JP3563319B2 - Yeast reactor with screen-type solid-liquid separator - Google Patents

Yeast reactor with screen-type solid-liquid separator Download PDF

Info

Publication number
JP3563319B2
JP3563319B2 JP2000074157A JP2000074157A JP3563319B2 JP 3563319 B2 JP3563319 B2 JP 3563319B2 JP 2000074157 A JP2000074157 A JP 2000074157A JP 2000074157 A JP2000074157 A JP 2000074157A JP 3563319 B2 JP3563319 B2 JP 3563319B2
Authority
JP
Japan
Prior art keywords
sludge
yeast
tank
solid
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000074157A
Other languages
Japanese (ja)
Other versions
JP2001259677A (en
Inventor
義晴 縄村
中島  剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishihara Environmental Technology Co Ltd
Original Assignee
Nishihara Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishihara Environmental Technology Co Ltd filed Critical Nishihara Environmental Technology Co Ltd
Priority to JP2000074157A priority Critical patent/JP3563319B2/en
Publication of JP2001259677A publication Critical patent/JP2001259677A/en
Application granted granted Critical
Publication of JP3563319B2 publication Critical patent/JP3563319B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Filtration Of Liquid (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、工場等からの排水中の汚濁物質(BOD、SS、油分等)を好気的かつ生物学的に除去する固液分離手段を備えた排水処理装置に関するものである。
【0002】
【従来の技術】
図7は活性汚泥などの微生物、特に酵母を用いた従来の生物学的排水処理装置の構成及び処理工程を示すフローシートである。図7において1は汚濁物質(BOD、SS、油分等)を含む排水を好気条件で酵母により生物学的に処理する酵母反応槽であり、この酵母反応槽1の内部には曝気攪拌用の空気(酸素)を供給するための散気装置2が設けられている。この散気装置2には空気管路3を介して曝気ブロワ4が接続されている。
【0003】
5は排水を貯溜し、かつ上記酵母反応槽1への排水の流入量を調整する流量調整槽であり、この流量調整槽5の内部には原水管路6を介して酵母反応槽1に排水を送り出す原水ポンプ7が設けられている。
【0004】
8は酵母反応槽1内の排水と酵母汚泥の混合液を管路9を介して受け入れて処理水と酵母汚泥とに固液分離する重力式の沈殿槽(重力沈殿槽とも言う)であり、10は沈殿槽8内に沈殿した酵母汚泥を掻き寄せる汚泥掻寄機である。11は沈殿槽8の底部に沈殿した汚泥(酵母)の一部を酵母反応槽1内にポンプ12で返送するための汚泥返送管であり、13は沈殿槽8の底部に沈殿した汚泥(酵母)の一部を余剰酵母としてポンプ14で引き抜くための汚泥引抜管である。
【0005】
次に動作について説明する。
排水15は、まず流量調整槽5内に一旦貯溜され、原水ポンプ7により被処理原水として酵母反応槽1内に導入される。酵母反応槽1内では、排水と、沈殿槽8から汚泥返送管11を通じて返送されてきた酵母汚泥とが接触、混合され、散気装置2から供給される空気(酸素)を利用した好気条件下で酵母により汚濁物質を含む排水が処理される。
【0006】
酵母反応槽1内で生物学的処理が行われた後、酵母反応槽1内の混合液は管路9を介して沈殿槽8に移流され、重力により処理水16と酵母汚泥とに固液分離される。処理水16は放流若しくは後段の更なる処理工程へ送られ、沈殿した汚泥の一部はポンプ12により汚泥返送管11を介して酵母反応槽1内に返送され、沈殿した汚泥の残部は余剰酵母としてポンプ14により汚泥引抜管13を介して後段の汚泥処理工程に送られ、処理される。
【0007】
【発明が解決しようとする課題】
上述したように、従来の排水の生物学的処理装置では、主に酵母反応槽(曝気槽)1で汚泥と被処理水である排水とを曝気混合して好気的に処理した後、混合液を重力式の沈殿槽8に移流して処理水(分離液)16と酵母汚泥(分離汚泥)とに固液分離していた。
【0008】
そして、近年、処理効率を上げる目的で、酵母反応槽(曝気槽)1では汚泥濃度(MLSS)を高く維持して好気的に生物学的排水処理を行うようになってきた。
【0009】
しかしながら、このような処理効率を考慮して高MLSSで好気的に生物学的排水処理を行う場合には次のような課題があった。
【0010】
(1)通常の重力沈殿槽では酵母反応槽等の生物反応槽内の混合液を処理水(分離液)と酵母汚泥(分離汚泥)とに固液分離することが難しく、安定して良好な処理水を得ることができなかった。
【0011】
(2)処理状況により汚泥性状が悪化して沈降性が悪くなった場合や、排水の流入水量が増えて重力沈殿槽への流入水(混合液)量が多くなった場合には、重力沈殿槽での固液分離に支障を来たし、汚泥成分(SS分)が処理水と共に流出してしまうことがあった。
【0012】
(3)重力沈殿槽での固液分離では汚泥濃縮性が良くないため、汚泥性状に関わらず、沈殿した分離汚泥の汚泥濃度が高くならない。このため、生物反応槽内の混合液の汚泥濃度を高く保つには多量の沈殿汚泥を生物反応槽に返送しなければならなかった。
【0013】
(4)生物反応槽内の混合液に対する固液分離を良好に行うためには、常に汚泥性状を悪化させないように生物反応槽へ必要以上に空気を送り十分に好気条件下で処理しなければならず、設備費や維持費の増大を招いていた。
【0014】
(5)生物反応槽内の混合液に対する固液分離を安定かつ良好に行うためには、安全性を考慮して必要以上に大きな重力沈殿槽を設けなければならず、建設費、設備費が高くなると共に、設置スペースの増大を招いていた。
【0015】
本発明は上記のような種々の課題を解決するためになされたもので、生物反応槽(曝気槽)内の混合液が如何なる汚泥性状や汚泥濃度であっても、当該混合液を確実に処理水(分離液)と酵母汚泥(分離汚泥)とに固液分離すると共に、高濃度の分離汚泥を得ることのできる固液分離手段を備えた排水処理装置を提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明に係るスクリーン式固液分離機を備えた酵母反応槽は、曝気手段を有し、酵母を利用して排水を好気的に生物学的処理する酵母反応槽と、攪拌手段を有する凝集槽と、該凝集槽に前記酵母反応槽の混合液を移送する移送管路と、前記凝集槽及び/又は移送管路に凝集剤を供給する供給管路と、前記凝集槽から流出する凝集液を分離液と酵母汚泥とに固液分離するスクリーン式固液分離機と、該スクリーン式固液分離機により分離された酵母汚泥を前記酵母反応槽に返送する汚泥返送管とを備えたものである。
【0018】
【発明の実施の形態】
以下、本発明の実施の一形態を説明する。
実施の形態1.
図1は本発明の実施の形態1による固液分離手段を備えた排水処理装置の構成及び処理工程を示すフローシートである。図1において20は、汚濁物質を含む排水酵母を利用して好気的条件下で生物学的に処理する生物反応槽である。この生物反応槽20には、図7に示した従来の排水処理装置における酵母反応槽1と同様に、曝気攪拌用の散気装置(図示せず)、空気管路(図示せず)及び曝気ブロワ(図示せず)が設けられている。また、生物反応槽20には、その混合液(排水と酵母汚泥との混合物)を生物反応槽20とは別体に設けられた凝集槽21に移送する移送手段22が設けられている。この移送手段22としては生物反応槽20と凝集槽21とを連絡する管路(図示せず)と、この管路を介して生物反応槽20の内容液を凝集槽21へ圧送する圧送装置(図示せず)とから構成されてもよい。
【0019】
凝集槽21内には攪拌手段が設けられている。この攪拌手段は攪拌モータ(図示せず)により回転駆動される攪拌羽根23で構成されてもよいが、これに限定されることなく、上記凝集槽21内を攪拌混合できるものであればよい。
【0020】
また、凝集槽21と上記移送手段22のいずれか一方あるいは双方には、凝集剤添加手段24により凝集剤が適宜添加されるように構成されている。この凝集剤添加手段24による凝集剤添加は、排水に対する固液分離の安定化及び効率化を図る目的でなされるもので、酵母による生物学的処理に影響を与えない程度の凝集剤を混合液に添加し、フロックの粒径を大きくすることで、迅速かつ確実な固液分離を可能にするものである。
【0021】
固液分離手段25は、凝集剤が添加されて大きなフロックが形成された凝集混合液を処理水(分離液)26と濃縮汚泥(酵母汚泥)27とに固液分離するものである。固液分離手段25としては、スクリーン式固液分離機を採用することで大きな効果を得ることができる。
【0022】
ここで、スクリーン式固液分離機とは、ウェッジワイヤー型のスクリーンやバー型のスクリーン等からなる固液分離機をいい、分離液がスクリーンスリットを通過して排出され、スクリーンスリットを通過しない固形分が濃縮汚泥として排出されるものである。このようなスクリーン式固液分離機には、通常、スクリーンスリットの目詰まりを除去する洗浄機構が備えられている。図2はスクリーン式固液分離機の一例を示す斜視図であり、図3の(A)は図2に示したスクリーン式固液分離機の要部を示す断面図であり、図3の(B)は図2に示したスクリーン式固液分離機における洗浄機構としての回転ブラシを示す平面図である。図において、29はスクリーン式固液分離機である。このスクリーン式固液分離機29はスクリーン30と、このスクリーン30の上部に位置するフィードボックス31と、このフィードボックス31内に供給される凝集混合液32を上記スクリーン30に向けて順次オーバーフローさせるための分配堰33と、上記スクリーン30の目詰まりを除去する回転ブラシ34とから概略構成されている。スクリーン30は一定のスリット35をもって離間した複数のウェッジワイヤー36から実質的に構成されている。各ウェッジワイヤー36は楔形状の断面を有しており、各ウェッジワイヤー36の頂部の1つはスクリーン30の裏面側に向けられ、隣接するウェッジワイヤー36間の空間はスクリーン30の表面側よりも裏面側に大きく開いた構成となっている。このため、スクリーン30の裏面側は回転ブラシ34の作用を受け易くなっている。なお、スクリーン30の上部にはトラフ37が形成されている。このような固液分離機では、分配堰33でオーバーフローした凝集混合液32がトラフ37を越えてスクリーン30上に供給されると、固液分離される。即ち、分離液26はスリット35を通過する一方、分離汚泥27はスリット35を通過できず、スクリーン30上を流下してゆく。スリット35上に堆積した固形物は回転ブラシ34により定期的あるいは必要に応じて適宜除去され、スリット35の目詰まりが解消される。
【0023】
なお、洗浄手段としては、上記回転ブラシ33の他に、スクリーンスリットを形成するウェッジワイヤー型のスクリーンやバー型のスクリーン自体に振動を与えてスクリーンスリットに目詰まりした固形物を排除する振動機構、あるいはウェッジワイヤー型のスクリーンやバー型のスクリーン全体に散水してスクリーンスリットに目詰まりした固形物を洗い流す散水機構などが挙げられるが、これらに限定されるものではない。
【0024】
また、上記固液分離手段25としてはスクリーン式固液分離機に限定されるものではなく、遠心分離機や遠心濾過機などの機械的設備を用いてもよいし、濾材を用いた濾過設備や分離膜を用いた膜分離設備を用いてもよい。
【0025】
ここで、遠心濾過濃縮機とは、濃縮機の内壁に濾布が展張されたバスケット内に混合液を導入し、バスケットを回転させることで生じる遠心力により濾過する濃縮機をいい、分離液が濾布を通過して排出され、濾布を通過しない固形分が濃縮汚泥として排出されるものである。このような遠心濾過濃縮機には、通常、濾布の目詰まりを除去する洗浄機構が備えられている。
【0026】
また、固液分離手段25は、返送手段28を介して生物反応槽20と連絡されており、固液分離手段25により分離された濃縮汚泥27は返送手段28により生物反応槽20に戻され、濃縮汚泥27中の酵母が生物学的処理に再利用されるように構成されている。返送手段28は固液分離手段25と生物反応槽20とを連絡する管路(図示せず)と、必要に応じてこの管路を介して濃縮汚泥27を生物反応槽20へ返送する移送装置(図示せず)とから概略構成されている。
【0027】
次に動作について説明する。
流量が調整された流入排水15は、まず生物反応槽20内に導入される。この生物反応槽20内では、例えば酵母あるいは活性汚泥を利用して排水に対して好気的に生物学的処理が施され、汚濁物質を含む排水が処理される。次に、生物反応槽20内の混合液は移送手段22により凝集槽21に送られ、凝集剤が添加され、攪拌羽根23により攪拌混合される。凝集剤が混合された混合液には汚泥成分が凝集した大きなフロックが形成される。このような凝集混合液が固液分離手段25に送られ、処理水(分離液)26と濃縮汚泥(酵母汚泥)27とに固液分離される。処理水26は放流若しくは後段の更なる処理工程へ送られ、濃縮汚泥27は返送手段28により生物反応槽20内に返送されて濃縮汚泥27中の酵母が生物学的処理に再利用される。
【0028】
なお、この実施の形態1における固液分離手段25で得られた分離液(処理水)に汚泥成分(SS分)が残存(リーク)する場合や処理水中のSS成分をより低減させたい場合には、処理水からSS分を除去するために、上記固液分離手段25とは別に簡易的な分離タンク等の固液分離装置を設けてもよい。このような固液分離装置を用いても、添加された凝集剤の作用によりSS分を容易に分離、除去することが可能である。
【0029】
実施の形態2.
図4は本発明の実施の形態2による固液分離手段を備えた排水処理装置の構成及び処理工程を示すフローシートである。この実施の形態2の構成要素のうち、実施の形態1の構成要素及び図7に示した従来の排水処理装置の構成要素と共通するものについては同一符号を付し、その部分の説明を省略する。
【0030】
この実施の形態2の特徴は、実施の形態1に係る排水処理装置の基本的な構成要素に加え、より実機に近い具体的な付帯設備、即ち流量調整槽5、凝集剤溶解タンク及び第2固液分離手段を備えた点にある。
【0031】
図4において40は生物反応槽20内の排水と酵母汚泥との混合液を凝集槽21に移送するポンプであり、移送管路41と共に上述の移送手段22を構成している。42は凝集槽21への混合液の流量が多くなった場合に、そのオーバーフロー分を生物反応槽20内へ戻すための移送手段22の移送管路41の分岐管である。43は凝集槽21内の攪拌羽根(図示せず)を回転駆動するための駆動モータである。
【0032】
44は凝集槽21へ供給される凝集剤を溶液化するための凝集剤溶解タンクであり、45は凝集剤溶液を調製するための攪拌モータであり、46は凝集剤溶液を供給管路47を介して凝集槽21に供給するための供給ポンプである。凝集剤溶解タンク44と攪拌モータ45と供給ポンプ46と供給管路47とは凝集剤添加手段を構成している。
【0033】
48は凝集槽21と固液分離手段25としてのスクリーン式の固液分離機とを連絡する管路であり、49は固液分離手段25と第2固液分離手段50とを連絡する管路である。第2固液分離手段50の上部内側には液面付近に隔壁51が設けられた沈殿槽で、この隔壁で仕切られた沈降ゾーンで処理水中のSS分は沈降分離され、SS分が十分除去された処理水26は放流又は後段の処理工程に送られるように構成されている。なお、第2固液分離手段はこれに限られるものではなく、処理水中のSS分を除去できるものであればよい。
【0034】
また、固液分離手段25から生物反応槽20へ延びる返送手段28の一部を構成する汚泥返送管11には分岐管として汚泥引抜管13が設けられている。沈殿槽50には、沈降分離したSS分(沈殿汚泥)を引き抜く汚泥引抜手段が設けられている。この汚泥引抜手段は沈殿槽50内の底部に設けられた引抜装置53と、この引抜装置53により引き抜かれた沈殿汚泥を移送する移送管54とから構成されている。この移送管54は上記汚泥引抜管13に接続されている。従って、上記汚泥引抜管13を利用して、固液分離手段25からの余剰酵母、上記沈殿槽50の沈殿汚泥が後段の汚泥処理工程に送られるように構成されている。
【0035】
次に動作について説明する。
排水15は、まず流量調整槽5内に一旦貯溜され、原水ポンプ7により処理原水として生物反応槽20内に導入される。生物反応槽20内では、排水と、固液分離手段25から汚泥返送管11を通じて返送されてきた酵母汚泥とが接触、混合され、散気装置2から空気(酸素)を供給して好気条件下で汚濁物質を含む排水を上記酵母により処理する。
【0036】
生物反応槽20内で生物学的処理を施された混合液は移送手段22としてのポンプ40により移送管路41を経由して凝集槽21に送られる。凝集槽21内において凝集剤溶解タンク44からの凝集剤と生物反応槽20からの混合液とが混合され、この混合液中の汚泥成分が凝集し、大きなフロックが形成される。凝集槽21からの大きなフロックが形成された凝集混合液は固液分離手段25に送られ、スクリーンを通過しない固形分は返送酵母として汚泥返送管11を経由して生物反応槽20に戻され、スクリーンを通過した分離液については、さらにSS分を除去するため第2固液分離手段50である沈殿槽を経て処理水26として放流又は後段の処理工程に送られる。この沈殿槽50で沈降分離された沈殿汚泥は汚泥引抜管13を経由して後段の汚泥処理工程に送られる。
【0037】
これら実施の形態1及び実施の形態2では、生物学的排水処理として酵母を用いたものにより説明したが、本発明はこれに限定されることなく、汚泥(MLSS)濃度を高く維持して生物学的処理を行う活性汚泥に代表される生物学的排水処理にも適用可能である。
【0038】
本発明の実施形態の性能に関する実験例
水産加工廃水を処理規模100m /日のパイロットプラントを用いて従来プロセス(図7)と本発明プロセス(図1)を比較した実験例を以下に示す。この実験の際の運転操作条件と処理結果を表1に示す。
【表1】

Figure 0003563319
【0039】
表1から、本発明プロセスは、従来プロセスより約1.5倍のMLSS保持が可能となることが明らかである。つまり処理能力が1.5倍となったことを意味する。
【0040】
次に、スクリーン式固液分離機の性能確認実験を実施した。数種類の目巾のスクリーンを用いて、処理量及び凝集剤添加率を変動させ、分離液SS濃度、濃縮比を指標として評価した。
【0041】
評価基準としては、分離液SS濃度1000mg/L以下、濃縮比(=濃縮汚泥濃度/生物反応槽混合液汚泥濃度)3以上、凝集剤添加率0.3%以下(SS当たり)とした。
【0042】
(1)分離液(処理液)SS濃度
0.2mm目巾のスクリーンでの運転操作条件と分離液SS濃度の関係を図5に示す。試験を行った処理量の範囲では凝集剤添加率を多くするほど分離液SS濃度は低くなり、SS回収率は高くなる傾向が認められた。目標とした分離液SS濃度1000mg/L以下を満足させる凝集剤添加率は0.15%以上と判断された。
【0043】
(2)濃縮率(濃縮比x100)
0.2mm目巾のスクリーンでの運転操作条件と濃縮率の関係を図6に示す。処理量が過剰でない範囲では凝集剤添加率がある程度高いほど、濃縮率は高くなる傾向が認められるが、処理量及び凝集剤添加率が過剰になると凝集混合液がスクリーン上を上滑りして水分が分離されず、固液分離が阻害され、濃縮率が低下する結果であった。目標とした濃縮率300%(濃縮比3)以上を満足させる凝集剤添加率の範囲は0.1%〜0.4%と判断された。
【0044】
以上、0.2mm目巾のスクリーンを用いた実験例を示したが、スクリーン目巾は広い範囲(0.1mm〜0.5mm)で適用できることが確認でき、処理性能に応じて適宜決定することが肝要である。以上の実験結果から、本発明プロセスの設計仕様を表2のようにした。
【表2】
Figure 0003563319
【0045】
(3)トータルコストに関して
従来プロセスと本発明プロセスの固液分離設備の概算トータルコストを表3に示す。建設費に関わる資本費は67.7%削減できる反面、凝集剤を使用することから運転費が嵩むが、トータルコストとしては61.4%の削減効果が得られた。
【表3】
Figure 0003563319
【0046】
Figure 0003563319
【0047】
(4)管理性に関して
従来プロセスと本発明プロセスの、特に固液分離設備の管理性を表4に示す。本発明プロセスは性能に関してはSS回収率が若干劣るが、濃縮性は大幅に向上する。安定性に関しては確実な固液分離が可能となり、プロセス全体の安定性が図られ、運転操作も容易である。このことから総合的に見て管理性は従来プロセスと比べると明らかに改善される。
【表4】
Figure 0003563319
【0048】
【発明の効果】
以上説明したように、本発明によれば、生物反応槽内の混合液に凝集剤を添加して大きなフロックを形成させて固液分離手段により固液分離することで、如何なる汚泥性状や汚泥濃度であっても、確実に固液分離して濃縮比の高い、高濃度の分離汚泥を得ることができるので、生物反応槽において高MLSS濃度での運転が可能となり、生物学的分解処理の安定はもとより生物反応槽自体の容積を縮小化することができると共に、運転管理費を含めた総コストを大幅に削減することができる効果がある。
【0049】
また、本発明によれば、従来の排水処理装置の構成及びその処理工程と比べて、大きな重力沈殿槽を設ける必要がなく、固液分離手段及びその処理工程に係る建設費を大幅に削減できると共に、重力沈殿槽に要する敷地面積を縮小化することができる効果がある。さらに、濃縮比の低い重力沈殿槽の沈殿汚泥を多量に生物反応槽へ返送する必要がないので、返送設備費や運転コストを削減できる効果がある。さらに、従来の重力沈殿池では運転管理が煩雑で熟練した管理者を必要としていたが、本発明では迅速かつ確実な固液分離が可能であるため、運転管理が容易である。
【0050】
本発明によれば、従来と比べて直接、生物反応槽の混合液を迅速かつ確実に固液分離することができるので、重力沈殿池などの設備やこれに関連する配管などが不要になるばかりでなく、貯留や滞留などにより酵母汚泥の腐敗を防止でき、生物学的処理の安定化を図ることもできる効果がある。
【0051】
本発明によれば、固液分離手段による固液分離を経た分離液のSS分をさらに除去するため、第2固液分離手段を設けることにより、放流に適した、より清浄な処理水を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1による固液分離手段を備えた排水処理装置の構成及び処理工程を示すフローシートである。
【図2】スクリーン式固液分離機の一例を示す斜視図である。
【図3】(A)はウェッジワイヤースクリーン式固液分離機の要部を示す断面図であり、(B)は回転ブラシを示す平面図である。
【図4】本発明の実施の形態2による固液分離手段を備えた排水処理装置の構成及び処理工程を示すフローシートである。
【図5】凝集剤の添加率と分離液SS濃度との関係を示すグラフである。
【図6】凝集剤の添加率と濃縮率との関係を示すグラフである。
【図7】酵母を用いた従来の生物学的排水処理装置の構成及び処理工程を示すフローシートである。
【符号の説明】
2 散気装置
3 空気管路
4 曝気ブロワ
5 流量調整槽
6 原水管路
7 原水ポンプ
8 重力沈殿槽
9 管路
10 汚泥掻寄機
11 汚泥返送管
12,14 ポンプ
13 汚泥引抜管
15 排水
16 処理水
20 生物反応槽(酵母反応槽)
21 凝集槽
22 移送手段
23 攪拌手段(攪拌羽根)
24 凝集剤添加手段
25 固液分離手段
26 処理水(分離液)
27 濃縮汚泥(分離汚泥)
28 返送手段
30 スクリーン
31 フィードボックス
32 凝集混合液
33 分配堰
34 回転ブラシ
35 スリット
36 ウェッジワイヤー
37 トラフ
40 ポンプ
41 移送管路
42 分岐管
43 駆動モータ
44 凝集剤溶解タンク(凝集剤添加手段)
45 攪拌モータ(凝集剤添加手段)
46 供給ポンプ(凝集剤添加手段)
47 供給管路(凝集剤添加手段)
48,49 管路
50 第2固液分離手段(沈殿槽)
51 隔壁
53 引抜装置
54 移送管[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wastewater treatment apparatus provided with a solid-liquid separation means for aerobically and biologically removing pollutants (BOD, SS, oil, etc.) in wastewater from factories and the like.
[0002]
[Prior art]
FIG. 7 is a flow sheet showing the configuration and processing steps of a conventional biological wastewater treatment apparatus using a microorganism such as activated sludge, particularly yeast. In FIG. 7, reference numeral 1 denotes a yeast reaction tank for biologically treating wastewater containing pollutants (BOD, SS, oil, etc.) with yeast under aerobic conditions. An air diffuser 2 for supplying air (oxygen) is provided. An aeration blower 4 is connected to the air diffuser 2 via an air line 3.
[0003]
Reference numeral 5 denotes a flow control tank for storing waste water and adjusting the flow rate of the waste water into the yeast reaction tank 1. The flow control tank 5 has a drainage water flowing into the yeast reaction tank 1 via a raw water pipe 6. Is provided.
[0004]
Numeral 8 denotes a gravity sedimentation tank (also called a gravity sedimentation tank) for receiving a mixed liquid of the wastewater and yeast sludge in the yeast reaction tank 1 through a pipe 9 and separating the treated water and yeast sludge into solid and liquid. Reference numeral 10 denotes a sludge scraper that scrapes yeast sludge settled in the settling tank 8. Reference numeral 11 denotes a sludge return pipe for returning a part of the sludge (yeast) settled at the bottom of the settling tank 8 to the yeast reaction tank 1 by the pump 12, and 13 denotes sludge (yeast settled at the bottom of the settling tank 8). ) Is a sludge extraction tube for extracting a part of surplus yeast by the pump 14.
[0005]
Next, the operation will be described.
The wastewater 15 is first stored in the flow rate adjusting tank 5 and then introduced into the yeast reaction tank 1 as raw water to be treated by the raw water pump 7. In the yeast reaction tank 1, aerobic conditions utilizing the air (oxygen) supplied from the air diffuser 2 by contacting and mixing the wastewater and the yeast sludge returned from the sedimentation tank 8 through the sludge return pipe 11. Below, the wastewater containing pollutants is treated by yeast.
[0006]
After the biological treatment is performed in the yeast reaction tank 1, the mixed solution in the yeast reaction tank 1 is transferred to the sedimentation tank 8 through the pipe 9, and solidified by gravity into the treated water 16 and the yeast sludge. Separated. The treated water 16 is discharged or sent to a further processing step at a later stage. A part of the settled sludge is returned to the yeast reaction tank 1 through the sludge return pipe 11 by the pump 12, and the remaining part of the settled sludge is surplus yeast. Is sent to the subsequent sludge treatment step by the pump 14 through the sludge extraction pipe 13 and is treated.
[0007]
[Problems to be solved by the invention]
As described above, in the conventional biological treatment apparatus for wastewater, the sludge and the wastewater to be treated are aerobically mixed and aerobically treated mainly in the yeast reaction tank (aeration tank) 1 and then mixed. The liquid was transferred to a gravity type sedimentation tank 8 and solid-liquid separated into treated water (separated liquid) 16 and yeast sludge (separated sludge).
[0008]
In recent years, in order to increase the treatment efficiency, the yeast wastewater tank (aeration tank) 1 has aerobic biological wastewater treatment while maintaining a high sludge concentration (MLSS).
[0009]
However, when performing biological wastewater treatment aerobically with high MLSS in consideration of such treatment efficiency, there are the following problems.
[0010]
(1) In a normal gravity sedimentation tank, it is difficult to perform solid-liquid separation of a mixed solution in a biological reaction tank such as a yeast reaction tank into treated water (separated liquid) and yeast sludge (separated sludge). The treated water could not be obtained.
[0011]
(2) If the sludge properties deteriorate due to the treatment conditions and the sedimentation property deteriorates, or if the amount of inflow water (mixed liquid) into the gravity sedimentation tank increases due to an increase in the amount of wastewater, the gravity sedimentation The solid-liquid separation in the tank was hindered, and the sludge component (SS component) sometimes flowed out together with the treated water.
[0012]
(3) In the solid-liquid separation in the gravity sedimentation tank, the sludge concentration property is not good, so that the sludge concentration of the settled separated sludge does not increase regardless of the sludge properties. For this reason, in order to keep the sludge concentration of the mixed solution in the biological reaction tank high, a large amount of settled sludge had to be returned to the biological reaction tank.
[0013]
(4) In order to carry out solid-liquid separation of the mixed solution in the biological reaction tank well, air must be sent to the biological reaction tank more than necessary so as not to always deteriorate the sludge properties, and the treatment must be performed under aerobic conditions. This has led to an increase in equipment costs and maintenance costs.
[0014]
(5) In order to stably and satisfactorily perform solid-liquid separation of the mixed solution in the biological reaction tank, an unnecessarily large gravity sedimentation tank must be provided in consideration of safety, and construction and equipment costs are reduced. As the height increases, the installation space increases.
[0015]
The present invention has been made in order to solve the above-described various problems, and reliably treats a mixed solution in a biological reaction tank (aeration tank) regardless of the sludge properties and sludge concentration. It is an object of the present invention to provide a wastewater treatment apparatus provided with a solid-liquid separation means capable of performing solid-liquid separation into water (separated liquid) and yeast sludge (separated sludge) and obtaining high-concentration separated sludge.
[0016]
[Means for Solving the Problems]
Yeast reaction vessel equipped with a screen-type solid-liquid separator according to the present invention has a aeration means, aggregation with a yeast reactor for processing aerobically biological wastewater using the yeast, a stirring means A tank, a transfer pipe for transferring the mixture of the yeast reaction tank to the flocculation tank, a supply pipe for supplying a flocculant to the flocculation tank and / or the transfer pipe , and a flocculant flowing out of the flocculation tank in those with a screen-type solid-liquid separator for solid-liquid separation in the separation liquid and the yeast sludge, and a sludge return pipe for returning the yeast sludge separated by the screen-type solid-liquid separator in the yeast reactor is there.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described.
Embodiment 1 FIG.
FIG. 1 is a flow sheet showing the configuration and processing steps of a wastewater treatment apparatus provided with a solid-liquid separation unit according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 20 denotes a biological reaction tank for biological treatment under aerobic conditions using wastewater yeast containing pollutants. Similar to the yeast reaction tank 1 in the conventional wastewater treatment apparatus shown in FIG. 7, the biological reaction tank 20 has a diffuser (not shown) for aeration and stirring, an air pipe (not shown), and an aerator. A blower (not shown) is provided. The biological reaction tank 20 is provided with a transfer means 22 for transferring the mixed solution (a mixture of wastewater and yeast sludge) to a coagulation tank 21 provided separately from the biological reaction tank 20. The transfer means 22 includes a pipe (not shown) that connects the biological reaction tank 20 and the coagulation tank 21, and a pressure feeding device (a pressure feeding device that pressurizes the liquid content of the biological reaction tank 20 to the coagulation tank 21 via the pipe). (Not shown).
[0019]
A stirring means is provided in the coagulation tank 21. The stirring means may be constituted by stirring blades 23 driven to rotate by a stirring motor (not shown), but is not limited to this, and may be any as long as it can stir and mix the inside of the coagulation tank 21.
[0020]
The coagulant is added to one or both of the coagulation tank 21 and the transfer means 22 by the coagulant addition means 24 as appropriate. The addition of the flocculant by the flocculant adding means 24 is performed for the purpose of stabilizing the solid-liquid separation with respect to the wastewater and improving the efficiency thereof. To increase the particle size of the floc, thereby enabling quick and reliable solid-liquid separation.
[0021]
The solid-liquid separation means 25 is for solid-liquid separation of the flocculated mixed liquid in which a flocculant is added to form a large floc into treated water (separated liquid) 26 and concentrated sludge (yeast sludge) 27. A large effect can be obtained by employing a screen-type solid-liquid separator as the solid-liquid separation means 25.
[0022]
Here, the screen-type solid-liquid separator refers to a solid-liquid separator composed of a wedge wire type screen, a bar type screen, or the like, in which the separated liquid is discharged through a screen slit, and is not passed through the screen slit. Is discharged as concentrated sludge. Such a screen-type solid-liquid separator is generally provided with a washing mechanism for removing clogging of a screen slit. FIG. 2 is a perspective view showing an example of a screen-type solid-liquid separator, and FIG. 3A is a cross-sectional view showing a main part of the screen-type solid-liquid separator shown in FIG. FIG. 3B is a plan view showing a rotating brush as a washing mechanism in the screen-type solid-liquid separator shown in FIG. In the figure, 29 is a screen type solid-liquid separator. The screen-type solid-liquid separator 29 is used for sequentially overflowing a screen 30, a feed box 31 located above the screen 30, and a coagulated mixed solution 32 supplied into the feed box 31 toward the screen 30. And a rotary brush 34 for removing the clogging of the screen 30. The screen 30 is substantially composed of a plurality of wedge wires 36 separated by a certain slit 35. Each wedge wire 36 has a wedge-shaped cross section, one of the tops of each wedge wire 36 is directed to the back side of the screen 30, and the space between adjacent wedge wires 36 is larger than the front side of the screen 30. It is configured to open widely on the back side. Therefore, the rear side of the screen 30 is easily affected by the action of the rotating brush 34. A trough 37 is formed above the screen 30. In such a solid-liquid separator, when the flocculated mixed liquid 32 overflowed by the distribution weir 33 is supplied to the screen 30 through the trough 37, the solid-liquid separation is performed. That is, while the separation liquid 26 passes through the slit 35, the separation sludge 27 cannot pass through the slit 35 and flows down on the screen 30. Solid matter deposited on the slit 35 is periodically or appropriately removed as necessary by the rotating brush 34, so that clogging of the slit 35 is eliminated.
[0023]
In addition, as the cleaning means, in addition to the rotating brush 33, a vibrating mechanism that applies vibration to a wedge wire type screen or a bar type screen itself that forms a screen slit to remove solid substances clogged in the screen slit, Alternatively, a water spray mechanism that sprays water on the entire screen of a wedge wire type screen or a bar type to wash out solid substances clogged in the screen slits is exemplified, but the present invention is not limited thereto.
[0024]
Further, the solid-liquid separation means 25 is not limited to a screen-type solid-liquid separator, and mechanical equipment such as a centrifugal separator or a centrifugal filter may be used. A membrane separation facility using a separation membrane may be used.
[0025]
Here, a centrifugal filtration concentrator refers to a concentrator that introduces a mixed solution into a basket in which a filter cloth is spread on the inner wall of the concentrator and performs filtration by centrifugal force generated by rotating the basket. The solids discharged through the filter cloth and not passed through the filter cloth are discharged as concentrated sludge. Such a centrifugal filter / concentrator is generally provided with a washing mechanism for removing clogging of the filter cloth.
[0026]
Further, the solid-liquid separation means 25 is connected to the biological reaction tank 20 via the return means 28, and the concentrated sludge 27 separated by the solid-liquid separation means 25 is returned to the biological reaction tank 20 by the return means 28, The yeast in the concentrated sludge 27 is configured to be reused for biological treatment. The return means 28 includes a pipe (not shown) for connecting the solid-liquid separation means 25 and the biological reaction tank 20, and a transfer device for returning the concentrated sludge 27 to the biological reaction tank 20 via this pipe as necessary. (Not shown).
[0027]
Next, the operation will be described.
The inflow wastewater 15 whose flow rate has been adjusted is first introduced into the biological reaction tank 20. In the biological reaction tank 20, the wastewater is aerobically subjected to biological treatment using, for example, yeast or activated sludge, and the wastewater containing pollutants is treated. Next, the mixed liquid in the biological reaction tank 20 is sent to the coagulation tank 21 by the transfer means 22, the coagulant is added, and the mixture is stirred and mixed by the stirring blade 23. A large floc in which the sludge component is aggregated is formed in the mixed solution in which the flocculant is mixed. Such an agglomerated mixed solution is sent to a solid-liquid separating means 25 and is separated into a treated water (separated liquid) 26 and a concentrated sludge (yeast sludge) 27. The treated water 26 is discharged or sent to a subsequent processing step, and the concentrated sludge 27 is returned to the biological reaction tank 20 by the return means 28, and the yeast in the concentrated sludge 27 is reused for biological treatment.
[0028]
In the case where the sludge component (SS component) remains (leak) in the separated liquid (treated water) obtained by the solid-liquid separating means 25 in the first embodiment, or when it is desired to further reduce the SS component in the treated water. In order to remove the SS component from the treated water, a solid-liquid separation device such as a simple separation tank may be provided separately from the solid-liquid separation means 25. Even with such a solid-liquid separation device, the SS component can be easily separated and removed by the action of the added flocculant.
[0029]
Embodiment 2 FIG.
FIG. 4 is a flow sheet showing the configuration and processing steps of a wastewater treatment apparatus provided with a solid-liquid separation unit according to Embodiment 2 of the present invention. Among the components of the second embodiment, the same components as those of the first embodiment and the components of the conventional wastewater treatment apparatus shown in FIG. 7 are denoted by the same reference numerals, and the description of those portions is omitted. I do.
[0030]
The feature of the second embodiment is that, in addition to the basic components of the wastewater treatment apparatus according to the first embodiment, specific additional facilities closer to the actual machine, that is, the flow rate adjusting tank 5, the coagulant dissolving tank, and the second The point is that solid-liquid separation means is provided.
[0031]
In FIG. 4, reference numeral 40 denotes a pump for transferring a mixed solution of the wastewater in the biological reaction tank 20 and the yeast sludge to the coagulation tank 21, and constitutes the transfer means 22 together with the transfer pipe 41 . Reference numeral 42 denotes a branch pipe of the transfer pipe 41 of the transfer means 22 for returning the overflow into the biological reaction tank 20 when the flow rate of the mixed solution to the coagulation tank 21 increases. Reference numeral 43 denotes a drive motor for rotating a stirring blade (not shown) in the coagulation tank 21.
[0032]
44 is a flocculant dissolving tank for turning the flocculant supplied to the flocculation tank 21 into a solution, 45 is a stirring motor for preparing the flocculant solution, and 46 is a supply line 47 for supplying the flocculant solution. It is a supply pump for supplying to the coagulation tank 21 through the. The coagulant dissolving tank 44, the stirring motor 45, the supply pump 46, and the supply line 47 constitute a coagulant adding means.
[0033]
Reference numeral 48 denotes a conduit connecting the coagulation tank 21 and a screen-type solid-liquid separator as the solid-liquid separator 25, and reference numeral 49 denotes a conduit connecting the solid-liquid separator 25 and the second solid-liquid separator 50. It is. Inside the upper part of the second solid-liquid separation means 50, a sedimentation tank provided with a partition wall 51 near the liquid surface. In a sedimentation zone partitioned by the partition wall, the SS component in the treated water is settled and separated, and the SS component is sufficiently removed. The treated water 26 is configured to be discharged or sent to a subsequent treatment step. The second solid-liquid separation means is not limited to this, but may be any as long as it can remove SS in the treated water.
[0034]
Further, the sludge return pipe 11 constituting a part of the return means 28 extending from the solid-liquid separation means 25 to the biological reaction tank 20 is provided with a sludge extraction pipe 13 as a branch pipe. The sedimentation tank 50 is provided with a sludge extraction means for extracting the settled and separated SS (sedimentation sludge). The sludge withdrawing means comprises a withdrawal device 53 provided at the bottom in the sedimentation tank 50, and a transfer pipe 54 for transferring the settled sludge withdrawn by the withdrawal device 53. The transfer pipe 54 is connected to the sludge extraction pipe 13. Therefore, the sludge withdrawal pipe 13 is used to send the surplus yeast from the solid-liquid separation means 25 and the settled sludge in the settling tank 50 to the sludge treatment step at the subsequent stage.
[0035]
Next, the operation will be described.
The drainage 15 is first stored in the flow rate adjusting tank 5 and then introduced into the biological reaction tank 20 as raw water by the raw water pump 7. In the biological reaction tank 20, the waste water and the yeast sludge returned from the solid-liquid separation means 25 through the sludge return pipe 11 are mixed and contacted, and air (oxygen) is supplied from the air diffuser 2 to aerobic conditions. The wastewater containing pollutants is treated below with the yeast.
[0036]
The mixed solution subjected to the biological treatment in the biological reaction tank 20 is sent to the coagulation tank 21 via the transfer pipe 41 by the pump 40 as the transfer means 22. In the coagulation tank 21, the coagulant from the coagulant dissolution tank 44 and the mixed solution from the biological reaction tank 20 are mixed, and the sludge components in the mixed solution coagulate to form large flocs. The flocculated mixed liquid from which the large flocs are formed from the flocculation tank 21 is sent to the solid-liquid separation means 25, and the solids that do not pass through the screen are returned to the biological reaction tank 20 via the sludge return pipe 11 as return yeast. The separated liquid that has passed through the screen is discharged as treated water 26 through a sedimentation tank, which is the second solid-liquid separating means 50, or sent to a subsequent processing step in order to further remove SS. The settled sludge settled and separated in the settling tank 50 is sent to the subsequent sludge treatment step via the sludge drawing pipe 13.
[0037]
In the first and second embodiments, the biological wastewater treatment using yeast is described. However, the present invention is not limited to this, and the sludge (MLSS) concentration can be maintained at a high level. It can also be applied to biological wastewater treatment represented by activated sludge that performs chemical treatment.
[0038]
Experimental Example Regarding Performance of Embodiment of the Present Invention An experimental example in which a conventional process (FIG. 7) and a process of the present invention (FIG. 1) are compared with a conventional process (FIG. 7) using a pilot plant for treating marine processing wastewater at a treatment scale of 100 m 3 / day is shown below. Table 1 shows driving operation conditions and processing results in this experiment.
[Table 1]
Figure 0003563319
[0039]
From Table 1, it is clear that the process of the present invention can maintain MLSS about 1.5 times that of the conventional process. In other words, it means that the processing capacity has increased 1.5 times.
[0040]
Next, an experiment for confirming the performance of the screen-type solid-liquid separator was performed. Using several types of screens, the processing amount and the coagulant addition rate were varied, and the concentration of the separated solution SS and the concentration ratio were evaluated as indices.
[0041]
As evaluation criteria, the SS concentration of the separated liquid was 1000 mg / L or less, the concentration ratio (= concentrated sludge concentration / concentration of the mixed liquid in the biological reaction tank) was 3 or more, and the coagulant addition rate was 0.3% or less (per SS).
[0042]
(1) Separation liquid (treatment liquid) The relationship between the operating conditions on a screen having a SS concentration of 0.2 mm width and the separation liquid SS concentration is shown in FIG. In the range of the treatment amount in which the test was performed, it was recognized that the higher the coagulant addition rate, the lower the SS concentration of the separated liquid and the higher the SS recovery rate. The coagulant addition rate that satisfies the target separation solution SS concentration of 1000 mg / L or less was determined to be 0.15% or more.
[0043]
(2) Concentration rate (concentration ratio x100)
FIG. 6 shows the relationship between the operating conditions on a screen having a width of 0.2 mm and the concentration ratio. In the range where the treatment amount is not excessive, the concentration ratio tends to increase as the coagulant addition ratio increases to some extent.However, when the treatment amount and the coagulant addition ratio become excessive, the coagulated mixed solution slides on the screen and water is removed. As a result, solid-liquid separation was hindered and the concentration ratio was reduced. The range of the coagulant addition rate that satisfied the target concentration rate of 300% or more (concentration ratio of 3) or more was determined to be 0.1% to 0.4%.
[0044]
As described above, an experimental example using a screen having a 0.2 mm mesh width has been shown. However, it can be confirmed that the screen mesh width can be applied in a wide range (0.1 mm to 0.5 mm), and the screen mesh width can be appropriately determined according to the processing performance. Is essential. Table 2 shows the design specifications of the process of the present invention based on the above experimental results.
[Table 2]
Figure 0003563319
[0045]
(3) Total cost Table 3 shows the approximate total cost of the solid-liquid separation equipment of the conventional process and the process of the present invention. Although the capital cost related to the construction cost can be reduced by 67.7%, the use of the flocculant increases the operating cost, but the total cost is reduced by 61.4%.
[Table 3]
Figure 0003563319
[0046]
Figure 0003563319
[0047]
(4) Controllability Table 4 shows the controllability of the conventional process and the process of the present invention, in particular, the solid-liquid separation equipment. The process of the present invention has a slightly poorer SS recovery in terms of performance, but significantly improves enrichment. As for the stability, solid-liquid separation can be surely performed, the stability of the whole process is achieved, and the operation is easy. From this, overall, manageability is clearly improved as compared with the conventional process.
[Table 4]
Figure 0003563319
[0048]
【The invention's effect】
As described above, according to the present invention, a flocculant is added to a mixed solution in a biological reaction tank to form a large floc, and solid-liquid separation is performed by a solid-liquid separation means. However, since solid-liquid separation can be reliably performed to obtain a high-concentration separated sludge with a high concentration ratio, operation at a high MLSS concentration in a biological reaction tank becomes possible, and stable biological decomposition treatment is achieved. In addition, the volume of the biological reaction tank itself can be reduced, and the total cost including the operation management cost can be significantly reduced.
[0049]
Further, according to the present invention, it is not necessary to provide a large gravity sedimentation tank as compared with the configuration of the conventional wastewater treatment apparatus and the treatment process, and the construction cost for the solid-liquid separation means and the treatment process can be significantly reduced. In addition, there is an effect that the site area required for the gravity sedimentation tank can be reduced. Furthermore, since it is not necessary to return a large amount of the settling sludge from the gravity settling tank having a low concentration ratio to the biological reaction tank, there is an effect that the cost of returning equipment and the operating cost can be reduced. Further, in the conventional gravity sedimentation basin, the operation management is complicated and a skilled administrator is required. However, in the present invention, since the solid-liquid separation can be performed quickly and reliably, the operation management is easy.
[0050]
According to the present invention, since the liquid mixture in the biological reaction tank can be directly and quickly and reliably separated from the conventional liquid-liquid mixture, equipment such as a gravity sedimentation pond and piping related thereto become unnecessary. In addition, rot of the yeast sludge can be prevented by storage or retention, and the biological treatment can be stabilized.
[0051]
According to the present invention, in order to further remove the SS component of the separated liquid that has undergone solid-liquid separation by the solid-liquid separation means, by providing the second solid-liquid separation means, it is possible to obtain more purified treated water suitable for discharge. be able to.
[Brief description of the drawings]
FIG. 1 is a flow sheet showing a configuration and processing steps of a wastewater treatment apparatus provided with a solid-liquid separation unit according to a first embodiment of the present invention.
FIG. 2 is a perspective view showing an example of a screen-type solid-liquid separator.
FIG. 3A is a sectional view showing a main part of a wedge wire screen type solid-liquid separator, and FIG. 3B is a plan view showing a rotating brush.
FIG. 4 is a flow sheet showing a configuration and processing steps of a wastewater treatment apparatus provided with a solid-liquid separation unit according to Embodiment 2 of the present invention.
FIG. 5 is a graph showing the relationship between the addition rate of a flocculant and the concentration of a separated solution SS.
FIG. 6 is a graph showing the relationship between the addition rate of a flocculant and the concentration rate.
FIG. 7 is a flow sheet showing the configuration and processing steps of a conventional biological wastewater treatment apparatus using yeast.
[Explanation of symbols]
2 diffuser 3 air line 4 aeration blower 5 flow control tank 6 raw water line 7 raw water pump 8 gravity sedimentation tank 9 line 10 sludge scraper 11 sludge return tube 12, 14 pump 13 sludge extraction tube 15 drainage 16 treatment Water 20 Biological reaction tank (yeast reaction tank)
21 Coagulation tank 22 Transfer means 23 Stirring means (stirring blades)
24 Coagulant adding means 25 Solid-liquid separating means 26 Treated water (separated liquid)
27 Condensed sludge (separated sludge)
28 Returning means 30 Screen 31 Feed box 32 Coagulated mixed liquid 33 Distribution weir 34 Rotating brush 35 Slit 36 Wedge wire 37 Trough 40 Pump 41 Transfer conduit 42 Branch pipe 43 Drive motor 44 Coagulant dissolving tank (coagulant adding means)
45 Stirring motor (coagulant adding means)
46 Supply pump (coagulant addition means)
47 Supply line (coagulant adding means)
48, 49 Pipe 50 Second solid-liquid separation means (sedimentation tank)
51 Partition wall 53 Extraction device 54 Transfer tube

Claims (1)

曝気手段を有し、酵母を利用して排水を好気的に生物学的処理する酵母反応槽と、攪拌手段を有する凝集槽と、該凝集槽に前記酵母反応槽の混合液を移送する移送管路と、前記凝集槽及び/又は移送管路に凝集剤を供給する供給管路と、前記凝集槽から流出する凝集液を分離液と酵母汚泥とに固液分離するスクリーン式固液分離機と、該スクリーン式固液分離機により分離された酵母汚泥を前記酵母反応槽に返送する汚泥返送管とを備えたことを特徴とするスクリーン式固液分離機を備えた酵母反応槽 A yeast reaction tank having aeration means and aerobically biologically treating wastewater using yeast, a flocculation tank having stirring means, and a transfer for transferring the mixed solution of the yeast reaction tank to the flocculation tank A pipe , a supply pipe for supplying a flocculant to the flocculation tank and / or the transfer pipe , and a screen-type solid-liquid separator for separating the flocculated liquid flowing out of the flocculation tank into a separated liquid and a yeast sludge. If, yeast reaction vessel equipped with screen-type solid-liquid separator, characterized in that a sludge return pipe for returning the yeast sludge separated by the screen-type solid-liquid separator in the yeast reactor.
JP2000074157A 2000-03-16 2000-03-16 Yeast reactor with screen-type solid-liquid separator Expired - Fee Related JP3563319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000074157A JP3563319B2 (en) 2000-03-16 2000-03-16 Yeast reactor with screen-type solid-liquid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000074157A JP3563319B2 (en) 2000-03-16 2000-03-16 Yeast reactor with screen-type solid-liquid separator

Publications (2)

Publication Number Publication Date
JP2001259677A JP2001259677A (en) 2001-09-25
JP3563319B2 true JP3563319B2 (en) 2004-09-08

Family

ID=18592254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000074157A Expired - Fee Related JP3563319B2 (en) 2000-03-16 2000-03-16 Yeast reactor with screen-type solid-liquid separator

Country Status (1)

Country Link
JP (1) JP3563319B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2666867C2 (en) * 2012-09-21 2018-09-12 Ди.Си. УОТЕР ЭНД СЬЮЭР ОТОРИТИ Method and apparatus for water treatment with using screens
JP7258485B2 (en) * 2018-07-25 2023-04-17 クボタ環境エンジニアリング株式会社 Methane fermentation device and methane fermentation method

Also Published As

Publication number Publication date
JP2001259677A (en) 2001-09-25

Similar Documents

Publication Publication Date Title
US8197690B2 (en) Method and apparatus for biological wastewater purification
WO1991000249A1 (en) Method of concentrating and dehydrating slurried sludge
KR101278958B1 (en) Waste water treatment system
JP6067268B2 (en) Water treatment system
KR101964830B1 (en) Water treatment apparatus
CZ57098A3 (en) Waste water treatment process
JP3563319B2 (en) Yeast reactor with screen-type solid-liquid separator
JP2004113940A (en) Moving bed type filtration equipment and its operation method
CN213141727U (en) Treatment system for electric desalting backwashing wastewater
JP4016064B1 (en) Belt type concentrator and operation method thereof
CN209507885U (en) A kind of river integrated sewage treating apparatus
KR100724778B1 (en) An apparatus of a wastewater treatment
JPH0215275B2 (en)
JP4277335B2 (en) Activated sludge method
JPH10202010A (en) Water treatment device
JP3794589B1 (en) Sewage treatment equipment
JP3759523B2 (en) Livestock wastewater treatment method and apparatus
CN219567676U (en) Municipal wastewater treatment dosing equipment
CN217895335U (en) Equipment for treating seawater sewage by virtue of synergistic effect of air flotation and advanced oxidation at multiple points
CN218709814U (en) Oily wastewater treatment system
JP4124957B2 (en) Filter body washing method and apparatus
CN218709823U (en) Oily wastewater treatment system
JP2971734B2 (en) Activated sludge equipment
KR970006189A (en) Fixed algae removal method and apparatus
CN107686215A (en) A kind of Treatment of Wastewater from Wool Washing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040602

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3563319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees