JP3562912B2 - Surface plasmon sensor - Google Patents

Surface plasmon sensor Download PDF

Info

Publication number
JP3562912B2
JP3562912B2 JP23386596A JP23386596A JP3562912B2 JP 3562912 B2 JP3562912 B2 JP 3562912B2 JP 23386596 A JP23386596 A JP 23386596A JP 23386596 A JP23386596 A JP 23386596A JP 3562912 B2 JP3562912 B2 JP 3562912B2
Authority
JP
Japan
Prior art keywords
surface plasmon
light
prism
light beam
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23386596A
Other languages
Japanese (ja)
Other versions
JPH1078390A (en
Inventor
昌之 納谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP23386596A priority Critical patent/JP3562912B2/en
Publication of JPH1078390A publication Critical patent/JPH1078390A/en
Application granted granted Critical
Publication of JP3562912B2 publication Critical patent/JP3562912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、表面プラズモンの発生を利用して試料中の物質を分析する表面プラズモンセンサーに関するものであり、さらに詳しくは、表面プラズモンの散乱を利用して試料中に疎に存在する物質を分析する表面プラズモンセンサーに関するものである。
【0002】
【従来の技術】
金属中においては、自由電子が集団的に振動して、プラズマ波と呼ばれる粗密波が生じる。そして、金属表面に生じるこの粗密波を量子化したものは、表面プラズモンと呼ばれている。
【0003】
従来より、この表面プラズモンが光波によって励起される現象を利用して、試料中の物質を定量分析する表面プラズモンセンサーが種々提案されている。そして、それらの中で特に良く知られているものとして、 Kretschmann配置と称される系を用いるものが挙げられる(例えば特開平6−167443号参照)。
【0004】
上記の系を用いる表面プラズモンセンサーは基本的に、プリズムと、このプリズムの一面に形成されて試料に接触させられる金属膜と、光ビームを発生させる光源と、上記光ビームをプリズムに通し、該プリズムと金属膜との界面に対して種々の入射角が得られるように入射させる光学系と、上記の界面で全反射した光ビームの強度を種々の入射角毎に検出可能な光検出手段とを備えてなるものである。
【0005】
なお上述のように種々の入射角を得るためには、比較的細い光ビームを偏向させて上記界面に入射させてもよいし、あるいは光ビームに種々の角度で入射する成分が含まれるように、比較的太い光ビームを上記界面で集束するように入射させてもよい。前者の場合は、光ビームの偏向にともなって出射角が変化する光ビームを、光ビームの偏向に同期移動する小さな光検出器によって検出したり、出射角の変化方向に沿って延びるエリアセンサーによって検出することができる。一方後者の場合は、種々の出射角で出射した各光ビームを全て受光できる方向に延びるエリアセンサーによって検出することができる。
【0006】
上記構成の表面プラズモンセンサーにおいて、P偏光(センサー面に垂直な偏光成分)の光ビームを金属膜に対して全反射角以上の特定入射角θSPで入射させると、該金属膜に接している試料中に電界分布をもつエバネッセント波が生じ、このエバネッセント波によって金属膜と試料との界面に表面プラズモンが励起される。エバネッセント光の波数ベクトルが表面プラズモンの波数と等しくて波数整合が成立すると、両者は共鳴状態となり、光のエネルギーが表面プラズモンに移行するので、プリズムと金属膜との界面で全反射する光の強度が鋭く低下する。
【0007】
この現象が生じる入射角θSPより表面プラズモンの波数が分かると、試料の誘電率が求められる。すなわち表面プラズモンの波数をKSP、表面プラズモンの角周波数をω、cを真空中の光速、εとεをそれぞれ金属、試料の誘電率とすると、以下の関係がある。
【0008】
【数1】

Figure 0003562912
【0009】
試料の誘電率εが分かれば、所定の較正曲線等に基づいて試料中の特定物質の濃度が分かるので、結局、上記反射光強度が低下する入射角(全反射解消角)θSPを知ることにより、試料中の特定物質を定量分析することができる。
【0010】
【発明が解決しようとする課題】
ところで、以上説明した従来の表面プラズモンセンサーにおいては、分析対象物質がセンサー面(金属膜)に密に吸着している必要があり、例えば大腸菌のように、試料液中において疎に分布する物質の検出は難しいという問題が認められていた。
【0011】
本発明は上記の事情に鑑みてなされたものであり、試料液中において疎に分布する物質を良好に分析可能な表面プラズモンセンサーを提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明による第1の表面プラズモンセンサーは、請求項1に記載の通り、前述したようなプリズムと、金属膜と、光ビームを発生させる光源とに加えて、上記光ビームを上記プリズムに通し、該プリズムと金属膜との界面に対して、表面プラズモンを発生させる入射角で入射させる光学系と、表面プラズモンの電場が乱されることにより生じる散乱光を検出する散乱光検出手段とを備えてなることを特徴とするものである。
【0013】
また、本発明による第2の表面プラズモンセンサーは、従来からなされている全反射解消角θSPの検出による試料分析も行なえるようにしたものであり、具体的には請求項2に記載の通り、前述したようなプリズムと、金属膜と、光ビームを発生させる光源とに加えて、上記光ビームを上記プリズムに通し、該プリズムと金属膜との界面に対して、表面プラズモンを発生させる入射角を含む種々の入射角が得られるように入射させる光学系と、表面プラズモンの電場が乱されることにより生じる散乱光を検出する散乱光検出手段と、上記界面で全反射した光ビームの強度を、上記種々の入射角毎に検出可能な光検出手段とを備えてなることを特徴とするものである。
【0014】
また、本発明による第3の表面プラズモンセンサーは請求項3に記載の通り、上記第1または2の表面プラズモンセンサーにおいて、試料中の物質が表面プラズモンにより励起されて発した蛍光を検出する蛍光検出手段を備えたことを特徴とするものである。
【0015】
【発明の効果】
上記構成を有する本発明の各表面プラズモンセンサーにおいて、表面プラズモンが励起されると、金属膜の表面には強い電場が発生する。この電場内に前述した大腸菌等の分析対象物質が存在していると、それが表面プラズモンの電場を乱して、散乱光が生じる。この散乱は、分析対象物質が単独で1個だけ存在している場合にも生じる。そこでこの散乱光を検出すれば、大腸菌等のように金属膜近辺に非常に疎に存在する物質も検出可能である。
【0016】
なお、上記大腸菌等の分析対象物質の量が少ない場合は、散乱光の強度と分析対象物質の量との間に相関が存在する。そこでこの場合は、散乱光の強度を測定することにより、分析対象物質を定量的に分析することもできる。
【0017】
また、特に本発明による第2の表面プラズモンセンサーは、光ビームをプリズムと金属膜との界面に対して種々の入射角が得られるように入射させる光学系と、上記界面で全反射した光ビームの強度を種々の入射角毎に検出可能な光検出手段とを備えたことにより、従来からなされている全反射解消角θSPの検出による試料分析も行なうことができる。
【0018】
さらに、本発明による第3の表面プラズモンセンサーは、試料中の物質が表面プラズモンにより励起されて発した蛍光を検出する蛍光検出手段を備えているから、この第3の表面プラズモンセンサーによれば、分析対象物質を蛍光色素等で標識しておき、上記蛍光を検出することによって免疫反応等を分析することも可能になる。
【0019】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。図1は、本発明の第1の実施形態である表面プラズモンセンサーの側面形状を示すものである。図示されるようにこの表面プラズモンセンサーは、断面三角形のプリズム10と、このプリズム10の一面(図中の上面)に形成された、例えば金、銀等からなる金属膜12と、この金属膜12の上に形成されて分析対象物質30を抗原・抗体反応によりトラップする機能薄膜20と、1本の光ビーム13を発生させる半導体レーザー等からなる光源14とを有している。
【0020】
例えば大腸菌等の分析対象物質30を含む試料液11は、上記機能薄膜20に接触する状態でフローセル21内を流通する。このフローセル21の上方には、後述のようにして生じる散乱光22を集光する集光レンズ23と、集光されたこの散乱光22を検出する散乱光検出器24とが配設されている。
【0021】
上記光源14は光ビーム13を、プリズム10と金属膜12との界面10aに対して、金属膜12と試料液11との界面に表面プラズモンを励起させる特定の入射角(全反射解消角)θSPで入射させるように配設されている。このようにして表面プラズモンが励起されると、金属膜12の表面には強い電場が発生する。この電場内に大腸菌等の分析対象物質30が存在していると、それが表面プラズモンの電場を乱して、散乱光22が生じる。
【0022】
したがって、散乱光検出器24が出力する散乱光検出信号Sdは、試料液11中に分析対象物質30が含まれる場合は所定値以上の値を取るようになり、そこで、この散乱光検出信号Sdに基づいて分析対象物質30を検出可能となる。なお上記の散乱は、分析対象物質30が機能薄膜20上に単独で1個だけ存在している場合にも生じる。したがって、分析対象物質30が大腸菌等のように非常に疎に存在するものであっても、それを良好に検出可能となっている。
【0023】
また、分析対象物質30の量が少ない場合は、散乱光22の強度と分析対象物質30の量との間に相関が存在する。そこでこの場合は、散乱光22の強度を測定することにより、分析対象物質30を定量的に分析することもできる。
【0024】
なおこの実施形態においては、光源14の光学系が、光ビーム13を界面10aに対して表面プラズモンを励起させる入射角θSPで入射させる光学系を構成しているが、このような光学系を光源14とは全く別体に構成しても構わない。
【0025】
次に図2を参照して、本発明の第2の実施形態について説明する。なおこの図2において、図1中の要素と同等の要素には同番号を付し、それらについての重複した説明は省略する。
【0026】
この第2の実施形態の表面プラズモンセンサーは、光ビーム13をプリズム10と金属膜12との界面10aに対して、全反射解消角θSPを含む種々の入射角が得られるように入射させる光学系15と、プリズム10と金属膜12との界面10aで全反射した光ビーム13の強度を検出する光検出手段16とを備えている。上記光学系15は、光源14から発せられた光ビーム13を発散させるレンズ15aと、発散光となった光ビーム13を平行光化するコリメーターレンズ15bと、平行光となった光ビーム13をプリズム10の長さ方向に垂直な面(紙面に平行な面)内のみで集束させるシリンドリカルレンズ15cとから構成されている。
【0027】
光ビーム13は、シリンドリカルレンズ15cの作用で上述のように集束するので、図中に最小入射角θと最大入射角θとを例示するように、界面10aに対して種々の入射角θで入射する成分を含むことになる。なおこの入射角θは、全反射角以上の角度とされる。そこで、光ビーム13は界面10aで全反射し、この反射した光ビーム13には、種々の反射角で反射する成分が含まれることになる。
【0028】
光検出手段16としては、上記のように種々の反射角で反射した全部の光ビーム13を受光できる方向に受光部が延びる、例えばCCDラインセンサ等が用いられている。そこで、この光検出手段16の各受光素子毎に出力される光検出信号Sは、上記種々の反射角毎に(つまり、種々の入射角毎に)光ビーム13の強度を示すものとなる。
【0029】
以下、上記構成の表面プラズモンセンサーによる試料分析について説明する。試料分析に際しては、シリンドリカルレンズ15の作用で上述のように集束する光ビーム13が、金属膜12に向けて照射される。この金属膜12とプリズム10との界面10aで全反射した光ビーム13は、光検出手段16によって検出される。
【0030】
前述した通り、光検出手段16の各受光素子毎に出力される光検出信号Sは、全反射した光ビーム13の強度Iを入射角θ毎に示すものとなる。そしてこの反射光強度Iと入射角θとの関係は、概ね図3に示すようなものとなる。
【0031】
ここで、ある特定の入射角θSPで入射した光は、金属膜12と試料液11との界面に表面プラズモンを励起させるので、この光については反射光強度Iが鋭く低下する。光検出手段16の各受光素子毎に出力される光検出信号Sを用いれば上記入射角θSPが分かり、このθSPの値に基づいて試料液11中の物質30を定量分析することができる。その理由は、先に詳しく説明した通りである。
【0032】
また光ビーム13には、プリズム10と金属膜12との界面10aに対して、全反射解消角θSPで入射する成分が含まれるから、この場合も第1実施形態と同様に、散乱光22の検出信号Sdに基づいて、疎に存在する分析対象物質30も検出することができる。
【0033】
なお、以上説明した散乱光22の検出に基づく分析と、反射光強度Iの検出に基づく分析とは、時間的に互いに分離させて行なってもよいし、あるいは相並行して行なってもよい。
【0034】
また、上記の実施形態においては、種々の入射角θを得るために、比較的太い光ビーム13を界面10aで集束するように入射させているが、比較的細い光ビームを偏向させることによって種々の入射角θを得るようにしてもよい。
【0035】
さらに、分析対象物質30を抗原・抗体反応により機能薄膜20にトラップさせることは必ずしも必要ではなく、本発明の表面プラズモンセンサーは、この抗原・抗体反応を示すものではない物質の分析にも用いられ得るものである。
【0036】
また、図1や図2の構成において、試料液11を間に挟んで金属膜12と対面する電極や、あるいはプリズム10上において金属膜12と互いに離間する電極を設け、その電極と金属膜12との間に電圧を印加して、試料液11中で帯電している分析対象物質を電着効果により金属膜12側に引き寄せるようにしてもよい。そのようにすれば、試料液11の金属膜12に近接する部分では分析対象物質30の濃度が高くなるので、全反射解消角θSPが短時間で大きく変化し、そこで、分析対象物質30を高感度で短時間内に分析可能となる。
【0037】
さらに、試料中の物質が表面プラズモンにより励起されて発した蛍光を検出する蛍光検出手段を付加しておけば、分析対象物質を蛍光色素等で標識しておき、上記蛍光を検出することによって免疫反応等を分析することも可能になる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態である表面プラズモンセンサーの側面図
【図2】本発明の第2の実施形態である表面プラズモンセンサーの側面図
【図3】表面プラズモンセンサーにおける、プリズムへの光ビーム入射角と全反射光強度との概略関係を示すグラフ
【符号の説明】
10 プリズム
10a プリズムと金属膜との界面
11 試料液
12 金属膜
13 光ビーム
14 光源
15c シリンドリカルレンズ
16 光検出手段
20 機能薄膜
21 フローセル
22 散乱光
23 集光レンズ
24 散乱光検出器
30 分析対象物質[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a surface plasmon sensor for analyzing a substance in a sample using generation of surface plasmon, and more particularly, to analyze a substance sparsely present in a sample using scattering of surface plasmon. It relates to a surface plasmon sensor.
[0002]
[Prior art]
In a metal, free electrons vibrate collectively, and a compression wave called a plasma wave is generated. The quantized compression wave generated on the metal surface is called surface plasmon.
[0003]
Conventionally, various surface plasmon sensors for quantitatively analyzing a substance in a sample using a phenomenon in which surface plasmons are excited by light waves have been proposed. Among them, a particularly well-known one uses a system called a Kretschmann arrangement (see, for example, JP-A-6-167443).
[0004]
A surface plasmon sensor using the above system basically includes a prism, a metal film formed on one surface of the prism and brought into contact with a sample, a light source for generating a light beam, and passing the light beam through the prism. An optical system for causing various angles of incidence to be obtained with respect to the interface between the prism and the metal film, and a light detecting means capable of detecting the intensity of the light beam totally reflected at the interface at each of various angles of incidence. It is provided with.
[0005]
In order to obtain various angles of incidence as described above, a relatively narrow light beam may be deflected and incident on the interface, or a component may be included in the light beam at various angles. Alternatively, a relatively thick light beam may be incident so as to be focused at the interface. In the former case, a light beam whose emission angle changes with the deflection of the light beam is detected by a small photodetector that moves synchronously with the deflection of the light beam, or by an area sensor extending along the change direction of the emission angle. Can be detected. On the other hand, the latter case can be detected by an area sensor extending in a direction in which all light beams emitted at various emission angles can be received.
[0006]
In the surface plasmon sensor having the above configuration, when a P-polarized light beam (a polarization component perpendicular to the sensor surface) is incident on the metal film at a specific incident angle θ SP equal to or larger than the total reflection angle, the light comes into contact with the metal film. An evanescent wave having an electric field distribution is generated in the sample, and the evanescent wave excites a surface plasmon at an interface between the metal film and the sample. When the wave number vector of the evanescent light is equal to the wave number of the surface plasmon and the wave number matching is established, both are in a resonance state, and the light energy is transferred to the surface plasmon, so the intensity of the light totally reflected at the interface between the prism and the metal film Drops sharply.
[0007]
If the wave number of the surface plasmon is known from the incident angle θ SP at which this phenomenon occurs, the dielectric constant of the sample can be obtained. That is, the wave number of the surface plasmon K SP, the angular frequency of the surface plasmon omega, the speed of light in vacuum c, metal epsilon m and epsilon s respectively, when the dielectric constant of the sample, the following relationship.
[0008]
(Equation 1)
Figure 0003562912
[0009]
If the dielectric constant ε s of the sample is known, the concentration of the specific substance in the sample can be determined based on a predetermined calibration curve or the like, and eventually, the incident angle (the angle of elimination of total reflection) θ SP at which the reflected light intensity decreases is known. Thus, the specific substance in the sample can be quantitatively analyzed.
[0010]
[Problems to be solved by the invention]
By the way, in the conventional surface plasmon sensor described above, the substance to be analyzed needs to be densely adsorbed on the sensor surface (metal film), and for example, a substance sparsely distributed in the sample liquid such as Escherichia coli is required. The problem that detection was difficult was recognized.
[0011]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a surface plasmon sensor capable of satisfactorily analyzing a substance sparsely distributed in a sample liquid.
[0012]
[Means for Solving the Problems]
The first surface plasmon sensor according to the present invention passes the light beam through the prism in addition to the prism, the metal film, and the light source that generates the light beam, as described in claim 1. An optical system for entering the interface between the prism and the metal film at an incident angle for generating surface plasmon, and scattered light detection means for detecting scattered light generated by disturbing the electric field of the surface plasmon are provided. It is characterized by becoming.
[0013]
Further, the second surface plasmon sensor according to the present invention is also adapted to perform a sample analysis by detecting a conventional total reflection elimination angle θ SP , and specifically, as described in claim 2. In addition to the above-described prism, metal film, and light source for generating a light beam, the light beam passes through the prism, and an incident light for generating a surface plasmon on an interface between the prism and the metal film. An optical system for incident light so as to obtain various incident angles including angles, a scattered light detecting means for detecting scattered light generated by disturbing an electric field of surface plasmon, and an intensity of a light beam totally reflected at the interface And light detecting means capable of detecting the above-mentioned various incident angles.
[0014]
According to a third aspect of the present invention, there is provided a third surface plasmon sensor according to the first or second aspect, wherein the first or second surface plasmon sensor detects fluorescence emitted when a substance in the sample is excited by the surface plasmon. Means are provided.
[0015]
【The invention's effect】
In each of the surface plasmon sensors of the present invention having the above configuration, when surface plasmon is excited, a strong electric field is generated on the surface of the metal film. If an analyte such as Escherichia coli described above exists in this electric field, it disturbs the electric field of the surface plasmon, and scattered light is generated. This scattering occurs even when only one analyte is present. Therefore, if this scattered light is detected, it is possible to detect a substance very sparsely present near the metal film, such as E. coli.
[0016]
When the amount of the analyte such as Escherichia coli is small, there is a correlation between the intensity of the scattered light and the amount of the analyte. Therefore, in this case, the substance to be analyzed can be quantitatively analyzed by measuring the intensity of the scattered light.
[0017]
In particular, the second surface plasmon sensor according to the present invention includes an optical system that causes a light beam to enter the interface between the prism and the metal film so as to obtain various incident angles, and a light beam that is totally reflected at the interface. And light detecting means capable of detecting the intensity of the light at various incident angles, so that a conventional sample analysis by detecting the total reflection elimination angle θ SP can also be performed.
[0018]
Furthermore, since the third surface plasmon sensor according to the present invention includes fluorescence detecting means for detecting fluorescence emitted when a substance in the sample is excited by the surface plasmon, according to the third surface plasmon sensor, By labeling a substance to be analyzed with a fluorescent dye or the like, and detecting the fluorescence, it becomes possible to analyze an immune reaction or the like.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a side surface shape of a surface plasmon sensor according to a first embodiment of the present invention. As shown in the figure, the surface plasmon sensor includes a prism 10 having a triangular cross section, a metal film 12 made of, for example, gold, silver, or the like formed on one surface (upper surface in the drawing) of the prism 10, and a metal film 12. A functional thin film 20 formed on the substrate and trapping the analysis target substance 30 by an antigen-antibody reaction, and a light source 14 such as a semiconductor laser for generating one light beam 13.
[0020]
For example, the sample liquid 11 containing the substance to be analyzed 30 such as Escherichia coli flows through the flow cell 21 in a state of contacting the functional thin film 20. Above the flow cell 21, a condenser lens 23 for condensing scattered light 22 generated as described later, and a scattered light detector 24 for detecting the collected scattered light 22 are provided. .
[0021]
The light source 14 converts the light beam 13 into a specific incident angle (total reflection elimination angle) θ that excites surface plasmons at the interface between the metal film 12 and the sample liquid 11 with respect to the interface 10 a between the prism 10 and the metal film 12. It is arranged so as to be incident at SP . When the surface plasmon is excited in this way, a strong electric field is generated on the surface of the metal film 12. If an analyte 30 such as Escherichia coli exists in this electric field, it disturbs the electric field of the surface plasmon, and scattered light 22 is generated.
[0022]
Therefore, the scattered light detection signal Sd output from the scattered light detector 24 takes a value equal to or greater than a predetermined value when the sample substance 11 contains the substance 30 to be analyzed. , The analysis target substance 30 can be detected. Note that the above-described scattering also occurs when only one analysis target substance 30 exists on the functional thin film 20. Therefore, even if the analysis target substance 30 exists very sparsely, such as Escherichia coli, it can be detected well.
[0023]
When the amount of the analysis target substance 30 is small, there is a correlation between the intensity of the scattered light 22 and the amount of the analysis target substance 30. Therefore, in this case, the substance 30 to be analyzed can be quantitatively analyzed by measuring the intensity of the scattered light 22.
[0024]
In this embodiment, the optical system of the light source 14 constitutes an optical system that causes the light beam 13 to enter the interface 10a at an incident angle θ SP that excites surface plasmons. The light source 14 may be completely separate from the light source 14.
[0025]
Next, a second embodiment of the present invention will be described with reference to FIG. In FIG. 2, elements that are the same as the elements in FIG. 1 are given the same reference numerals, and overlapping descriptions thereof will be omitted.
[0026]
The surface plasmon sensor of the second embodiment is an optical system that causes the light beam 13 to enter the interface 10a between the prism 10 and the metal film 12 so that various incident angles including the total reflection elimination angle θ SP can be obtained. The system includes a system 15 and light detecting means 16 for detecting the intensity of the light beam 13 totally reflected at the interface 10 a between the prism 10 and the metal film 12. The optical system 15 includes a lens 15a that diverges the light beam 13 emitted from the light source 14, a collimator lens 15b that converts the divergent light beam 13 into parallel light, and a collimator lens 15b. The prism 10 includes a cylindrical lens 15c that converges only in a plane perpendicular to the longitudinal direction (a plane parallel to the paper surface).
[0027]
Light beam 13, so focused as described above by the action of the cylindrical lens 15c, to illustrate the minimum incident angle theta 1 and the maximum incident angle theta 2 in the figure, various incident angles with respect to the interface 10a theta And the incident component. The incident angle θ is an angle equal to or larger than the total reflection angle. Therefore, the light beam 13 is totally reflected at the interface 10a, and the reflected light beam 13 includes components reflected at various reflection angles.
[0028]
As the light detecting means 16, for example, a CCD line sensor or the like, in which a light receiving portion extends in a direction capable of receiving all the light beams 13 reflected at various reflection angles as described above, is used. Therefore, the light detection signal S output for each light receiving element of the light detection means 16 indicates the intensity of the light beam 13 at each of the various reflection angles (that is, at various incident angles).
[0029]
Hereinafter, the sample analysis by the surface plasmon sensor having the above configuration will be described. At the time of sample analysis, the light beam 13 converged as described above by the action of the cylindrical lens 15 is irradiated toward the metal film 12. The light beam 13 totally reflected at the interface 10 a between the metal film 12 and the prism 10 is detected by the light detecting means 16.
[0030]
As described above, the light detection signal S output for each light receiving element of the light detection means 16 indicates the intensity I of the totally reflected light beam 13 for each incident angle θ. The relationship between the reflected light intensity I and the incident angle θ is approximately as shown in FIG.
[0031]
Here, the light incident at a specific incident angle θ SP excites surface plasmons at the interface between the metal film 12 and the sample solution 11, so that the reflected light intensity I sharply decreases. By using the light detection signal S output for each light receiving element of the light detecting means 16, the incident angle θ SP can be determined, and the substance 30 in the sample liquid 11 can be quantitatively analyzed based on the value of θ SP. . The reason is as described in detail above.
[0032]
The light beam 13, to the interface 10a between the prism 10 and the metal film 12, because include component incident at the total reflection eliminated angle theta SP, as with Again the first embodiment, the scattered light 22 Can be detected based on the detection signal Sd.
[0033]
Note that the analysis based on the detection of the scattered light 22 and the analysis based on the detection of the reflected light intensity I described above may be performed separately from each other in time, or may be performed in parallel.
[0034]
Further, in the above-described embodiment, in order to obtain various angles of incidence θ, the relatively thick light beam 13 is incident so as to converge at the interface 10a. May be obtained.
[0035]
Further, it is not always necessary to trap the substance 30 to be analyzed in the functional thin film 20 by an antigen-antibody reaction, and the surface plasmon sensor of the present invention is also used for analyzing a substance that does not exhibit this antigen-antibody reaction. What you get.
[0036]
1 and 2, an electrode facing the metal film 12 with the sample liquid 11 interposed therebetween, or an electrode separated from the metal film 12 on the prism 10 is provided. May be applied to draw the analyte to be charged in the sample liquid 11 toward the metal film 12 by the electrodeposition effect. By doing so, the concentration of the analyte 30 in the portion of the sample liquid 11 close to the metal film 12 increases, so that the total reflection elimination angle θ SP greatly changes in a short time. High sensitivity allows analysis within a short time.
[0037]
Furthermore, if a fluorescence detecting means for detecting the fluorescence emitted when the substance in the sample is excited by the surface plasmon is added, the substance to be analyzed is labeled with a fluorescent dye or the like, and the fluorescence is detected by detecting the fluorescence. It is also possible to analyze reactions and the like.
[Brief description of the drawings]
FIG. 1 is a side view of a surface plasmon sensor according to a first embodiment of the present invention. FIG. 2 is a side view of a surface plasmon sensor according to a second embodiment of the present invention. FIG. 3 is a prism in the surface plasmon sensor. Graph showing the schematic relationship between the angle of incidence of a light beam on an object and the intensity of total reflection light
Reference Signs List 10 prism 10a interface between prism and metal film 11 sample liquid 12 metal film 13 light beam 14 light source 15c cylindrical lens 16 light detecting means 20 functional thin film 21 flow cell 22 scattered light 23 condensing lens 24 scattered light detector 30 scattered light detector 30

Claims (3)

プリズムと、
このプリズムの一面に形成されて、試料に接触させられる金属膜と、
光ビームを発生させる光源と、
前記光ビームを前記プリズムに通し、該プリズムと金属膜との界面に対して、表面プラズモンを発生させる入射角で入射させる光学系と、
前記表面プラズモンの電場が乱されることにより生じる散乱光を検出する散乱光検出手段とを備えてなる表面プラズモンセンサー。
Prism and
A metal film formed on one surface of the prism and brought into contact with the sample,
A light source for generating a light beam;
An optical system that passes the light beam through the prism, and enters the interface between the prism and the metal film at an incident angle that generates surface plasmon.
A surface plasmon sensor comprising: scattered light detecting means for detecting scattered light generated by disturbing the electric field of the surface plasmon.
プリズムと、
このプリズムの一面に形成されて、試料に接触させられる金属膜と、
光ビームを発生させる光源と、
前記光ビームを前記プリズムに通し、該プリズムと金属膜との界面に対して、表面プラズモンを発生させる入射角を含む種々の入射角が得られるように入射させる光学系と、
前記表面プラズモンの電場が乱されることにより生じる散乱光を検出する散乱光検出手段と、
前記界面で全反射した光ビームの強度を、前記種々の入射角毎に検出可能な反射光検出手段とを備えてなる表面プラズモンセンサー。
Prism and
A metal film formed on one surface of the prism and brought into contact with the sample,
A light source for generating a light beam;
An optical system that passes the light beam through the prism, and enters the interface between the prism and the metal film so that various incident angles including an incident angle that generates surface plasmon are obtained.
Scattered light detection means for detecting scattered light generated by the electric field of the surface plasmon is disturbed ,
A surface plasmon sensor comprising: a reflected light detecting means capable of detecting the intensity of the light beam totally reflected at the interface at each of the various incident angles.
試料中の物質が前記表面プラズモンにより励起されて発した蛍光を検出する蛍光検出手段を備えたことを特徴とする請求項1または2記載の表面プラズモンセンサー。The surface plasmon sensor according to claim 1 or 2, further comprising a fluorescence detection unit configured to detect fluorescence emitted when a substance in the sample is excited by the surface plasmon.
JP23386596A 1996-09-04 1996-09-04 Surface plasmon sensor Expired - Fee Related JP3562912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23386596A JP3562912B2 (en) 1996-09-04 1996-09-04 Surface plasmon sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23386596A JP3562912B2 (en) 1996-09-04 1996-09-04 Surface plasmon sensor

Publications (2)

Publication Number Publication Date
JPH1078390A JPH1078390A (en) 1998-03-24
JP3562912B2 true JP3562912B2 (en) 2004-09-08

Family

ID=16961787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23386596A Expired - Fee Related JP3562912B2 (en) 1996-09-04 1996-09-04 Surface plasmon sensor

Country Status (1)

Country Link
JP (1) JP3562912B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7612349B2 (en) 2007-03-15 2009-11-03 Fujifilm Corporation Surface plasmon enhanced fluorescence sensor
US7701579B2 (en) 2007-02-28 2010-04-20 Fujifilm Corporation Fluorescence sensor
EP2189782A2 (en) 2008-11-25 2010-05-26 FUJIFILM Corporation Total reflection illuminated sensor chip
KR101067348B1 (en) * 2009-03-04 2011-09-23 한국과학기술원 The prism inducing Brewster's angle transmission and apparatus for fluorescence detection for enhancement of signal to noise ratio used to thereof
WO2013161614A1 (en) 2012-04-27 2013-10-31 コニカミノルタ株式会社 Antigen detection method which uses lectin and comprises enzyme treatment step
US10222385B2 (en) 2013-12-27 2019-03-05 Konica Minolta, Inc. Methods for discriminating between prostate cancer and a benign prostate-disease
US10371704B2 (en) 2013-12-27 2019-08-06 Konica Minolta, Inc. Method for discriminating between prostate cancer and a benign prostate disease

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19715483A1 (en) * 1997-04-14 1998-10-15 Boehringer Mannheim Gmbh Method for the simultaneous determination of biomolecular interactions by means of plasmon resonance and fluorescence detection
JP2000162124A (en) * 1998-12-01 2000-06-16 Nippon Laser Denshi Kk Sensor chip for surface plasmon resonance angle detecting device
JP4522884B2 (en) * 2005-02-17 2010-08-11 株式会社資生堂 Evaluation method of sample light extraction performance and sample light extraction performance evaluation device
JP2008102117A (en) 2006-09-21 2008-05-01 Fujifilm Corp Surface plasmon enhanced fluorescence sensor and fluorescence detecting method
EP1944599A3 (en) 2007-01-11 2008-11-12 Fujifilm Corporation Fluorescence analysis apparatus
JP5107003B2 (en) * 2007-11-22 2012-12-26 パナソニックヘルスケア株式会社 Evanescent wave generator and observation apparatus using the same
US8502166B2 (en) * 2008-02-04 2013-08-06 Koninklijke Philips N.V. Molecular diagnostic system based on evanescent illumination and fluorescence
JP5241274B2 (en) * 2008-02-28 2013-07-17 富士フイルム株式会社 Detection method of detected substance
JP5344828B2 (en) * 2008-02-28 2013-11-20 富士フイルム株式会社 Sensing device
JP5094484B2 (en) * 2008-03-11 2012-12-12 富士フイルム株式会社 Fluorescence detection method and fluorescence detection apparatus
JP4993308B2 (en) * 2008-03-31 2012-08-08 富士フイルム株式会社 Fluorescence detection method and fluorescence detection apparatus
JP2012137477A (en) * 2010-12-07 2012-07-19 Stanley Electric Co Ltd Particle detection device
AT513859B1 (en) * 2013-04-12 2014-08-15 Joanneum Res Forschungsgmbh Micro-fluorescence detection device and method for detection

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552740A (en) * 1991-08-29 1993-03-02 Hitachi Ltd Nonlinear optical constant evaluating method
JPH0627023A (en) * 1992-07-07 1994-02-04 Toto Ltd Optical biosensor
JPH06167443A (en) * 1992-10-23 1994-06-14 Olympus Optical Co Ltd Measuring apparatus utilizing surface plasmon resonance
JPH07208937A (en) * 1994-01-25 1995-08-11 Fujitsu Ltd Equipment and method for measuring film thickness and permittivity
JP3693750B2 (en) * 1996-05-15 2005-09-07 富士写真フイルム株式会社 Electrophoresis sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7701579B2 (en) 2007-02-28 2010-04-20 Fujifilm Corporation Fluorescence sensor
US7612349B2 (en) 2007-03-15 2009-11-03 Fujifilm Corporation Surface plasmon enhanced fluorescence sensor
EP2189782A2 (en) 2008-11-25 2010-05-26 FUJIFILM Corporation Total reflection illuminated sensor chip
KR101067348B1 (en) * 2009-03-04 2011-09-23 한국과학기술원 The prism inducing Brewster's angle transmission and apparatus for fluorescence detection for enhancement of signal to noise ratio used to thereof
US8237925B2 (en) 2009-03-04 2012-08-07 Korea Advanced Institute Of Science And Technology Prism for inducing Brewster's angle transmission and fluorescence detection apparatus for improving signal-to noise ratio using thereof
WO2013161614A1 (en) 2012-04-27 2013-10-31 コニカミノルタ株式会社 Antigen detection method which uses lectin and comprises enzyme treatment step
US10527615B2 (en) 2012-04-27 2020-01-07 Konica Monolta, Inc. Antigen detection method which uses lectin and comprises enzyme treatment step
US10222385B2 (en) 2013-12-27 2019-03-05 Konica Minolta, Inc. Methods for discriminating between prostate cancer and a benign prostate-disease
US10371704B2 (en) 2013-12-27 2019-08-06 Konica Minolta, Inc. Method for discriminating between prostate cancer and a benign prostate disease

Also Published As

Publication number Publication date
JPH1078390A (en) 1998-03-24

Similar Documents

Publication Publication Date Title
JP3562912B2 (en) Surface plasmon sensor
EP1650547B1 (en) Surface plasmon sensor
JP2001066248A (en) Surface plasmon sensor
JP3399836B2 (en) Surface plasmon sensor
JP2003270132A (en) Device and medium of chemical sensor and inspection method using the same
US10690596B2 (en) Surface plasmon-enhanced fluorescence measurement device and surface plasmon-enhanced fluorescence measurement method
JPH09292334A (en) Surface plasmon sensor
JPH10239233A (en) Surface plasmon sensor
JP3578188B2 (en) Surface plasmon sensor
US7846396B2 (en) Sample holder for surface plasmon resonance measuring instruments
JP3926409B2 (en) Surface plasmon sensor
JP4043538B2 (en) Surface plasmon sensor
JPH09304339A (en) Electrophoretic sensor
JP3460923B2 (en) Surface plasmon sensor
JP3999292B2 (en) Surface plasmon sensor
JPH09292335A (en) Surface plasmon sensor
US10495575B2 (en) Surface plasmon enhanced fluorescence measurement device and surface plasmon enhanced fluorescence measurement method
JP2008249360A (en) Surface plasmon sensor
JP4173628B2 (en) Surface plasmon resonance measuring device
JP2007147314A (en) Surface plasmon sensor, and method for detecting target matter using surface plasmon sensor
JP2002195942A (en) Sensor utilizing attenuated total reflection
JP2005221274A (en) Measuring method and measuring instrument
JP2000356586A (en) Surface plasmon sensor device
WO2021009995A1 (en) Detection device and detection method
JPH1078392A (en) Surface plasmon sensor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees