JP3562827B2 - Ozone filter - Google Patents

Ozone filter Download PDF

Info

Publication number
JP3562827B2
JP3562827B2 JP22923793A JP22923793A JP3562827B2 JP 3562827 B2 JP3562827 B2 JP 3562827B2 JP 22923793 A JP22923793 A JP 22923793A JP 22923793 A JP22923793 A JP 22923793A JP 3562827 B2 JP3562827 B2 JP 3562827B2
Authority
JP
Japan
Prior art keywords
ozone
weight
pore volume
pore
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22923793A
Other languages
Japanese (ja)
Other versions
JPH0780329A (en
Inventor
孝幸 富川
進 高田
茂 石井
徳行 安田
直樹 矢後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP22923793A priority Critical patent/JP3562827B2/en
Publication of JPH0780329A publication Critical patent/JPH0780329A/en
Application granted granted Critical
Publication of JP3562827B2 publication Critical patent/JP3562827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、新規なオゾンフィルター、さらに詳しくは、光学式複写機、ファクシミリ、レーザービームプリンターなどのコロナ放電部から発生するオゾンの分解装置や冷蔵庫、トイレなどに使用されるオゾン併用の脱臭器などに用いられるオゾンフィルター関するものである。
【0002】
【従来の技術】
従来、光学式複写機、ファクシミリ、レーザービームプリンターなどのコロナ放電部から発生するオゾンの分解装置や、冷蔵庫、トイレなどに使用されるオゾン併用の脱臭器などにはハニカム型の活性炭やオゾンフィルターなどが用いられている。
【0003】
このオゾンフィルターは、通常多孔質担体にオゾン分解触媒を担持したものであって、この多孔質担体としては、例えば細孔容積が0.5cc/g以上で比表面積が20m2/g以上の多孔質体(特開昭57−160948号公報)、全細孔容積が0.5〜1.5cc/gであり、かつそのうち細孔径1000〜10000Åの容積が0.2〜0.6cc/gの多孔質体(特開昭62−61637号公報)、比表面積100〜350m2/gをもち、半径40Åから100Å及び半径100Åから500Åにそれぞれ1つずつ明確なピークを有する多孔質体(特公平1−34929号公報)、細孔半径15〜100Åと細孔半径500Å〜1μmにそれぞれ1つのピークを有する多孔質体(特開平1−254254号公報)、半径40〜200Å及び半径200〜3000Åにそれぞれ1つずつ明瞭なピークを有する多孔質体(特開平2−15485号公報)、全細孔容積が0.3cc/g以上かつ細孔直径100Å以上の細孔容積が全細孔容積の60%以上の多孔質体(特開平2−75341号公報)などがこれまでに提案されている。
【0004】
しかしながら、年々高速化される機器から排出されるオゾンの量は増大し、また風量も多くなってきており、最近では、前記したような従来の多孔質体を用いたオゾンフィルターでは十分にその目的を達成することができなくなってきている。すなわち、これまでのオゾンフィルターは、風量が大きい場合には、処理すべきオゾンの濃度を低くしなければならないし、あえて高濃度で用いると寿命が短いという欠点を有していた。これは、従来のオゾンフィルターがいずれも主として0.1μm以下の細孔径で構成されていることに起因するものと思われる。
【0005】
【発明が解決しようとする課題】
本発明は、このような従来のオゾンフィルターが有する欠点を克服し、オゾン濃度が高く、かつ風量が多い場合でも十分にオゾン分解効果を発揮することができ、しかも高温でも寿命の長いオゾンフィルターなどを与える多孔質体にオゾン分解触媒を担持させたオゾンフィルターを提供することを目的としてなされたものである。
【0006】
【課題を解決するための手段】
本発明者らは、オゾンフィルターについて鋭意研究を重ねた結果、特定の気孔分布を有し、かつ全気孔の占める体積が一定以上の多孔質体を担体として用い、これにオゾン分解触媒を担持させることにより、その目的を達成しうることを見出し、この知見に基づいて本発明を完成するに至った。
【0007】
すなわち、本発明は、水銀圧入法により測定される気孔分布において、直径0.1μm以上の気孔を全気孔体積の50%以上有し、かつ直径5μm以上の気孔を全気孔体積の5%以上有する全気孔体積が0.4cc/g以上である多孔質体に、オゾン分解触媒を担持させてなるオゾンフィルターを提供するものである。
【0008】
本発明のオゾンフィルターの担体として用いる多孔質体の材料としては、これまでオゾンフィルターの材料として用いられているものの中から任意に選ぶことができる。このようなものとしては、例えばアルミナ、シリカ、チタニア、ジルコニア、シリカ・アルミナ、シリカ・マグネシア、アルミナ・マグネシア、アルミナ・チタニア、シリカ・チタニア、アルミナ・ジルコニア、シリカ・ジルコニア、ゼオライトなどがある。
【0009】
本発明においては、これらの材料を水銀圧入法により測定したときの気孔分布において、直径0.1μm以上の気孔が全気孔体積の50%以上、好ましくは70%以上で、かつ直径5μm以上の気孔が全気孔体積の5%以上、好ましくは10%以上有する多孔質体に形成することが必要である。また、この多孔質体は、顕微鏡で観察したときに、その表面に直径0.05mm以上の気孔開口部を1mm 2 当り少なくとも5個有するのが好ましい。
【0010】
このような気孔分布を得るには、粒度0.5μm以上、好ましくは5μm以上の粒状体を主体とし、これに粒度0.1μm以下の粒状体20重量%以下を含む原料を押出成形して焼成する。一般に、押出成形の場合、材料の中で粒度の小さいものが表面近傍に集まる傾向があるので、粒度0.1μm以下の粒状体が20重量%よりも多くなると、これが表面近傍に集結し、平滑面を形成する結果、所望の気孔分布が得られないことになる。
【0011】
その外、粒度0.1μm以下の粒状体を主体とする原料を用い、押出成形後、乾燥又は焼成の際に、急激に熱を加えて、0.1μm以上、好ましくは5〜10μm程度の微細なクラックを発生させることにより所望の気孔分布を形成させることもできる。
【0012】
また、本発明においては、全気孔体積が0.4cc/g以上である多孔質体とすることが必要であるが、この要件は、例えば原料中に存在する気化性物質の量の調整及び乾燥や焼成の際の加熱条件の制御によって達成することができる。
【0013】
次に、本発明の多孔質体は、その表面に直径0.05mm以上の気孔開口部を1mm2当り少なくとも5個有するものが好ましいが、このような気孔開口部の形成は、例えば成形の際に、原料中に粒径0.05mm以上の気化性物質を配合することによって行われる。この気化性物質としては、例えばセルロース、合成樹脂、ナフタリン、カンファーなどの有機物、炭素質物、ホウ酸、炭酸塩などの無機物が用いられる。これらは、通常、多孔質体形成原料に対し5〜20重量%の割合で配合される。
【0014】
また、微細な粒子をバインダーを用い、あるいは用いずに造粒して粒径0.05mm以上の収縮性顆粒を調製し、この顆粒を所定の形状に成形後加熱焼成して各顆粒を凝結させるとともに収縮させ、顆粒間に気孔を発生させることによって、所望の気孔分布及び表面気孔開口部を形成させてもよい。この場合のバインダーとしては水溶性デンプン、アルギン酸、ゼラチンなどの天然物質や、カルボキシメチルセルロース、メチルセルロース、エチルセルロースのような変性セルロースやポリビニルアルコール、ポリビニルメチルエーテル、ポリビニルピロリドンのような水溶性ポリマーなどの合成物質が用いられる。
【0015】
一般に、顆粒を調製するために用いる微細粒子としては、比表面積の大きい方がフィルター特性のよい担体を与えるので、比表面積50m2/g以上のものを用いるのが好ましい。
【0016】
本発明のオゾンフィルターのための担体を製造するには、例えば前記した所要の原料成分を所要の割合で混合し、適当な量の水を加えて混練したのち、所要の形状に押出成形する。このようにして得た成形体を次に100〜300℃の温度で乾燥する。この乾燥は通常大気圧下で行われるが、気孔形成を促進するために減圧下で行うこともできる。乾燥後、電気炉などを用いて500〜1100℃の温度で焼成する。この焼成時間は、通常1〜10時間の範囲内である。
【0017】
このようにして、0.01〜10μmの範囲の直径をもつ気孔を0.4〜1.5cc/gの範囲で含む多孔質体が得られる。この多孔質体の比表面積としては50m2/g以上が好ましい。
【0018】
本発明においては、前記のような気孔分布及び特に表面気孔開口部を設けたことにより、この多孔質体に触媒を担持させてオゾンフィルターとした場合、オゾンを含有する気体は、多孔質体表面に存在する活性金属と反応するだけでなく、多孔質体表面の気孔開口部から内部の気孔内に速やかに進入し、活性金属と接触し分解される。
【0019】
このようにして得られる本発明のオゾンフィルター用の担体は、円柱状、角柱状、管状、球状、円筒状など任意の形状に形成され、オゾン分解用の触媒活性成分を担持させてオゾンフィルターとすることができる。
【0020】
本発明のオゾンフィルターは、ハニカム形状とするのが有利である。
【0021】
上記の担体に担持させる触媒活性成分の例としてはコバルト、銅のような水素化用触媒金属成分、白金、パラジウム、ロジウムのような焼成用触媒金属成分、コバルト、ニッケル、モリブデン、タングステン、マンガン、バナジウム、ジルコニウム、銀のようなオゾン分解用触媒金属成分挙げることができる。
【0022】
上記の担体に、触媒金属成分を担持させるには、例えばこれらの金属の化合物を溶解した水溶液を、触媒担体に含浸させたのち、300〜600℃で焼き付ける操作を、必要量の触媒金属成分が吸着されるまで数回繰り返すことによって行うことができる。
【0023】
【実施例】
次に本発明を実施例により、さらに詳細に説明する。
【0024】
参考例
水酸化アルミニウム(粒径2〜5μm)58重量部と、シリカA(粒径1〜4μm、比表面積18m2/g)19重量部と、シリカB(粒径0.01〜0.05μm、比表面積100m2/g)7重量部とホウ酸(試薬1級)16重量部とメチルセルロース系バインダー8重量部とを乾式混合したのち、これに水27重量部と、可塑剤として、グリセリン8重量部を加えバッチニーダーで混練した。次いで、この混練物をハニカム形状に押出成形し、この成形体を200℃で1時間乾燥したのち、800℃において1時間焼成することにより、縦31mm、横28mm、長さ12mmの外形寸法を有し、開口率58.4%、穴径1.49mm、肉厚0.46mm、ピッチ1.95mmのハニカム構造状担体を製造した。
この担体の水銀ポロシメーターにより測定した気孔径分布を図1にグラフIとして示す。
【0025】
これから分るように、この担体の全気孔体積は、0.57cc/gであり、孔径0.1μm以上の気孔の全気孔体積に対する割合は82%、孔径5μm以上の気孔の全気孔体積に対する割合は21%であった。
【0026】
また、この担体のアトランダムに選んだ表面5カ所について顕微鏡写真を撮り、その1mm2当りの直径0.05mm以上の気孔開口部の数を読みとったところ、その数は2〜5個であった。
【0027】
参考例
水酸化アルミニウムの量を61重量部、シリカAの量を15重量部、シリカBの量を18重量部、ホウ酸の量を6重量部に変えた以外は、参考例1と同様にしてハニカム構造状担体を製造した。このものの気孔径分布を図1にグラフIIとして示す。
【0028】
これから分るように、この担体の全気孔体積は、0.51cc/gであり、孔径0.1μm以上の気孔の全気孔体積に対する割合は53%、孔径5μm以上の気孔の全気孔体積に対する割合は8%であった。
また、参考例1と同様にして求めた表面の気孔開口部の数は0〜1個であった。
【0029】
参考例
水酸化アルミニウム(粒径2〜5μm)58重量部と、シリカA(粒径1〜4μm、比表面積8m2/g)19重量部と、ホウ酸(試薬1級)16重量部とメチルセルロース系バインダー8重量部を乾式混合した。
次に、10重量%デンプン水溶液30重量部に対し、シリカB(粒径0.01〜0.05μm、比表面積100m2/g)7重量部と可塑剤としてのグリセリン8重量部を加えた溶液を上記の乾式混合物と混合し、バッチニーダーで混練した。
この混練物を押出成形し、参考例1と同じハニカム構造状担体を製造した。このものの気孔径分布を図1にグラフIIIとして示す。
【0030】
これから分るように、この担体の全気孔体積は、0.51cc/gであり、孔径0.1μm以上の気孔の全気孔体積に対する割合は87%、孔径5μm以上の気孔の全気孔体積に対する割合は10%であった。
また、参考例1と同様にして求めた表面の気孔開口部の数は15〜25個であった。
【0031】
参考例4
参考例1で用いたのと同じ水酸化アルミニウム62.5重量部と、参考例1で用いたのと同じシリカB37.5重量部との混合物に水50重量部を加えて混練りしたのち、押出成形して参考例1と同じハニカム構造状担体を製造した。このものの気孔径分布を図1にグラフIVとして示す。
【0032】
これから分るように、全気孔体積は、0.69cc/gであり、孔径0.1μm以上の気孔の全気孔体積に対する割合は11%、孔径5μm以上の気孔の全気孔体積に対する割合は2%であった。
【0033】
参考例5
各成分の使用量を、水酸化アルミニウム62.4重量部、シリカA18.8重量部、シリカB18.8重量部、ホウ酸5重量部及び水46重量部に変えること以外は全く参考例1と同様にしてハニカム構造状担体を製造した。このものの気孔径分布を図1にグラフVとして示す。
【0034】
これから分るように、この担体の全気孔体積は、0.73cc/gであり、孔径0.1μm以上の気孔の全気孔体積に対する割合は51%、孔径5μm以上の気孔の全気孔体積に対する割合は2%であった。
【0035】
実施例
参考例1〜5で得たハニカム構造状担体のそれぞれについて、18重量%酢酸コバルト水溶液を含浸させたのち、400℃において30分間焼き付ける操作を3回繰り返すことにより、酸化コバルト換算50〜200mg/g担体の割合で含むオゾンフィルターを製造した。これらの比表面積を表1に示す。
【0036】
次に、参考例1、2、4及び5の担体を用いたフィルターについて、−10℃の温度、入口オゾン濃度100ppm、空間速度17000hr-1の条件下におけるオゾン分解能を測定し、その結果を表1に示す。
【0037】
【表1】

Figure 0003562827
【0038】
この表から明らかなように、本発明の担体を用いたオゾンフィルター(No.1及び2)は、それ以外の担体を用いたもの(No.3及び4)に比べ経時的な能力低下が著しく少ない。
【0039】
次に、参考例1、3で得た担体を用いたオゾンフィルターについて、25℃の温度、入口オゾン濃度100ppm、空間速度58000hr-1の条件下でオゾン分解能を測定した。この結果を表2に示す。
【0040】
【表2】
Figure 0003562827
【0041】
この表から明らかなように、表面に直径0.05mm以上の気孔開口部を1mm2当り少なくとも5個有する担体を用いたものは、5個未満のものに比べ、より高いオゾン分解率を示す。
【0042】
【発明の効果】
本発明のオゾンフィルターは、それ以外のオゾンフィルターに比べ高い触媒活性及び活性持続性を示す。そして、この効果は、特にハニカム構造状オゾンフィルターとした場合に顕著である。
【図面の簡単な説明】
【図1】本発明の参考例で得たハニカム構造状担体の気孔径分布を示すグラフ。[0001]
[Industrial applications]
The present invention relates to a novel ozone filter , and more specifically, an apparatus for decomposing ozone generated from a corona discharge unit such as an optical copier, a facsimile, and a laser beam printer, and a deodorizer combined with ozone used in a refrigerator, a toilet, and the like. it relates to the ozone filter used to.
[0002]
[Prior art]
Conventionally, honeycomb-type activated carbon and ozone filters are used for decomposers for ozone generated from corona discharge units such as optical copiers, facsimile machines, and laser beam printers, and for deodorizers that are used in combination with ozone used in refrigerators and toilets. Is used.
[0003]
This ozone filter is generally one in which an ozone decomposition catalyst is supported on a porous carrier. Examples of the porous carrier include a porous carrier having a pore volume of 0.5 cc / g or more and a specific surface area of 20 m 2 / g or more. (Japanese Patent Application Laid-Open No. 57-160948), having a total pore volume of 0.5 to 1.5 cc / g and a volume having a pore diameter of 1000 to 10000 ° of 0.2 to 0.6 cc / g. porous body (JP 62-61637 JP) has a specific surface area of 100 to 350 m 2 / g, one each from 100Å and radius 100Å from a radius 40Å to 500Å porous body having a clear peak (KOKOKU No. 1-334929), a porous body having one peak at each of a pore radius of 15 to 100 ° and a pore radius of 500 ° to 1 μm (JP-A-1-254254), a radius of 40 to 20 And a porous body having one distinct peak at a radius of 200 to 3000 ° (JP-A-2-15485), a pore volume having a total pore volume of 0.3 cc / g or more and a pore diameter of 100 ° or more. There have been proposed porous materials having a pore volume of 60% or more of the total pore volume (Japanese Patent Laid-Open No. 2-75341).
[0004]
However, the amount of ozone discharged from equipment which is being accelerated year by year is increasing, and the amount of air is also increasing. Recently, the ozone filter using a conventional porous body as described above has sufficiently achieved its purpose. Has become unable to achieve. That is, the conventional ozone filter has a drawback that when the air volume is large, the concentration of ozone to be treated must be reduced, and when used at a high concentration, the life is short. This is considered to be due to the fact that all of the conventional ozone filters are mainly configured with a pore diameter of 0.1 μm or less.
[0005]
[Problems to be solved by the invention]
The present invention overcomes the disadvantages of the conventional ozone filter, and has a high ozone concentration and a sufficient ozone decomposition effect even when the air volume is large, and has a long life even at high temperatures. The object of the present invention is to provide an ozone filter in which an ozone decomposition catalyst is supported on a porous body giving the following.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on an ozone filter, and as a result, using a porous body having a specific pore distribution and having a volume occupied by all pores of a certain value or more as a carrier, and supporting an ozone decomposition catalyst on the porous body . As a result, they have found that the object can be achieved, and have completed the present invention based on this finding.
[0007]
That is, in the present invention, in the pore distribution measured by the mercury intrusion method, pores having a diameter of 0.1 μm or more have 50% or more of the total pore volume, and pores having a diameter of 5 μm or more have 5% or more of the total pore volume. It is an object of the present invention to provide an ozone filter in which an ozone decomposition catalyst is supported on a porous body having a total pore volume of 0.4 cc / g or more.
[0008]
The material of the porous body used as the carrier of the ozone filter of the present invention can be arbitrarily selected from those conventionally used as materials of the ozone filter. Such materials include, for example, alumina, silica, titania, zirconia, silica-alumina, silica-magnesia, alumina-magnesia, alumina-titania, silica-titania, alumina-zirconia, silica-zirconia, zeolite, and the like.
[0009]
In the present invention, in the pore distribution when these materials are measured by a mercury intrusion method, pores having a diameter of 0.1 μm or more are 50% or more of the total pore volume, preferably 70% or more, and pores having a diameter of 5 μm or more. Must be formed in a porous body having 5% or more, preferably 10% or more of the total pore volume. The porous body preferably has at least five pore openings with a diameter of 0.05 mm or more per mm 2 when observed with a microscope .
[0010]
In order to obtain such a pore distribution, a raw material mainly composed of particles having a particle size of 0.5 μm or more, preferably 5 μm or more, and containing 20% by weight or less of a particle having a particle size of 0.1 μm or less is extruded and fired. I do. In general, in the case of extrusion molding, materials having a small particle size tend to gather near the surface. Therefore, when the amount of particles having a particle size of 0.1 μm or less exceeds 20% by weight, the particles are gathered near the surface and become smooth. As a result of forming the surface, a desired pore distribution cannot be obtained.
[0011]
In addition, using a raw material mainly composed of a granular material having a particle size of 0.1 μm or less, after extrusion molding, when drying or firing, heat is rapidly applied to obtain a fine particle of 0.1 μm or more, preferably about 5 to 10 μm. By generating such cracks, a desired pore distribution can be formed.
[0012]
In the present invention, it is necessary to use a porous body having a total pore volume of 0.4 cc / g or more. This requirement includes, for example, adjustment of the amount of a vaporizable substance present in the raw material and drying. Alternatively, it can be achieved by controlling heating conditions during firing.
[0013]
Next, it is preferable that the porous body of the present invention has at least five pore openings per 1 mm 2 having a diameter of 0.05 mm or more on its surface. In addition, it is carried out by blending a vaporizable substance having a particle size of 0.05 mm or more into the raw material. As the vaporizable substance, for example, organic substances such as cellulose, synthetic resin, naphthalene and camphor, and carbonaceous substances, and inorganic substances such as boric acid and carbonate are used. These are usually blended at a ratio of 5 to 20% by weight based on the raw material for forming the porous body.
[0014]
In addition, fine particles are granulated with or without a binder to prepare shrinkable granules having a particle size of 0.05 mm or more. The desired pore distribution and surface pore openings may be formed by shrinking together with the pores to generate pores between the granules. As the binder in this case, natural substances such as water-soluble starch, alginic acid, and gelatin, and modified substances such as carboxymethyl cellulose, methyl cellulose, and ethyl cellulose, and polyvinyl alcohol, polyvinyl methyl ether, and synthetic substances such as water-soluble polymers such as polyvinyl pyrrolidone. Is used.
[0015]
Generally, fine particles having a specific surface area of 50 m 2 / g or more are preferably used as fine particles used for preparing granules, since a larger specific surface area gives a carrier having better filter characteristics.
[0016]
In order to manufacture the carrier for the ozone filter of the present invention, for example, the above-mentioned necessary raw material components are mixed at a required ratio, an appropriate amount of water is added and kneaded, and then extruded into a required shape. The shaped body obtained in this way is then dried at a temperature of 100 to 300 ° C. This drying is usually performed under atmospheric pressure, but may be performed under reduced pressure to promote pore formation. After drying, firing is performed at a temperature of 500 to 1100 ° C. using an electric furnace or the like. This firing time is usually in the range of 1 to 10 hours.
[0017]
Thus, a porous body containing pores having a diameter in the range of 0.01 to 10 μm in the range of 0.4 to 1.5 cc / g is obtained. The specific surface area of the porous body is preferably 50 m 2 / g or more.
[0018]
In the present invention, by providing the pore distribution as described above and particularly the surface pore opening, when a catalyst is supported on this porous body to form an ozone filter, the ozone-containing gas is applied to the surface of the porous body. Not only does it react with the active metal present in the pores, but also quickly penetrates into the internal pores from the pore openings on the surface of the porous body, comes into contact with the active metal and is decomposed.
[0019]
The thus obtained carrier for the ozone filter of the present invention is formed into an arbitrary shape such as a column, a prism, a tube, a sphere, and a cylinder, and carries an ozone-decomposing catalytically active component to form an ozone filter . can do.
[0020]
Advantageously, the ozone filter of the present invention has a honeycomb shape.
[0021]
Examples of catalytically active component to be supported on the above carrier, cobalt hydrogenation catalyst metal component such as copper, platinum, palladium, firing catalytic metal components such as rhodium, cobalt, nickel, molybdenum, tungsten, manganese , it can be mentioned vanadium, zirconium, an ozone cracking catalyst metal component such as silver.
[0022]
In order to support the catalyst metal component on the carrier, for example, an operation of impregnating the catalyst carrier with an aqueous solution in which compounds of these metals are dissolved and baking at 300 to 600 ° C. It can be performed by repeating several times until it is adsorbed.
[0023]
【Example】
Next, the present invention will be described in more detail with reference to examples.
[0024]
Reference Example 1
58 parts by weight of aluminum hydroxide (particle size: 2 to 5 μm), 19 parts by weight of silica A (particle size: 1 to 4 μm, specific surface area: 18 m 2 / g), and silica B (particle size: 0.01 to 0.05 μm; After dry mixing 7 parts by weight of surface area 100 m 2 / g), 16 parts by weight of boric acid (first grade reagent) and 8 parts by weight of a methylcellulose binder, 27 parts by weight of water and 8 parts by weight of glycerin as a plasticizer And kneaded with a batch kneader. Next, the kneaded material is extruded into a honeycomb shape, and the formed body is dried at 200 ° C. for 1 hour, and then baked at 800 ° C. for 1 hour, so that it has an outer dimension of 31 mm in length, 28 mm in width, and 12 mm in length. Then, a honeycomb structured carrier having an opening ratio of 58.4%, a hole diameter of 1.49 mm, a wall thickness of 0.46 mm, and a pitch of 1.95 mm was produced.
The pore size distribution of this carrier measured with a mercury porosimeter is shown as graph I in FIG.
[0025]
As can be seen, the total pore volume of this carrier is 0.57 cc / g, the ratio of pores having a pore size of 0.1 μm or more to the total pore volume is 82%, and the ratio of pores having a pore size of 5 μm or more to the total pore volume. Was 21%.
[0026]
Further, microphotographs were taken of five randomly selected surfaces of the carrier, and the number of pore openings having a diameter of 0.05 mm or more per 1 mm 2 was read. As a result, the number was 2 to 5. .
[0027]
Reference Example 2
Honeycomb was prepared in the same manner as in Reference Example 1, except that the amount of aluminum hydroxide was changed to 61 parts by weight, the amount of silica A was changed to 15 parts by weight, the amount of silica B was changed to 18 parts by weight, and the amount of boric acid was changed to 6 parts by weight. A structured carrier was produced. The pore size distribution of this is shown as graph II in FIG.
[0028]
As can be seen, the total pore volume of this carrier is 0.51 cc / g, the ratio of pores having a pore size of 0.1 μm or more to the total pore volume is 53%, and the ratio of pores having a pore size of 5 μm or more to the total pore volume. Was 8%.
The number of pore openings on the surface determined in the same manner as in Reference Example 1 was 0 to 1.
[0029]
Reference Example 3
58 parts by weight of aluminum hydroxide (particle size: 2 to 5 μm), 19 parts by weight of silica A (particle size: 1 to 4 μm, specific surface area: 8 m 2 / g), 16 parts by weight of boric acid (first grade reagent), and methylcellulose binder 8 parts by weight were dry mixed.
Next, a solution obtained by adding 7 parts by weight of silica B (particle size: 0.01 to 0.05 μm, specific surface area: 100 m 2 / g) and 8 parts by weight of glycerin as a plasticizer to 30 parts by weight of a 10% by weight aqueous starch solution. Was mixed with the above dry mixture and kneaded with a batch kneader.
The kneaded product was extruded to produce the same honeycomb structured carrier as in Reference Example 1. The pore size distribution of this is shown as graph III in FIG.
[0030]
As can be seen, the total pore volume of this carrier is 0.51 cc / g, the ratio of pores having a pore size of 0.1 μm or more to the total pore volume is 87%, and the ratio of pores having a pore size of 5 μm or more to the total pore volume. Was 10%.
The number of pore openings on the surface determined in the same manner as in Reference Example 1 was 15 to 25.
[0031]
Reference example 4
The same aluminum hydroxide 62.5 parts by weight as that used in Reference Example 1, after kneaded by adding 50 parts by weight of water to the mixture of the same silica B37.5 parts by weight as that used in Reference Example 1, Extrusion molding was performed to produce the same honeycomb structured carrier as in Reference Example 1. The pore size distribution of this is shown as graph IV in FIG.
[0032]
As can be seen from these, the total pore volume was 0.69cc / g, the ratio is 11% to the total pore volume of more pore size 0.1 [mu] m, relative to the total pore volume having a pore size of 5μm or more pores 2%.
[0033]
Reference example 5
The amount of each component, 62.4 parts by weight of aluminum hydroxide, silica A18.8 parts by silica B18.8 parts by weight, and totally Reference Example 1 except for changing the 5 parts by weight of boric acid and water 46 parts by weight Similarly, a honeycomb structured carrier was produced. The pore size distribution of this is shown as graph V in FIG.
[0034]
As can be seen, the total pore volume of this carrier is 0.73 cc / g, the ratio of pores having a pore size of 0.1 μm or more to the total pore volume is 51%, and the ratio of pores having a pore size of 5 μm or more to the total pore volume. Was 2%.
[0035]
Example 1
The operation of impregnating each of the honeycomb structured carriers obtained in Reference Examples 1 to 5 with an 18% by weight aqueous solution of cobalt acetate and baking at 400 ° C. for 30 minutes is repeated three times to obtain 50 to 200 mg / g in terms of cobalt oxide. An ozone filter containing a proportion of the carrier was produced. Table 1 shows their specific surface areas.
[0036]
Next, with respect to the filters using the carriers of Reference Examples 1 , 2 , 4, and 5 , the ozone resolution under the conditions of a temperature of -10 ° C, an inlet ozone concentration of 100 ppm, and a space velocity of 17000 hr -1 was measured. 1 is shown.
[0037]
[Table 1]
Figure 0003562827
[0038]
As is clear from this table, the ozone filters (Nos. 1 and 2) using the carrier of the present invention show a marked decrease in performance over time as compared with those using other carriers (Nos. 3 and 4). Few.
[0039]
Next, with respect to the ozone filters using the carriers obtained in Reference Examples 1 and 3, the ozone resolution was measured at a temperature of 25 ° C., an inlet ozone concentration of 100 ppm, and a space velocity of 58,000 hr −1 . Table 2 shows the results.
[0040]
[Table 2]
Figure 0003562827
[0041]
As is apparent from this table that using a carrier having at least five 1 mm 2 per pore opening diameter of at least 0.05mm on the surface, compared to less than five, indicating a higher ozone decomposition rate.
[0042]
【The invention's effect】
The ozone filter of the present invention exhibits higher catalytic activity and longer activity than other ozone filters . This effect is remarkable especially when an ozone filter having a honeycomb structure is used.
[Brief description of the drawings]
FIG. 1 is a graph showing a pore size distribution of a honeycomb structured carrier obtained in a reference example of the present invention.

Claims (2)

水銀圧入法により測定される気孔分布において、直径0.1μm以上の気孔を全気孔体積の50%以上有し、かつ直径5μm以上の気孔を全気孔体積の5%以上有する全気孔体積が0.4cc/g以上である多孔質体に、オゾン分解触媒を担持させてなるオゾンフィルターIn the pore distribution measured by the mercury intrusion method, the total pore volume in which pores having a diameter of 0.1 μm or more are 50% or more of the total pore volume and pores having a diameter of 5 μm or more are 5% or more of the total pore volume is 0. An ozone filter comprising an ozonolysis catalyst supported on a porous material of 4 cc / g or more. 多孔質体が、その表面に直径0.05mm以上の気孔開口部を1mm2当り少なくとも5個有する請求項1記載のオゾンフィルターPorous body, ozone filter of claim 1 having at least five 1 mm 2 per pore opening diameter of at least 0.05mm at its surface.
JP22923793A 1993-09-14 1993-09-14 Ozone filter Expired - Fee Related JP3562827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22923793A JP3562827B2 (en) 1993-09-14 1993-09-14 Ozone filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22923793A JP3562827B2 (en) 1993-09-14 1993-09-14 Ozone filter

Publications (2)

Publication Number Publication Date
JPH0780329A JPH0780329A (en) 1995-03-28
JP3562827B2 true JP3562827B2 (en) 2004-09-08

Family

ID=16888982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22923793A Expired - Fee Related JP3562827B2 (en) 1993-09-14 1993-09-14 Ozone filter

Country Status (1)

Country Link
JP (1) JP3562827B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1156988A4 (en) * 1999-02-18 2004-11-17 Corning Inc Method of making silica glass honeycomb structure from silica soot extrusion
JP4456077B2 (en) * 2003-08-20 2010-04-28 日本碍子株式会社 Method for manufacturing honeycomb formed body, method for manufacturing honeycomb filter, and honeycomb filter
JP2012213753A (en) * 2011-03-29 2012-11-08 Ibiden Co Ltd Honeycomb structural body and method of manufacturing honeycomb structural body

Also Published As

Publication number Publication date
JPH0780329A (en) 1995-03-28

Similar Documents

Publication Publication Date Title
KR940000869B1 (en) Preparation of monolithic catalyst supports having an integrated high surface area phase
KR0170366B1 (en) Catalyst-agglomerate bodies encapsulated in a structure
US8324127B2 (en) Method of producing noble metal-supported powder, noble metal-supported powder and exhaust gas purifying catalyst
US7985274B2 (en) High specific surface silicon carbide catalytic filter and support
RU2358801C2 (en) Catalyst carrier, catalyst and method of fume gas processing
JPH0259047A (en) Single compound structure showing catalyst activity
JP6633952B2 (en) Honeycomb structure
JP3562827B2 (en) Ozone filter
JPH11504255A (en) Molding composition
US5849391A (en) Cordierite honeycomb structure and process for producing the same
JPH0571547B2 (en)
JPH049581B2 (en)
KR101398042B1 (en) Catalyst for treating an exhaust gas containing organic acid, and method for treating an exhaust gas containing organic acid
JPH049582B2 (en)
JP3792672B2 (en) Aldehyde gas decomposition removing material and method for producing the same
JPH0810619A (en) Ozone decomposing catalyst and decomposing method
JP2017177075A (en) Honeycomb catalyst, and method for producing honeycomb catalyst
JPH1099696A (en) Catalytic form and its manufacture
JP2004066126A (en) Catalyst for purification of exhaust gas containing silicon
JP3639790B2 (en) Catalyst filter
JP2005270872A (en) Catalyst for exhaust gas treatment and exhaust gas treatment method
JP2002066336A (en) Organic halogen compound decomposition catalyst and its preparation process and application
JP2022103588A (en) Catalyst for wet oxidation, wet oxidation method and method for producing catalyst for wet oxidation
JPH03229645A (en) Ozone decomposing catalyst
JP3329393B2 (en) Zirconia molded carrier for chlorofluorocarbon gas decomposition catalyst and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees