構造の脱硫剤を製造した。
【0051】
得られた脱硫剤の組成は、酸化鉄(Fe)20.0重量%、シリカ(SiO)20.0重量%、酸化チタン(TiO)55.0重量%、ガラス繊維5.0重量%であった。
【0052】
(比較例2)
硝酸鉄(Fe(NO・9HO)23.1kgと硝酸亜鉛(Zn(NO・6HO)16.7kgとにイオン交換水40kgを加え、1時間撹拌後、15重量%のアンモニア水35.5kgを加えてpH7.5として、水酸化鉄と水酸化亜鉛の共沈物を調製した。この共沈物をろ過脱水後、イオン交換水で洗浄し、乾燥後、シリカを20重量%含有するシリカゾル溶液45.2kgを添加して混合し、噴霧乾燥後、800℃で5時間焼成した。
【0053】
この焼成物8.0kgに対し、予め800℃で5時間焼成した比表面積58m/gのアナターゼ型チタニア粉末11.1kgと比表面積78m/gの酸化ジルコニウム200g及びガラス繊維1.1kgを混合した。
【0054】
次いで、この混合粉体にイオン交換水9リットル、ポリエチレンオキサイド150g及びカルボキシメチルセルロース131gを加え、以後、実施例1と同様にしてハニカム構造の脱硫剤を製造した。
【0055】
得られた脱硫剤の組成は、酸化亜鉛(ZnO)10.0重量%、酸化鉄(Fe)10.0重量%、シリカ(SiO)20.0重量%、酸化チタン(TiO)54.0重量%、酸化ジルコニウム(ZrO)1.0重量%、ガラス繊維5.0重量%であった。
【0056】
以上の実施例2,3,4及び比較例1,2で調製した脱硫剤についても、実施例1と同様の評価を行った。図2は、脱硫及び再生の試験前と繰り返しを20回行う試験後の脱硫剤中の吸収成分(ZnO、Fe)含有当たりの硫黄化合物吸着量を示す。同様に、図3は実施例3の、図4は実施例4の、図5は比較例1の、図6は比較例2のそれぞれの結果を示す。表3は、実施例及び比較例における脱硫剤のガス流れ方向の圧壊強度測定結果を示す。
【0057】
【表3】
Figure 0003563923
【0058】
表3及び図1〜6の結果から、脱硫・再生繰り返し試験による脱硫剤自体の圧壊強度は、実施例1〜4の脱硫剤がZnOを含有しているため、軸方向の圧壊強度は比較例よりは低いものの、25kg/cm以上あり、実用上での支障とはならない。
【0059】
一方、脱硫剤中の吸収成分含有量当たりの硫黄化合物吸着量は、実施例の脱硫剤がいずれもほとんど変化がないのに対し、比較例1ではZnOを含有していないため、600℃の高温での硫黄化合物吸着量が少なく、更に、繰り返し試験により硫黄化合物吸着量がかなり減少していることが判る。また、比較例2はアナターゼ型TiOを使用しているが、再生時の一時的な発熱反応で脱硫剤が650〜850℃となり、その結果、TiOの構造が変化して一部がルチル化するため、硫黄化合物吸着量が減少している。
【0060】
【発明の効果】
本発明の脱硫剤によれば、硫黄化合物の吸着反応平衡に優れ、600℃程度の高温雰囲気でも、高い硫黄化合物吸着量を示し、しかも脱硫・再生を繰り返しても硫黄化合物の吸着量が減少することがなく、実用的な強度を有し、長期間安定した使用が可能となる
【0061】
本発明の製造方法によれば、ZnOとFeとの化合物であるジンクフェライト(ZnFe)を予めSiOで安定化させると共に、COSの加水分解能力を有するTiO担体としてチタンシリケート(TiSiO)を用いるため、上述した特性を有した脱硫剤を良好に製造することができる。
【図面の簡単な説明】
【図1】実施例1の脱硫剤の脱硫・再生繰り返し試験の前後の硫黄化合物の吸着量を示す特性図である。
【図2】実施例2の脱硫剤の脱硫・再生繰り返し試験の前後の硫黄化合物の吸着量を示す特性図である。
【図3】実施例3の脱硫剤の脱硫・再生繰り返し試験の前後の硫黄化合物の吸着量を示す特性図である。
【図4】実施例4の脱硫剤の脱硫・再生繰り返し試験の前後の硫黄化合物の吸着量を示す特性図である。
【図5】比較例1の脱硫剤の脱硫・再生繰り返し試験の前後の硫黄化合物の吸着量を示す特性図である。
【図6】比較例2の脱硫剤の脱硫・再生繰り返し試験の前後の硫黄化合物の吸着量を示す特性図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a desulfurizing agent used for dry-absorbing and removing sulfur compounds contained in a high-temperature reducing gas obtained by gasifying heavy oil, a distillation residue thereof, coal and the like, and a method for producing the same.
[0002]
[Prior art]
In recent years, from the viewpoint of suppressing soaring prices of clean fuels, technologies for utilizing coal and heavy oil have been developed, and gasification gas derived from these materials can be used as fuel for combined power generation or fuel cells, or as a raw material for chemical synthesis. It has been done.
[0003]
This gasification contains several hundreds to several thousand ppm of sulfur compounds depending on raw materials such as coal and heavy oil, and it is necessary to remove sulfur compounds from the viewpoint of preventing pollution or preventing corrosion of downstream equipment. .
[0004]
Hydrogen sulfide (H 2 S), to remove sulfur compounds such as carbonyl sulfide (COS) is a dry method has become the mainstream for an advantageous thermal efficiency surface, this dry method, at 400 to 600 ° C. A desulfurizing agent mainly containing iron oxide (Fe 2 O 3 ) having excellent absorption performance is generally used. Iron oxide absorbs a sulfur compound at a high temperature of 400 to 600 ° C. to become iron sulfide (FeS) even under pressure such as coal gasification gas, and regenerates at a high temperature of 450 to 650 ° C. to obtain Fe 2. Back to O 3 properties have. This makes it possible to maintain high desulfurization performance while improving thermal efficiency by effectively utilizing waste heat.
[0005]
However, when the desulfurization and regeneration reactions are repeated with a desulfurization agent consisting solely of Fe 2 O 3 , it collapses due to a change in molecular weight. For this reason, Fe 2 O 3 is supported on a porous inorganic refractory such as alumina, silica, titania, and silica-alumina so as to have strength enough to withstand long-term use. It is used. Further, since the gasified gas contains dust, various problems caused by dust are addressed by a fluidized bed system for fluidizing the desulfurizing agent or a moving bed system for moving the desulfurizing agent.
[0006]
However, transporting a solid (desulfurizing agent) under such pressurization has a problem in long-term reliability due to abrasion of towers and pipes, and in order to avoid this difficulty, the present inventors have fixed. The floor system has been developed. In this case, since the desulfurizing agent applied to the fixed bed method cannot be appropriately replaced during use as compared with other methods, long-term durability is required, so in addition to high desulfurization performance, long-term SOx resistance, Heat resistance is also required.
[0007]
From such a viewpoint, the present inventors formulate iron oxide and silica (including their precursors), mix this blended product with titanium oxide, mold the molded product, and regenerate this molded product as a desulfurizing agent. A desulfurizing agent manufactured by firing at a temperature not lower than the regeneration temperature, for example, at a temperature of 600 to 800 ° C. has been proposed (JP-A-1-135535).
[0008]
However, iron oxide (Fe 2 O 3 ) has a limit in the absorption reaction due to the H 2 S equilibrium concentration in the desulfurization reaction represented by the formula (1). Such as coal gasification gas (H 2 8%, including H 2 O 5%.) H 2 S equilibrium concentration in, as shown in the following Table 1, iron oxide (Fe 2 O 3) is expressed high desulfurization performance When the gas is desulfurized in the above temperature range, it cannot be reduced to 20 ppm or less. Note that the equilibrium concentration of COS coexisting with H 2 S is negligibly small and may be considered in the reaction with H 2 S.
Fe 2 O 3 + 2H 2 S + H 2 → 2FeS + 3H 2 O (1)
[0009]
[Table 1]
Figure 0003563923
[0010]
[Problems to be solved by the invention]
Copper oxide (CuO) and zinc oxide (ZnO) described in Table 1 are compounds having a function as a desulfurizing agent, like iron oxide (Fe 2 O 3 ). However, as can be seen from Table 1, the H 2 S equilibrium concentration of these compounds is much lower than that of iron oxide (Fe 2 O 3 ), which is advantageous for exhibiting high desulfurization performance in a high temperature range. Desorption performance is generally poor. In particular, since copper oxide (CuO) is sulfated, performance degradation over time due to repeated use is inevitable.
[0011]
On the other hand, zinc oxide (ZnO) is promising as a high-temperature, high-performance desulfurizing agent because the desorption performance is improved by setting the regeneration temperature to 600 to 800 ° C. higher than iron oxide (Fe 2 O 3 ). In consideration of a temperature rise (usually about 200 ° C.) due to heat of regeneration reaction, a desulfurizing agent using zinc oxide (ZnO) is required to have heat resistance higher than that of iron oxide (Fe 2 O 3 ).
[0012]
To complement the characteristics of zinc oxide (ZnO), it is conceivable to broaden the desulfurization application temperature by combining it with iron oxide (Fe 2 O 3 ). For this purpose, there is a means of mixing zinc oxide (ZnO) and iron oxide (Fe 2 O 3 ) or applying zinc ferrite (ZnFe 2 O 4 = ZnO · Fe 2 O 3 ). However, in order to maintain long-term durability against repeated desulfurization and regeneration, the desulfurizing agent is required to have heat resistance in addition to high performance, and not only in combination with iron oxide (Fe 2 O 3 ), Further, it is necessary to establish a practical molding technique.
[0013]
The present invention overcomes the limitation of the desulfurization performance of such a conventional iron oxide (Fe 2 O 3 ) -based desulfurizing agent, and provides a high zinc oxide (ZnO) alternative to iron oxide (Fe 2 O 3 ). An object of the present invention is to provide a desulfurizing agent capable of exhibiting desulfurizing performance and a method for producing the same.
[0014]
[Means for Solving the Problems]
The inventors of the present invention have repeatedly conducted research for expressing high desulfurization performance in a wide temperature range of 400 to 600 ° C., and found that a binary system of zinc oxide (ZnO) and iron oxide (Fe 2 O 3 ) was formed. It has been found that it is effective, and that the use of zinc ferrite (ZnFe 2 O 4 ) in the form of zinc ferrite (ZnFe 2 O 4 ) is more excellent in thermal stability than simply mixing both iron oxides. It was found that coexistence with silica was effective. It is effective to use titanium oxide (TiO 2 ) as a molding carrier for the desulfurizing agent, and titanium oxide is also applicable to an anatase type. However, in order to further improve the desulfurization performance and durability, Have found that it is effective to use a combination of silicon oxide (SiO 2 ) and titanium oxide (TiO 2 ), and have completed the present invention.
[0015]
That is, the desulfurizing agent of the first invention contains iron oxide and zinc oxide in total of 5 to 40% by weight, silica in 5 to 20% by weight, and titanium oxide and / or zirconium oxide in 35 to 85% by weight. It is characterized by having.
[0016]
The desulfurizing agent of the second invention is characterized in that, in the first invention, iron oxide and zinc oxide form zinc ferrite.
[0017]
In the method for producing a desulfurizing agent according to the third invention, a mixture of an iron salt and a zinc salt is neutralized to generate a precipitate, and silica and / or a precursor of silica are mixed, and the specific surface area is 120 m 2 / g or less. , A carrier selected from the group consisting of zirconium oxide having a specific surface area of 80 m 2 / g or less and a mixture thereof, molded, dried and fired.
[0018]
The method for producing a desulfurizing agent according to the fourth invention is the method according to the third invention, wherein the precipitate is dried and calcined, and then silica and / or a precursor of silica are mixed, or the precipitate is dried to produce silica and / or silica. It is characterized by firing after mixing the precursor.
[0019]
The method for producing a desulfurizing agent according to the fifth invention is characterized in that, in the third or fourth invention, calcination is performed at 800 to 1000 ° C.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
The desulfurizing agent of the present invention exhibits high desulfurization performance in a wide temperature range of about 400 to 600 ° C., particularly in the vicinity of 600 ° C., and at the same time imparts thermal stability in long-term use with zinc oxide and iron oxide. It is prepared by mixing with silica and / or a precursor thereof and mixing with titanium oxide such as titanium silicate and / or zirconium oxide.
[0021]
Examples of zinc oxide and its precursor include zinc nitrate, zinc sulfate, zinc chloride, zinc carbonate, zinc hydroxide, and the like, which become zinc oxide when calcined.
[0022]
As iron oxide and its precursor, iron nitrate, iron sulfate, iron chloride, iron carbonate, iron hydroxide, etc. that turn into iron oxide when calcined, as well as recovery from washing waste liquid of iron ore, loess, iron products And iron oxide by-produced in the reaction.
[0023]
Specifically, the desulfurizing agent of the present invention uniformly mixes these salt compounds, which are precursors of zinc oxide and iron oxide, in a solution state and neutralizes with ammonia water to precipitate a hydroxide. The hydroxide is dehydrated, dried, and calcined at a temperature of 800 to 1000 ° C. to obtain zinc ferrite (ZnFe 2 O 4 ). The zinc ferrite is stabilized by mixing it uniformly with silica and / or its precursor. Thereafter, the mixture is mixed with thermally stable titanium oxide such as titanium silicate and / or zirconium oxide, molded, dried and calcined, whereby iron oxide and zinc oxide as absorption components of the sulfur compound are around 600 ° C. A desulfurizing agent which is thermally stable in the high temperature region of and has SOx resistance can be produced.
[0024]
Here, even if a hydroxide obtained from a precursor of zinc oxide and iron oxide is uniformly mixed with silica and / or a precursor thereof without being fired, the same desulfurization is performed even if fired at a temperature of 800 to 1000 ° C. Agents can be manufactured.
[0025]
In the present invention, as a precursor of silica used in the preparation of zinc oxide and iron oxide having excellent thermal stability, silica sol, a solution such as an aqueous solution of silicic acid in terms of exhibiting the effect of stabilization despite a small amount However, even with fine silica particle powder such as white carbon, the effect is recognized.
[0026]
Titanium oxide is preferably a titanium oxide composite such as titanium silicate rather than titanium oxide alone. Considering the application temperature of the desulfurizing agent, any titanium-containing material may be used as long as the titanium oxide can be obtained by baking at 800 to 1000 ° C., but thermally stabilized by bonding with silica. a are titanium silicates (TiSiO 4 (= Ti0 2 · SiO 2)), it is preferable that the specific surface area of the titanium silicate the following 120 m 2 / g.
As the single titanium oxide, any of anatase type, rutile type or titanium oxide having low crystallinity can be applied.However, since titanium oxide gradually decreases in crystallinity at a high temperature and the specific surface area decreases, Is inferior in thermal stability to the thermally stabilized titanium oxide composite. For example, the specific surface area of anatase type titanium oxide is usually 80 m 2 / g or less, and that of rutile type is 15 m 2 / g or less. As the crystallinity becomes lower, their thermally stable period becomes shorter.
[0027]
As a raw material of the zirconium oxide, any zirconium-containing substance which becomes an oxide by firing may be used, and examples thereof include zirconium nitrate, zirconyl nitrate, zirconium hydroxide, and zirconium chloride. As the zirconium oxide, one obtained by firing these zirconium oxide raw materials or zirconia powder is preferable. In this case, zirconium oxide having a thermal stability of 800 ° C. or higher is preferable as in the case of titanium oxide, and zirconium oxide having a specific surface area of 80 m 2 / g or less is used.
[0028]
The above raw materials are mixed with clay, glass fiber and plasticizer as a molding aid, extruded to obtain an arbitrary shape such as a honeycomb, a column, a sphere, and the like, and a desulfurizing agent is obtained by drying and firing. Manufactured.
[0029]
The zinc oxide and the iron oxide contained in the desulfurizing agent of the present invention are 5 to 40% by weight, preferably 15 to 35% by weight based on the total amount of the desulfurizing agent obtained by calcination in consideration of the strength of the molded product, the desulfurizing performance and the like. %. In particular, from the viewpoint of forming zinc ferrite in the manufacturing process, it is desirable that zinc oxide and iron oxide are equal in weight. When the content is 5% by weight or less, the amount of the desulfurizing agent charged is remarkably increased.
[0030]
It is not preferable to increase the amount of the silica to be greater than the sum of zinc oxide and iron oxide, because this will lower the desulfurization performance and hinder the action of titanium oxide and zirconium oxide (hydrolysis reaction of COS). Is 5 to 20% by weight based on the total amount of the desulfurizing agent obtained.
[0031]
【Example】
(Example 1)
40 kg of ion-exchanged water was added to 23.1 kg of iron nitrate (Fe (NO 3 ) 3 .9H 2 O) and 16.7 kg of zinc nitrate (Zn (NO 3 ) 2 .6H 2 O). A coprecipitate of iron hydroxide and zinc hydroxide was prepared by adding 35.5 kg of aqueous ammonia of 3% by weight to adjust the pH to 7.5. The coprecipitate was filtered, dehydrated, washed with ion-exchanged water, dried, mixed with 14.7 kg of a silica sol solution containing 20% by weight of silica, spray-dried, and then calcined at 800 ° C. for 5 hours.
[0032]
To 5.3 kg of this calcined product, 14.1 kg of titanium silicate powder (TiO 2 / SiO 2 = 80/20% by weight) having a specific surface area of 105 m 2 / g previously calcined at 800 ° C. for 5 hours and 1.1 kg of glass fiber were added. Mixed.
[0033]
Next, 9 liters of ion-exchanged water, 150 g of polyethylene oxide and 131 g of carboxymethyl cellulose were added to the mixed powder, and the pH was adjusted to 8.0 with 15% by weight of aqueous ammonia.
[0034]
This mixture was kneaded for 1 hour, adjusted to have a water content of 37% by weight, and extruded with an auger machine type extruder to obtain a molded article (pitch) having a rectangular parallelepiped shape of 75 mm on a side and 600 mm in length. 5.1 mm, wall thickness 1.3 mm). The extrusion speed at this time was as good as 1020 mm / min. Then, after drying at room temperature for one day, drying at 50 ° C. for 5 days, and then baking at 900 ° C. for 5 hours to obtain a desulfurizing agent. This desulfurizing agent was free of cracks and had good moldability.
[0035]
The composition of the obtained desulfurizing agent was as follows: 10.0% by weight of zinc oxide (ZnO), 10.0% by weight of iron oxide (Fe 2 O 3 ), 20.0% by weight of silica (SiO 2 ), and titanium oxide (TiO 2) ) 55.0% by weight and glass fiber 5.0% by weight.
The desulfurizing agent having the honeycomb structure was subjected to a repetition test of desulfurization and regeneration 20 times under the test conditions shown in Table 2, and then the desulfurization performance and the crushing strength in the gas flow direction were measured. FIG. 1 shows the amount of sulfur compound adsorbed per absorbed component (ZnO, Fe 2 O 3 ) content in the desulfurizing agent before the fresh test (fresh) and after the 20-time repeated test. And it can be seen that it can be used repeatedly.
[0036]
[Table 2]
Figure 0003563923
[0037]
(Example 2)
40 kg of ion-exchanged water was added to 23.1 kg of iron nitrate (Fe (NO 3 ) 3 .9H 2 O) and 16.7 kg of zinc nitrate (Zn (NO 3 ) 2 .6H 2 O). A coprecipitate of iron hydroxide and zinc hydroxide was prepared by adding 35.5 kg of aqueous ammonia of 3% by weight to adjust the pH to 7.5. The coprecipitate is filtered, dehydrated, washed with ion-exchanged water, dried, mixed with 14.7 kg of a silica sol solution containing 20% by weight of silica, spray-dried and calcined at 800 ° C. for 5 hours. .
[0038]
To 5.3 kg of this calcined product, 13.9 kg of a titanium silicate powder having a specific surface area of 105 m 2 / g, previously calcined at 800 ° C. for 5 hours, 200 g of zirconium oxide having a specific surface area of 78 m 2 / g, and 1.1 kg of glass fiber were mixed. .
[0039]
Next, 9 liters of ion-exchanged water, 150 g of polyethylene oxide and 131 g of carboxymethylcellulose were added to the mixed powder, and thereafter, a desulfurizing agent having a honeycomb structure was manufactured in the same manner as in Example 1.
[0040]
The composition of the obtained desulfurizing agent was as follows: 10.0% by weight of zinc oxide (ZnO), 10.0% by weight of iron oxide (Fe 2 O 3 ), 20.0% by weight of silica (SiO 2 ), and titanium oxide (TiO 2) ) 54.0% by weight, zirconium oxide (ZrO 2 ) 1.0% by weight, and glass fiber 5.0% by weight.
[0041]
(Example 3)
40 kg of ion-exchanged water was added to 23.1 kg of iron nitrate (Fe (NO 3 ) 3 .9H 2 O) and 16.7 kg of zinc nitrate (Zn (NO 3 ) 2 .6H 2 O). A coprecipitate of iron hydroxide and zinc hydroxide was prepared by adding 35.5 kg of aqueous ammonia of 3% by weight to adjust the pH to 7.5. The coprecipitate was filtered, dehydrated, washed with ion-exchanged water, dried, mixed with 14.7 kg of a silica sol solution containing 20% by weight of silica, spray-dried, and then calcined at 800 ° C. for 5 hours.
[0042]
To this fired product 5.3 kg, zirconium oxide 7.0g and glass fiber 1.1kg of titanium silicate powder 7.1kg and a specific surface area of 78m 2 / g in advance at 800 ° C. 5 hours fired specific surface area 105m 2 / g Mixed.
Next, 9 liters of ion-exchanged water, 150 g of polyethylene oxide and 131 g of carboxymethylcellulose were added to the mixed powder, and thereafter, a desulfurizing agent having a honeycomb structure was manufactured in the same manner as in Example 1.
[0043]
The composition of the obtained desulfurization agent, zinc oxide (ZnO) 10.0 wt%, iron oxide (Fe 2 O 3) 10.0 wt%, silica (SiO 2) 13.4% by weight, of titanium oxide (TiO 2 ) 27.4% by weight, zirconium oxide (ZrO 2) 34.2% by weight, and glass fiber 5.0% by weight.
[0044]
(Example 4)
40 kg of ion-exchanged water was added to 23.1 kg of iron nitrate (Fe (NO 3 ) 3 .9H 2 O) and 16.7 kg of zinc nitrate (Zn (NO 3 ) 2 .6H 2 O). A coprecipitate of iron hydroxide and zinc hydroxide was prepared by adding 35.5 kg of aqueous ammonia of 3% by weight to adjust the pH to 7.5. The coprecipitate was filtered, dehydrated, washed with ion-exchanged water, dried, mixed with 14.7 kg of a silica sol solution containing 20% by weight of silica, and dried at 110 ° C. for 5 hours.
[0045]
To 7.4 kg of the dried product, 13.9 kg of a titanium silicate powder having a specific surface area of 105 m 2 / g, previously fired at 800 ° C. for 5 hours, 200 g of zirconium oxide having a specific surface area of 78 m 2 / g, and 1.1 kg of glass fiber were mixed. .
[0046]
Next, 9 liters of ion-exchanged water, 150 g of polyethylene oxide and 131 g of carboxymethylcellulose were added to the mixed powder, and thereafter, a desulfurizing agent having a honeycomb structure was manufactured in the same manner as in Example 1.
[0047]
The composition of the obtained desulfurizing agent was as follows: 10.0% by weight of zinc oxide (ZnO), 10.0% by weight of iron oxide (Fe 2 O 3 ), 20.0% by weight of silica (SiO 2 ), and titanium oxide (TiO 2) ) 54.0% by weight, zirconium oxide (ZrO 2 ) 1.0% by weight, and glass fiber 5.0% by weight.
[0048]
(Comparative Example 1)
Iron nitrate (Fe (NO 3) 3 · 9H 2 O) of deionized water 40kg was added to 46.2Kg, after stirring for 1 hour, the pH7.5 by addition of 15 wt% aqueous ammonia 35.5 kg, iron hydroxide Was obtained. The precipitate was filtered, dehydrated, washed with ion-exchanged water, dried, mixed with 14.7 kg of a silica sol solution containing 20% by weight of silica, spray-dried, and then calcined at 800 ° C. for 5 hours.
[0049]
To 5.3 kg of this calcined product, 14.1 kg of a titanium silicate powder having a specific surface area of 105 m 2 / g previously calcined at 800 ° C. for 5 hours and 1.1 kg of glass fiber were mixed.
[0050]
Next, 9 liters of ion-exchanged water, 150 g of polyethylene oxide and 131 g of carboxymethylcellulose were added to the mixed powder, and thereafter, a desulfurizing agent having a honeycomb structure was manufactured in the same manner as in Example 1.
[0051]
The composition of the obtained desulfurization agent, iron oxide (Fe 2 O 3) 20.0 wt%, silica (SiO 2) 20.0 wt%, titanium oxide (TiO 2) 55.0% by weight, glass fiber 5. It was 0% by weight.
[0052]
(Comparative Example 2)
40 kg of ion-exchanged water was added to 23.1 kg of iron nitrate (Fe (NO 3 ) 3 .9H 2 O) and 16.7 kg of zinc nitrate (Zn (NO 3 ) 2 .6H 2 O). A coprecipitate of iron hydroxide and zinc hydroxide was prepared by adding 35.5 kg of aqueous ammonia of 3% by weight to adjust the pH to 7.5. The coprecipitate was filtered, dehydrated, washed with ion-exchanged water, dried, mixed with 45.2 kg of a silica sol solution containing 20% by weight of silica, mixed, spray-dried, and calcined at 800 ° C. for 5 hours.
[0053]
To 8.0 kg of this fired product, 11.1 kg of anatase type titania powder having a specific surface area of 58 m 2 / g, previously fired at 800 ° C. for 5 hours, 200 g of zirconium oxide having a specific surface area of 78 m 2 / g and 1.1 kg of glass fiber were mixed. did.
[0054]
Next, 9 liters of ion-exchanged water, 150 g of polyethylene oxide and 131 g of carboxymethylcellulose were added to the mixed powder, and thereafter, a desulfurizing agent having a honeycomb structure was manufactured in the same manner as in Example 1.
[0055]
The composition of the obtained desulfurizing agent was as follows: 10.0% by weight of zinc oxide (ZnO), 10.0% by weight of iron oxide (Fe 2 O 3 ), 20.0% by weight of silica (SiO 2 ), and titanium oxide (TiO 2) ) 54.0% by weight, zirconium oxide (ZrO 2 ) 1.0% by weight, and glass fiber 5.0% by weight.
[0056]
The same evaluation as in Example 1 was performed for the desulfurizing agents prepared in Examples 2, 3, and 4 and Comparative Examples 1 and 2. FIG. 2 shows the amount of sulfur compound adsorbed per absorbed component (ZnO, Fe 2 O 3 ) in the desulfurizing agent before and after the test of desulfurization and regeneration and after repeating the test 20 times. Similarly, FIG. 3 shows the results of Example 3, FIG. 4 shows the results of Example 4, FIG. 5 shows the results of Comparative Example 1, and FIG. 6 shows the results of Comparative Example 2. Table 3 shows the measurement results of the crushing strength of the desulfurizing agent in the gas flow direction in the examples and the comparative examples.
[0057]
[Table 3]
Figure 0003563923
[0058]
From the results shown in Table 3 and FIGS. 1 to 6, the crushing strength of the desulfurizing agent itself in the desulfurization / regeneration repetition test is such that the crushing strength in the axial direction is a comparative example because the desulfurizing agent of Examples 1 to 4 contains ZnO. Although it is lower than that, it is 25 kg / cm 2 or more, and does not hinder practical use.
[0059]
On the other hand, the sulfur compound adsorption amount per the content of the absorbing component in the desulfurizing agent was almost the same as that of the desulfurizing agent of Example, whereas the Comparative Example 1 did not contain ZnO. Shows that the amount of adsorbed sulfur compounds is small, and the repeated test shows that the amount of adsorbed sulfur compounds is considerably reduced. Comparative Example 2 uses anatase-type TiO 2 , but the temperature of the desulfurizing agent becomes 650 to 850 ° C. due to a temporary exothermic reaction at the time of regeneration, and as a result, the structure of TiO 2 changes and a part of it becomes rutile. Therefore, the amount of sulfur compound adsorbed is reduced.
[0060]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the desulfurizing agent of this invention, it is excellent in the adsorption reaction equilibrium of a sulfur compound, shows a high adsorption amount of a sulfur compound even in the high temperature atmosphere of about 600 degreeC, and also reduces the adsorption amount of a sulfur compound even if re-desulfurization and regeneration are repeated. It has practical strength, and can be used stably for a long period of time.
According to the production method of the present invention, zinc ferrite (ZnFe 2 O 4 ), which is a compound of ZnO and Fe 2 O 3 , is preliminarily stabilized with SiO 2 , and titanium ferrite is used as a TiO 2 carrier having COS hydrolysis ability. Since silicate (TiSiO 4 ) is used, a desulfurizing agent having the above-described characteristics can be produced favorably.
[Brief description of the drawings]
FIG. 1 is a characteristic diagram showing the amounts of sulfur compounds adsorbed before and after the desulfurization / regeneration repetition test of the desulfurizing agent of Example 1.
FIG. 2 is a characteristic diagram showing the amounts of sulfur compounds adsorbed before and after the desulfurization / regeneration repetition test of the desulfurizing agent of Example 2.
FIG. 3 is a characteristic diagram showing the amounts of sulfur compounds adsorbed before and after the desulfurization / regeneration repetition test of the desulfurizing agent of Example 3.
FIG. 4 is a characteristic diagram showing the amounts of sulfur compounds adsorbed before and after the desulfurization / regeneration repetition test of the desulfurizing agent of Example 4.
FIG. 5 is a characteristic diagram showing the amounts of sulfur compounds adsorbed before and after the desulfurization / regeneration repetition test of the desulfurizing agent of Comparative Example 1.
FIG. 6 is a characteristic diagram showing the amounts of sulfur compounds adsorbed before and after the desulfurization / regeneration repetition test of the desulfurizing agent of Comparative Example 2.

Claims (6)

酸化鉄と酸化亜鉛とを合計で5〜40重量%、シリカを5〜20重量%、酸化チタン又は、酸化チタンと酸化ジルコニウムとを合計で35〜85重量%含有し、シリカと酸化チタンとがチタンシリケートを形成している脱硫剤。 5 to 40% by weight of iron oxide and zinc oxide in total, 5 to 20% by weight of silica, and 35 to 85% by weight of titanium oxide or titanium oxide and zirconium oxide in total; A desulfurizing agent forming titanium silicate. 酸化鉄と酸化亜鉛とを合計で5〜40重量%、シリカを5〜20重量%、酸化チタン又は、酸化チタンと酸化ジルコニウムとを合計で35〜85重量%含有する脱硫剤であって、鉄塩及び亜鉛塩の混合物を中和して沈殿物を生成し、シリカ及び/又はシリカの前駆体を混合し、チタンシリケート又は、該チタンシリケートと酸化ジルコニウムとの混合物から選択される担体を混合して成形し、乾燥し、焼成してなる脱硫剤。A desulfurizing agent containing iron oxide and zinc oxide in total of 5 to 40% by weight, silica in 5 to 20% by weight, titanium oxide or titanium oxide and zirconium oxide in total of 35 to 85% by weight, Neutralizing the mixture of salt and zinc salt to form a precipitate, mixing silica and / or a precursor of silica, mixing a carrier selected from titanium silicate or a mixture of titanium silicate and zirconium oxide; A desulfurizing agent obtained by molding, drying and firing. 酸化鉄と酸化亜鉛がジンクフェライトを形成している請求項1または2に記載の脱硫剤。3. The desulfurizing agent according to claim 1, wherein the iron oxide and the zinc oxide form zinc ferrite. 鉄塩及び亜鉛塩の混合物を中和して沈殿物を生成し、シリカ及び/又はシリカの前駆体を混合し、比表面積が120m2/g以下のチタンシリケートまたは、該チタンシリケートと比表面積が80m2/g以下の酸化ジルコニウムとの混合物から選択される担体を混合して成形し、乾燥し、焼成することを特徴とする脱硫剤の製造方法。The mixture of the iron salt and the zinc salt is neutralized to form a precipitate, and the silica and / or the precursor of the silica are mixed, and the specific surface area of the titanium silicate is 120 m 2 / g or less. A method for producing a desulfurizing agent, comprising mixing a carrier selected from a mixture with 80 m 2 / g or less of zirconium oxide, molding, drying and calcining. 沈殿物を乾燥し焼成した後シリカ及び/又はシリカの前駆体を混合する、又は、沈殿物を乾燥しシリカ及び/又はシリカの前駆体を混合した後焼成する請求項4に記載の脱硫剤の製造方法。The desulfurizing agent according to claim 4, wherein the precipitate is dried and calcined and then mixed with silica and / or a silica precursor, or the precipitate is dried and mixed with silica and / or silica precursor and then calcined. Production method. 焼成を800〜1000℃で行う請求項4又は5記載の脱硫剤の製造方法。The method for producing a desulfurizing agent according to claim 4 or 5, wherein the firing is performed at 800 to 1000 ° C.
JP16954697A 1997-06-11 1997-06-11 Desulfurizing agent and method for producing the same Expired - Lifetime JP3563923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16954697A JP3563923B2 (en) 1997-06-11 1997-06-11 Desulfurizing agent and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16954697A JP3563923B2 (en) 1997-06-11 1997-06-11 Desulfurizing agent and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11519A JPH11519A (en) 1999-01-06
JP3563923B2 true JP3563923B2 (en) 2004-09-08

Family

ID=15888491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16954697A Expired - Lifetime JP3563923B2 (en) 1997-06-11 1997-06-11 Desulfurizing agent and method for producing the same

Country Status (1)

Country Link
JP (1) JP3563923B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018124384A1 (en) * 2016-12-29 2018-07-05 (주)이앤켐솔루션 Adsorbent with excellent moldability and method for producing same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2589096B1 (en) * 1985-10-29 1990-10-19 Framatome Sa METHOD AND DEVICE FOR SEARCHING THE OPTIMA POSITION FOR SCREWING LARGE DOWELS
US6346190B1 (en) * 2000-03-21 2002-02-12 Phillips Petroleum Company Desulfurization and novel sorbents for same
JPWO2002074883A1 (en) * 2001-03-21 2004-07-08 学校法人早稲田大学 Desulfurizing agent, method for producing and using the same
JP4625970B2 (en) * 2003-03-11 2011-02-02 学校法人早稲田大学 Desulfurizing agent, method for producing the same, desulfurizing method, and method for producing hydrogen for fuel cell
JP4616569B2 (en) * 2004-03-29 2011-01-19 三菱重工業株式会社 Desulfurization agent for hydrocarbon fuel and method for producing the same
JP4722414B2 (en) * 2004-06-02 2011-07-13 学校法人早稲田大学 Desulfurizing agent, method for producing the same, desulfurizing method, and method for producing high-purity hydrogen
US7871459B2 (en) * 2004-11-08 2011-01-18 Trustees Of Tufts College Apparatus and methods for non-regenerative and regenerative hot gas desulfurization
KR100685658B1 (en) * 2005-08-19 2007-02-26 한국과학기술연구원 Copper ferrite catalyst and decomposition of sulfur trioxide using the same
KR101223846B1 (en) 2010-12-28 2013-01-17 재단법인 포항산업과학연구원 Method for removal of hydrogen sulfide by hydrogen sulfide removing agent
CN118105936B (en) * 2024-04-30 2024-07-02 山东海嘉石油化工有限公司 Solid desulfurizing agent and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018124384A1 (en) * 2016-12-29 2018-07-05 (주)이앤켐솔루션 Adsorbent with excellent moldability and method for producing same

Also Published As

Publication number Publication date
JPH11519A (en) 1999-01-06

Similar Documents

Publication Publication Date Title
JP3563923B2 (en) Desulfurizing agent and method for producing the same
JPH08196B2 (en) Catalyst for reducing nitrogen oxide content in flue gas
JPS6090043A (en) Catalyst for purifying nitrogen oxide
JPS59131569A (en) Manufacture of spinel composition containing alkali earth metal and aluminum
JP5947939B2 (en) Titanium-containing powder, exhaust gas treatment catalyst, and method for producing titanium-containing powder
KR101976161B1 (en) Sulfur tolerant alumina catalyst support
KR101700433B1 (en) Titanium dioxide nanocomposites for Plate-type Selective Catalytic Reduction
JP2012139625A (en) Titanium containing powder, exhaust gas treatment catalyst, and method of manufacturing titanium containing powder
CN101703927A (en) Preparation process of nano catalyst honeycomb
EP2075065A1 (en) Exhaust gas purification catalyst, and catalytic honey-comb structure for exhaust gas purification
CA1201699A (en) Preparative process for alkaline earth metal, aluminum-containing spinels
JPH0242536B2 (en)
JP2007083126A (en) Oxygen storage substance, and method for storing oxygen in three-way catalyst for cleaning exhaust gas from car
KR101187758B1 (en) METHOD FOR MANUFACTURING DE-NOx SCR CATALYST USING CALCIUM SULFATE HEMIHYDRATE
CN102008891B (en) Preparation process of sintering-free nanometer ZnFe2O4-TiO2 desulfurizing agent filter membrane
JP2594337B2 (en) Desulfurizing agent
JPH11300213A (en) Denitration catalyst
CN113198452A (en) Rutile phase solid solution denitration catalyst, preparation method and application
KR102230840B1 (en) Catalyst and method for removing NOx from combustion exhaust gas
JPH0798149B2 (en) Method for producing desulfurizing agent
JPWO2002074883A1 (en) Desulfurizing agent, method for producing and using the same
JPH02144143A (en) Desulfurizing agent
KR101422117B1 (en) Ce-La Complex oxide desulfurization sorbent, and preparation of the same
TWI670112B (en) Catalyst and method for removing nox from combustion exhaust
JPH11276897A (en) Catalyst for hydrolyzing carbonyl sulfide and hydrolysis

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term