JP3563226B2 - Large area uniform irradiation method of ion beam by spiral beam scanning - Google Patents

Large area uniform irradiation method of ion beam by spiral beam scanning Download PDF

Info

Publication number
JP3563226B2
JP3563226B2 JP05603797A JP5603797A JP3563226B2 JP 3563226 B2 JP3563226 B2 JP 3563226B2 JP 05603797 A JP05603797 A JP 05603797A JP 5603797 A JP5603797 A JP 5603797A JP 3563226 B2 JP3563226 B2 JP 3563226B2
Authority
JP
Japan
Prior art keywords
scanning
ion beam
radius
irradiation method
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05603797A
Other languages
Japanese (ja)
Other versions
JPH10255707A (en
Inventor
光宏 福田
和夫 荒川
漱平 岡田
進 奥村
Original Assignee
日本原子力研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本原子力研究所 filed Critical 日本原子力研究所
Priority to JP05603797A priority Critical patent/JP3563226B2/en
Publication of JPH10255707A publication Critical patent/JPH10255707A/en
Application granted granted Critical
Publication of JP3563226B2 publication Critical patent/JP3563226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electron Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、イオンビームのターゲットへの照射方法に関し、特に照射の均一化に関する。イオンビームの照射は、新機能材料の開発や物質の持つ物理的・化学的・生物学的な特性の研究において必要な研究手段の一つである。例えば、その分野としては、半導体、新機能有機・無機材料、バイオ技術、粒子線治療などがある。
【0002】
【従来の技術】
従来の方法の一つに、二連に設置された薄い金属箔からなる散乱体にイオンビームを通すことにより中心付近のイオンを外側に、端に近いイオンを内側に散乱させてビーム強度分布の均一化を図る方法がある。この方法は最も簡便な方法として用いられているが、軽イオンの場合には散乱効果が小さいこと、重イオンの場合には散乱体でのエネルギー損失によるエネルギー幅の悪化が大きく、またイオンの電荷数が変化する確率が高いこと、さらに散乱体がイオンとの原子核反応によって放射化することなどの欠点がある。
【0003】
また、従来の別の方法の一つに、二連の偏向電磁石を用いて互いに垂直な方向にイオンビームを周期的に偏向し、一方の偏向周波数を他方の整数倍に設定することによってラスター走査による大面積のフルエンス分布の均一化を図る方法がある。この方法は、ビームの連続的な照射が可能である。照射野の形状が矩形であるが、条件によっては照射野端部の均一性が悪くなるという問題がある。
【0004】
さらに、別の従来方法として、二連の偏向電磁石を用いて互いに垂直な方向にイオンビームを周期的に偏向するのは上記の後者の方法と同様であるが、位相を互いに90度ずらすことにより一定半径で円形状にビームを走査し、断続的にその半径を何点か変えることによって大面積のフルエンス分布の均一化を図るワブリングと呼ばれている方法がある。
【0005】
【発明が解決しようとする課題】
しかしながら、このワブリングと呼ばれる方法は、ビームを一旦停止して走査半径を変える必要があるため、直流もしくは短周期のビームに対してはビームの遮断機器が必要となり、直流ビームやサイクロトロンビームのような短い周期のパルスビームの連続照射には適していない。また、フルエンス分布の均一化を図るためには走査半径毎の照射量(ビーム電流×時間)の精密な調整が必要となるなどの問題が生じていた。
【0006】
本発明の課題は、連続ビームを断続的に遮断することなく、円形状の大面積ターゲットを均一に照射することが可能となるイオンビーム照射方法を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するため、本発明のイオンビーム照射方法は、周期的に時間変化させる2台の偏向電磁石を用い、当該電磁石のコイル電流の振幅と周期とを無理関数的に変化させることによって、イオンビームをターゲット上でスパイラル(渦巻き)状に走査させ、その結果連続ビームを断続的に遮断することなく、且つ広い範囲に渡って円形状に均一照射、即ちイオンのフルエンス分布が均一化されることを特徴とする。
【0008】
【発明の実施の形態】
始めに本発明の方法の原理について説明する。本発明の方法では、二連の偏向電磁石を用いて互いに垂直な方向にイオンビームを周期的に偏向させるが、ビーム走査軌道の半径方向の間隔と走査速度が一定となるように偏向強度(なお、これは電磁石に通電するコイル電流値の大きさに対応する。)と周波数を無理関数的に変化させることによって照射野全体のフルエンス分布の均一化を図る。二連の偏向電磁石を用いた本発明のスパイラル・ビーム走査方法によるイオンビームの大面積均一照射システムの概念図を図1に示す。
【0009】
図1において、イオン加速器(図示せず)により加速された、例えば直流あるいは10−9〜10−3秒のパルス周期を有するイオンビーム10は、X方向に偏向されるためX方向偏向電磁石12を通り、次いでY方向に偏向されるためY方向偏向電磁石14を通って、照射試料16に照射される。
【0010】
一般に、電荷数q、ビーム電流Iのイオンビームを速さvで走査する場合の走査経路(なお、式中では筆記体の小文字の「l」で示す)の上の粒子密度は次式で表される。
【0011】
【数1】

Figure 0003563226
但し、nは粒子数である。走査速度vが一定であれば走査方向の粒子密度は常に一定である。また、走査方向に垂直な方向、即ち半径方向の走査軌道密度も一定に保てば二次元的にも均一な粒子密度分布を得ることができる。この条件は、走査半径をr、走査方向の方位角をθとすると、次式のように表される。
【0012】
【数2】
Figure 0003563226
半径r及び方位角θを時間の関数と考え、時間t=0の時の半径をRmin、時間t=Tの時の半径をRmax、走査回転数をNとすると、式2より定数Aは、次式により表される。
【0013】
【数3】
Figure 0003563226
走査回転数が大きい場合には、走査速度の半径方向成分は方位角方向に比べて十分無視することができ、方位角方向成分は走査速度vで近似することができる。従って、走査角振動数ωは次式のとおりおくことができる。
【0014】
【数4】
Figure 0003563226
式▲2▼と式▲4▼とから走査半径rは次式のように解くことができる。
【0015】
【数5】
Figure 0003563226
また、式▲4▼と式▲5▼とから走査角振動数ωは次式のように表される。
【0016】
【数6】
Figure 0003563226
従って、与えられた4つのパラメータ、即ち走査最大半径Rmax、走査最小半径Rmin、走査速度v及び走査回転数Nに対し、走査軌道及び走査周期は一意に定まる。
【0017】
実際にイオンビームを走査する際には、2つの偏向電磁石12、14に通電するコイル電流値を式▲5▼に従うように時間的に変化させ、また2つの偏向電磁石12、14の電流位相差を90度に保ったままコイル電流周波数を式▲6▼で変化させることによりビームはスパイラル状の軌道を描いて走査される。このとき、X方向偏向電磁石12により生じる磁場の時間変化は図1の18に示されるように変化し、一方Y方向偏向電磁石14により生じる磁場の時間変化は図1の20に示されるように変化し、互いに90度位相差を保っている。この走査を最小半径Rminから最大半径Rmaxへ、そして最大半径Rmaxから最小半径Rminへ繰り返し行うことにより、フルエンスを全体的に増やしていくことができる。
【0018】
イオン加速器により加速された直流もしくは10−9〜10−3秒のパルス周期を有するイオンビームを上述のようにして連続に走査することにより円形状の大面積均一照射が可能となる。
【0019】
次に、本発明の一実施例(実験データ)として、走査最小半径Rmin=5mm、走査最大半径Rmax=100mm、回転数N=20、走査速度v=300mm/sの場合について以下に記す。
【0020】
式▲5▼及び式▲6▼で表される走査半径rと走査角振動数ωの時間変化の例を図2及び図3にそれぞれ示す。また、2台の偏向電磁石12、14の一方に通電するコイル電流の時間変化の様子を図4に示す。なお、他方の電磁石のコイル電流の時間変化は、その包絡線の形状は実質的に同じであり、位相が90度異なるだけなので省いた。更に、照射野上でのビーム走査軌道を図5に示す。
【0021】
本発明によるイオンビーム走査法によって得られる照射野中の二次元粒子密度分布を模擬計算するために、ビームスポットの粒子強度分布を二次元的なガウス分布と仮定すると、次式のように表される。
【0022】
【数7】
Figure 0003563226
ここで、(x,y)は照射野上のビームスポット中心位置、σはガウス分布の分散値で、ビームスポットの粒子強度分布の半値幅FWHMを用いると、σ=FWHM/2.35と表される。最小半径Rminから最大半径Rmaxまでビームを走査したときに得られる粒子密度分布の一例を図6に示す。なお、このときの模擬計算諸元は、走査最小半径Rmin=3mm、走査最大半径Rmax=100mm、回転数N=49、走査速度v=300mm/sである。図6から、従来の方法では均一照射が困難であった10cmを超える直径を有する試料に対しても均一照射が可能であることがわかる。
【0023】
粒子密度分布の均一度は、主に走査最小半径Rminとビームスポット粒子強度分布の半値幅FWHMの比に依存する。Rmin/FWHMと均一度の相関を図7に示す。なお、このときの模擬計算諸元を表1に示す。
【0024】
【表1】
Figure 0003563226
【0025】
図7及び表1において、Pitchは半径方向のビーム軌道の間隔を表す。図7から、Rmin/FWHM≦0.3ならば、±10%以下の均一度が得られることがわかる。
【0026】
【発明の効果】
本発明のビーム走査法は以上説明したように構成されているので、イオンビームの連続的なスパイラル走査によって、従来のワブリング方法のような周期的なビーム遮断機器を必要とせずに円形状の大面積均一照射が可能となる。従って、本発明のイオンビーム走査法は、従来のイオンビーム走査法と異なる新たな技術であり、イオンビーム工学における高度なビーム制御技術の一つとして将来的な応用が期待される。
【0027】
また、直径10cmを超えるような円形の大きな試料への連続イオン均一照射が可能となるため、材料工学やバイオ技術、医学治療などの応用研究分野におけるイオンビームを用いた研究開発への寄与は多大である。
【図面の簡単な説明】
【図1】二連の偏向電磁石を用いた本発明のスパイラル・ビーム走査方法によるイオンビームの大面積均一照射システムの概念図である。
【図2】本発明の一実施例における走査半径rの時間変化の例を示す図である。
【図3】本発明の一実施例における走査角振動数ωの時間変化の例を示す図である。
【図4】本発明の一実施例における2台の偏向電磁石の一方に通電するコイル電流の時間変化の様子を示す図である。
【図5】本発明の一実施例における照射野上でのビーム走査軌道を示す図である。
【図6】本発明の一実施例における照射野上の二次元粒子密度分布の一例を示す図である。
【図7】本発明の一実施例における二次元粒子密度分布の均一度と(走査最小半径Rmin/ビームスポット半値幅FWHM)との相関の一例を示す図である。
【符号の説明】
10:イオンビーム
12:X方向偏向電磁石
14:Y方向偏向電磁石
16:照射試料[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for irradiating a target with an ion beam, and more particularly, to uniform irradiation. Ion beam irradiation is one of the necessary research tools for developing new functional materials and for studying the physical, chemical and biological properties of substances. For example, the fields include semiconductors, new functional organic / inorganic materials, biotechnology, and particle beam therapy.
[0002]
[Prior art]
One of the conventional methods is to scatter the ions near the center to the outside and the ions near the edges to the inside by passing the ion beam through a scatterer made of thin metal foils installed in duplicate, and obtain the beam intensity distribution. There is a method for achieving uniformity. This method is used as the simplest method.However, in the case of light ions, the scattering effect is small, in the case of heavy ions, the energy width is greatly deteriorated due to energy loss in the scatterer, and the charge of ions is large. There are drawbacks such as a high probability that the number changes, and furthermore that the scatterer is activated by a nuclear reaction with ions.
[0003]
In another conventional method, raster scanning is performed by periodically deflecting an ion beam in a direction perpendicular to each other by using a double bending electromagnet and setting one deflection frequency to an integral multiple of the other. There is a method of making the fluence distribution of a large area uniform by the method. This method allows for continuous irradiation of the beam. Although the shape of the irradiation field is rectangular, there is a problem that the uniformity of the end portion of the irradiation field deteriorates depending on conditions.
[0004]
Further, as another conventional method, the ion beam is periodically deflected in a direction perpendicular to each other by using two bending electromagnets in the same manner as the latter method described above, but by shifting the phase by 90 degrees with respect to each other. There is a method called wobbling in which a beam is scanned in a circular shape with a constant radius, and the radius is changed at some points intermittently to make the fluence distribution of a large area uniform.
[0005]
[Problems to be solved by the invention]
However, in this method called wobbling, it is necessary to temporarily stop the beam and change the scanning radius, so that a beam cutoff device is required for a direct-current or short-period beam, such as a direct-current beam or a cyclotron beam. It is not suitable for continuous irradiation of short-period pulse beams. Further, in order to make the fluence distribution uniform, there has been a problem in that precise adjustment of the irradiation amount (beam current × time) for each scanning radius is required.
[0006]
It is an object of the present invention to provide an ion beam irradiation method capable of uniformly irradiating a circular large-area target without intermittently interrupting a continuous beam.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the ion beam irradiation method of the present invention uses two bending electromagnets that periodically change in time, and irrationally changes the amplitude and the cycle of the coil current of the electromagnets. The ion beam is scanned in a spiral on the target, so that the continuous beam is not intermittently interrupted and is uniformly irradiated in a circular shape over a wide range, that is, the ion fluence distribution is uniformed. It is characterized by the following.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the principle of the method of the present invention will be described. In the method of the present invention, the ion beam is periodically deflected in a direction perpendicular to each other by using two bending electromagnets, but the deflection intensity (note that the interval between the beam scanning trajectories in the radial direction and the scanning speed are constant). This corresponds to the magnitude of the value of the coil current supplied to the electromagnet.) And the frequency is irrationally changed to achieve a uniform fluence distribution over the entire irradiation field. FIG. 1 is a conceptual diagram of a large-area uniform irradiation system of an ion beam by a spiral beam scanning method of the present invention using two bending electromagnets.
[0009]
In FIG. 1, an ion beam 10 accelerated by an ion accelerator (not shown) and having, for example, a direct current or a pulse period of 10 −9 to 10 −3 seconds is deflected in the X direction. Then, the sample is irradiated to the irradiation sample 16 through the Y-direction bending electromagnet 14 to be deflected in the Y direction.
[0010]
In general, the particle density on a scanning path (in the formula, shown by a lowercase “l” in cursive) in the case of scanning an ion beam having a charge number q and a beam current I at a speed v 0 is represented by the following formula. expressed.
[0011]
(Equation 1)
Figure 0003563226
Here, n is the number of particles. Particle density in the scanning direction as long as the scanning speed v 0 is constant is always constant. If the scanning orbit density in the direction perpendicular to the scanning direction, that is, in the radial direction is also kept constant, a two-dimensionally uniform particle density distribution can be obtained. This condition is represented by the following equation, where r is the scanning radius and θ is the azimuth in the scanning direction.
[0012]
(Equation 2)
Figure 0003563226
Considering the radius r and the azimuth θ as functions of time, assuming that the radius at the time t = 0 is R min , the radius at the time t = T is R max , and the scanning rotation speed is N, the constant A is obtained from Equation 2. Is represented by the following equation.
[0013]
(Equation 3)
Figure 0003563226
If the scan speed is large, the radial component of scanning speed can be sufficiently neglected in comparison with the azimuthal direction, azimuthal component can be approximated by a scan velocity v 0. Therefore, the scanning angle frequency ω can be given by the following equation.
[0014]
(Equation 4)
Figure 0003563226
From Equations (2) and (4), the scanning radius r can be solved as follows.
[0015]
(Equation 5)
Figure 0003563226
The scanning angular frequency ω is expressed by the following equation from the equations (4) and (5).
[0016]
(Equation 6)
Figure 0003563226
Accordingly, the scanning trajectory and the scanning period are uniquely determined for the given four parameters, that is, the maximum scanning radius R max , the minimum scanning radius R min , the scanning speed v 0 and the scanning rotation speed N.
[0017]
When actually scanning the ion beam, the value of the coil current supplied to the two bending electromagnets 12 and 14 is changed over time according to the equation (5), and the current phase difference between the two bending electromagnets 12 and 14 is changed. The beam is scanned in a spiral trajectory by changing the coil current frequency according to equation (6) while maintaining the angle at 90 degrees. At this time, the time change of the magnetic field generated by the X-direction bending electromagnet 12 changes as shown at 18 in FIG. 1, while the time change of the magnetic field generated by the Y-direction bending electromagnet 14 changes as shown at 20 in FIG. And a phase difference of 90 degrees is maintained. The scanned from the minimum radius R min to a maximum radius R max, and by repeating the maximum radius R max to the minimum radius R min, it can go entirely increasing fluence.
[0018]
By continuously scanning an ion beam accelerated by an ion accelerator or an ion beam having a pulse period of 10 -9 to 10 -3 seconds as described above, a circular large-area uniform irradiation becomes possible.
[0019]
Next, as one embodiment (experimental data) of the present invention, the following describes a case where the minimum scanning radius R min = 5 mm, the maximum scanning radius R max = 100 mm, the number of rotations N = 20, and the scanning speed v 0 = 300 mm / s. Write.
[0020]
FIGS. 2 and 3 show examples of the time change of the scanning radius r and the scanning angular frequency ω expressed by the equations (5) and (6), respectively. FIG. 4 shows how the coil current supplied to one of the two bending electromagnets 12 and 14 changes over time. The time change of the coil current of the other electromagnet is omitted because the envelope shape is substantially the same and the phase differs only by 90 degrees. FIG. 5 shows the beam scanning trajectory on the irradiation field.
[0021]
In order to simulate the two-dimensional particle density distribution in the irradiation field obtained by the ion beam scanning method according to the present invention, assuming that the particle intensity distribution of the beam spot is a two-dimensional Gaussian distribution, the following expression is obtained. .
[0022]
(Equation 7)
Figure 0003563226
Here, (x 0 , y 0 ) is the center position of the beam spot on the irradiation field, σ is the variance of the Gaussian distribution, and using the half-width FWHM of the particle intensity distribution of the beam spot, σ = FWHM / 2.35 expressed. FIG. 6 shows an example of the particle density distribution obtained when the beam is scanned from the minimum radius R min to the maximum radius R max . Note that the simulation calculation parameters at this time are the minimum scanning radius R min = 3 mm, the maximum scanning radius R max = 100 mm, the number of revolutions N = 49, and the scanning speed v 0 = 300 mm / s. From FIG. 6, it can be seen that uniform irradiation is possible even for a sample having a diameter exceeding 10 cm, for which uniform irradiation was difficult with the conventional method.
[0023]
The uniformity of the particle density distribution mainly depends on the ratio between the minimum scanning radius R min and the half width FWHM of the beam spot particle intensity distribution. FIG. 7 shows the correlation between R min / FWHM and uniformity. Table 1 shows the simulation calculation data at this time.
[0024]
[Table 1]
Figure 0003563226
[0025]
In FIG. 7 and Table 1, Pitch represents the interval between beam trajectories in the radial direction. FIG. 7 shows that if R min /FWHM≦0.3, a uniformity of ± 10% or less can be obtained.
[0026]
【The invention's effect】
Since the beam scanning method of the present invention is configured as described above, the continuous spiral scanning of the ion beam does not require a periodic beam cut-off device as in the conventional wobbling method, and thus has a large circular shape. Irradiation with uniform area is possible. Therefore, the ion beam scanning method of the present invention is a new technique different from the conventional ion beam scanning method, and is expected to be applied in the future as one of advanced beam control techniques in ion beam engineering.
[0027]
In addition, since continuous ion uniform irradiation can be performed on large circular samples with a diameter exceeding 10 cm, the contribution to research and development using ion beams in applied research fields such as material engineering, biotechnology, and medical treatment is significant. It is.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a large-area uniform irradiation system of an ion beam by a spiral beam scanning method of the present invention using two bending electromagnets.
FIG. 2 is a diagram illustrating an example of a time change of a scanning radius r according to an embodiment of the present invention.
FIG. 3 is a diagram showing an example of a temporal change of a scanning angle frequency ω in one embodiment of the present invention.
FIG. 4 is a diagram showing a temporal change of a coil current supplied to one of two bending electromagnets in one embodiment of the present invention.
FIG. 5 is a diagram showing a beam scanning trajectory on an irradiation field in one embodiment of the present invention.
FIG. 6 is a diagram showing an example of a two-dimensional particle density distribution on an irradiation field in one embodiment of the present invention.
FIG. 7 is a diagram illustrating an example of a correlation between the uniformity of the two-dimensional particle density distribution and (scanning minimum radius R min / beam spot half width FWHM) in one embodiment of the present invention.
[Explanation of symbols]
10: Ion beam 12: X-direction bending electromagnet 14: Y-direction bending electromagnet 16: Irradiated sample

Claims (3)

イオンビームをターゲット上で渦巻き状に走査させるイオンビーム照射方法であって、
tが時間を、Rmaxが走査最大半径を、Rminが走査最小半径を、v0が走査速度を、Nが走査回転数をそれぞれ表すとして、
イオンビームの走査半径r(t)及び走査角振動ω(t)のそれぞれの時間的変化が、
Figure 0003563226
であるようイオンビームをターゲット上で渦巻き状に走査させ、広い範囲に渡ってイオンのフルエンス分布を均一化するイオンビーム照射方法。
An ion beam irradiation method for spirally scanning an ion beam on a target,
Assuming that t represents time, R max represents the maximum scanning radius, R min represents the minimum scanning radius, v 0 represents the scanning speed, and N represents the number of scanning rotations, respectively.
Each time change of the scanning radius r (t) and the scanning angular vibration ω (t) of the ion beam is
Figure 0003563226
An ion beam irradiation method in which an ion beam is spirally scanned on a target to make the fluence distribution of ions uniform over a wide range.
互いに実質的に直交して配置された2台の偏向電磁石を用い、当該2台の偏向電磁石のコイル電流の時間変化に関して、包絡線及び周期を互いに実質的に同じにし、且つ位相を実質的に90度異なるようにして、前記式に基づくイオンビームの渦巻き状の走査を行う請求項1記載のイオンビーム照射方法。Using two bending electromagnets arranged substantially orthogonal to each other, the envelope and the period are made substantially the same as each other with respect to the time change of the coil current of the two bending electromagnets, and the phase is substantially made. 2. The ion beam irradiation method according to claim 1, wherein the spiral scanning of the ion beam based on the above equation is performed at a difference of 90 degrees. 前記イオンビームのビームスポットの粒子強度分布が二次元的なガウス分布であり、当該ビームスポットの粒子強度分布の半値幅をFWHMとすると、Rmin/FWHMが0.3以下である請求項1又は2記載のイオンビーム照射方法。The particle intensity distribution of a beam spot of the ion beam is a two-dimensional Gaussian distribution, and when a half width of the particle intensity distribution of the beam spot is FWHM, R min / FWHM is 0.3 or less. 3. The ion beam irradiation method according to 2.
JP05603797A 1997-03-11 1997-03-11 Large area uniform irradiation method of ion beam by spiral beam scanning Expired - Fee Related JP3563226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05603797A JP3563226B2 (en) 1997-03-11 1997-03-11 Large area uniform irradiation method of ion beam by spiral beam scanning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05603797A JP3563226B2 (en) 1997-03-11 1997-03-11 Large area uniform irradiation method of ion beam by spiral beam scanning

Publications (2)

Publication Number Publication Date
JPH10255707A JPH10255707A (en) 1998-09-25
JP3563226B2 true JP3563226B2 (en) 2004-09-08

Family

ID=13015892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05603797A Expired - Fee Related JP3563226B2 (en) 1997-03-11 1997-03-11 Large area uniform irradiation method of ion beam by spiral beam scanning

Country Status (1)

Country Link
JP (1) JP3563226B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8232532B2 (en) 2009-06-23 2012-07-31 Hitachi Global Storage Technologies Netherlands B.V. Off-axis ion milling device for manufacture of magnetic recording media and method for using the same
US8754386B2 (en) 2010-08-17 2014-06-17 Mitsubishi Electric Corporation Multi-leaf collimator, particle beam therapy system, and treatment planning apparatus
US8263954B2 (en) 2010-11-16 2012-09-11 Mitsubishi Electric Corporation Bolus, bolus manufacturing method, particle beam therapy system, and treatment planning apparatus
JP5999967B2 (en) * 2012-05-01 2016-09-28 株式会社アルバック Irradiation method and processing equipment
WO2019099904A1 (en) * 2017-11-16 2019-05-23 Varian Medical Systems, Inc. Increased beam output and dynamic field shaping for radiotherapy system
CN112289679B (en) * 2020-10-30 2022-11-04 泉芯集成电路制造(济南)有限公司 Ion implantation method, device and equipment

Also Published As

Publication number Publication date
JPH10255707A (en) 1998-09-25

Similar Documents

Publication Publication Date Title
US4736106A (en) Method and apparatus for uniform charged particle irradiation of a surface
US7919759B2 (en) Charged particle beam irradiator and rotary gantry
US4804852A (en) Treating work pieces with electro-magnetically scanned ion beams
US3193717A (en) Beam scanning method and apparatus
JPH04226021A (en) Method for irradiating body with charged particle beam
TW200807478A (en) Apparatus and method for ion beam implantation using ribbon and spot beams
KR20070084347A (en) Improved dose uniformity during scanned ion implantation
JPH10507029A (en) Fast magnetic scanning of heavy ion beams
JP3563226B2 (en) Large area uniform irradiation method of ion beam by spiral beam scanning
JP4730932B2 (en) Wide dynamic range ion beam scanner
US4918316A (en) Method of and apparatus for irradiating large surfaces with ions
KR870002748A (en) Plasma Magnetron Sputtering Device
US20060124867A1 (en) Method and apparatus for ion beam profiling
JPS62122044A (en) Ion accelerator
JP2005353537A (en) Ion implanter
JPH10308191A (en) Ion implantation device
JPH05264797A (en) Method and device for beam irradiation
JP3547812B2 (en) Particle beam device and medical device using the same
JPS6324536A (en) Apparatus and method for ion implantation
JP2569812B2 (en) High energy ion implanter
JP2001166098A (en) Charged particle irradiation device
JPH07209498A (en) Charged particle emitting device
JPH09298043A (en) Ion implanting device
JPS62112777A (en) Apparatus for forming thin film
JPH08195533A (en) X-ray generator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040602

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees