JP3562771B2 - Heater control mechanism of far infrared treatment device - Google Patents

Heater control mechanism of far infrared treatment device Download PDF

Info

Publication number
JP3562771B2
JP3562771B2 JP12459694A JP12459694A JP3562771B2 JP 3562771 B2 JP3562771 B2 JP 3562771B2 JP 12459694 A JP12459694 A JP 12459694A JP 12459694 A JP12459694 A JP 12459694A JP 3562771 B2 JP3562771 B2 JP 3562771B2
Authority
JP
Japan
Prior art keywords
heater
temperature
pulse width
circuit
width modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12459694A
Other languages
Japanese (ja)
Other versions
JPH07303708A (en
Inventor
研一 太田
眞里 横部
Original Assignee
オージー技研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オージー技研株式会社 filed Critical オージー技研株式会社
Priority to JP12459694A priority Critical patent/JP3562771B2/en
Publication of JPH07303708A publication Critical patent/JPH07303708A/en
Application granted granted Critical
Publication of JP3562771B2 publication Critical patent/JP3562771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radiation-Therapy Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、温熱治療に用いる遠赤外線治療器のヒーター制御機構に関する。
【0002】
【従来の技術】
従来の技術として特開昭50−133687号公報に、反射筐と、遠赤外線発生部と、独自性のある遠赤外線発生素子とからなり、前記遠赤外線発生部を二個の300Wの抵抗とし、該抵抗R1、R2を、それぞれ並列通電、直列通電、又はR1の一個通電とする制御機構を有する遠赤外線を用いた保健器が開示されている。
【0003】
【発明が解決しようとする課題】
前述した従来の遠赤外線を用いた保健器のヒーター制御機構は、遠赤外線発生部の消費電力を三段階に制御するものであるから、第1に、大雑把な温度調節はできるが、細かく適切な温度調節ができず不都合であり、第2に、抵抗R1の一個通電の時には、外筺の半面から遠赤外線を照射するものとなって、反射筺の全面から満遍なき遠赤外線を得ることができず人体腰背部等の広範囲を均等に温熱治療するには不適当である。
本発明の目的は、上記課題を解決したものであり、照射部の全面から均一に遠赤外線を発生し、遠赤外線の発生調節を好適に行なえる遠赤外線治療器のヒーター制御機構を提供することにある。
【0004】
【課題を解決するための手段】
即ち本発明は、遠赤外線を発生する複数個のヒーター(4)と、これらのヒーター(4)に電力を印加するヒーター駆動回路(6)と、ヒーター駆動回路(6)を制御するパルス幅変調通電回路(7)と、温度入力手段(9)により設定された目標温度と複数個のヒーター(4)の温度との温度差を算出する温度差検出回路(10)とを有し、パルス幅変調通電回路(7)に、該パルス幅変調通電回路(7)が出力する複数の各パルスの開始時期をずらすタイミング回路(8)を付加接続し、パルス幅変調通電回路(7)は、温度差が所定温度未満に小さくなると、最大パルス幅から徐々に減少した幅のパルスを発生し、温度差が零になると、ヒーター(4)へ空気冷却を補償するための保温電力が印加され、ヒーター駆動回路(6)は、変調された小電力を、複数個のヒーター(4)に互いに重ならないように順次配給印加することを特徴とする遠赤外線治療器のヒーター制御機構である。パルス幅変調通電回路(7)は、1Hz以下のパルスを出力するものである。
【0005】
【作用】
本発明は、人体に対して神経痛等を除痛し緊張した筋肉を弛緩させる温熱治療に用い、本発明における複数個のヒーター4は遠赤外線を発生し、パルス幅変調通電回路7はヒーター駆動回路6にパルスを付与し、該ヒーター駆動回路6はヒーター4にパルス幅変調された電力を印加する。
パルス幅変調通電回路7は1Hz以下の周波数のパルスを出力する。
タイミング回路8は、パルス幅変調通電回路7に働きかけ、該通電回路7が出力する複数のパルスが互いに重ならないようにパルスの開始時期をずらす。
【0006】
【実施例】
図面を参照して本発明の実施例を説明すると、図3に示す該実施例は遠赤外線を照射する照射部1と、照射部1に電源を供給する電源供給部2(図1参照)と、該電源供給部2を収納し照射部1を支持する支持体3とからなる。
【0007】
照射部1には、遠赤外線を発生する三個のヒーター4と、各ヒーター4の温度を検出する三個のセンサー5が設けられる。
図1に示す電源供給部2は、前記ヒーター4に電力を印加するヒーター駆動回路6と、ヒーター駆動回路6にパルスを付与するパルス幅変調通電回路7と、該通電回路7に作用し、該通電回路7が出力する複数のパルスの開始時期をずらすタイミング回路8と、ヒーター4の温度を任意に手動で設定する温度入力手段9と、該入力手段9の信号からセンサー5の信号を減算する温度差検出回路10とからなる。
前記パルス幅変調通電回路7は、1Hz以下の周波数のパルスを出力するものである。
図3中、11は治療時間を設定する治療タイマー、12は装置の作動を開始させる開始スイッチである。
【0008】
使用に際して、実施例の照射部1の正面を人体の治療部位へ向けて接近させ、ヒーター4の温度をヒーター温度入力手段9で設定し、治療タイマー11で治療時間を設定し、開始スイッチ12を押し、ヒーター4に電力を通電し昇温させる。
ヒーター4は所定の温度に至ると遠赤外線を発生し、この遠赤外線を人体に照射する。
【0009】
図1に示すヒーター制御機構の作用を説明すると、先ず、温度入力手段9で、手動で目標温度を設定し、治療タイマー11を操作して治療を開始する。
温度差検出回路10は、温度入力手段9の温度値からセンサー5の温度値を減算し、両者の温度差を算出する。
ヒーター4制御の第1段階として、前記温度差が所定温度値(一例では50℃)以上に大きい時、即ちヒーター4が外気温度にほぼ等しい時などは、パルス幅変調通電回路7は最大パルス幅のパルスを発生し、ヒーター駆動回路6は、三個のヒーター4に同時に無変調の商用電力を印加する。
即ち、ヒーター4の立上り時には、上述の温度差が大きいから、三個のヒーター4にそれぞれ商用電力の全電力が印加され、ヒーター4は急速に昇温する。ヒーター4が昇温しある特定の温度に至ると、ヒーター4は遠赤外線の発生を開始する。
【0010】
ヒーター4制御の第2段階として、ヒーター4が昇温し、前述の温度差が所定温度未満に小さくなると、パルス幅は、最大パルス幅(100%)から徐々に減少し、ヒーター4の通電制御は、最大パルス幅による変調から減少したパルス幅による変調へと変わり、ヒーター4の通電電力は減少していく。
更に、ヒーター4の温度が上昇する程、パルス幅は減少していく。
タイミング回路8により三個の各パルスは1/3秒ずつずれて発生しているので、パルス幅が33%を切るまで減少すると、各パルスが同時に重なって発生することはなくなる。
前記ヒーター駆動回路6は、商用電力を前記パルスで変調し、変調された商用電力を三個のヒーター4a・4b・4cに印加する。パルス幅が33%を切っている時、各ヒーター4へは一個ずつ順次に通電され、同時に複数のヒーター4に電力が印加されることはない(図2参照)。ヒーター4が一旦昇温すると、上述のパルス幅が33%を切っている状態でヒーター4の通電制御が行なわれる。
前述の温度差が所定温度未満になった後も更に温度上昇していくが、この昇温時には、パルス幅変調通電回路7が出力するパルスの幅は徐々に狭くなっていく。
【0011】
ヒーター4制御の第3段階として、前述の温度差が零になった時、ヒーター4へ空気冷却を補償するための保温電力が印加され、ヒーター4の温度を設定値に一定化する。
即ち、パルス幅変調通電回路7のパルス幅は狭くなっており、ヒーター駆動回路6は、商用電力を前記狭小幅となったパルスで変調し、変調された小電力を三個のヒーター4に互いに重ならないように順次配給印加する。
【0012】
ヒーター4制御の第4段階として、ヒーター4の温度値が設定した温度値を越え、前述の温度差が負値になった場合、その温度差が所定温度値(一例では−10℃)に至るとパルス幅変調通電回路7はパルスを発生せず出力が零となり、駆動回路は、商用電力をヒーター4に印加しない。ヒーター4への通電が止まるとヒーター4の温度は外気に冷却され低下していく。
ヒーター4の温度が下がると再度通電が始まり、この温度低下により生じる前述温度差に比例してパルス幅が広くなり、通電電力量は増し、設定温度に安定する。
【0013】
パルス幅変調通電回路7は、商用電源の周波数60Hz又は50Hzに比して充分低い1Hz以下のパルスを出力するから、交流の商用電力をそのまま変調できる。又、ヒーター4には熱容量があるので、この1Hz以下の変調により温度が脈動するといった弊害は生じない。
【0014】
【発明の効果】
本発明は、ヒーター駆動回路6にパルスを付与するパルス幅変調通電回路7を有し、ヒーター駆動回路6はパルス幅変調された電力を複数個のヒーター4に印加するものであるから、ヒーター4への通電電力をパルス幅変調制御してヒーター4の温度を設定値に一定化できる。そして、簡単な構成で、ノイズもなく、細かく適切な温度制御ができ、更に、全個のヒーター4が均等に加温され、照射部1の正面の全体から遠赤外線を得ることができ、特に、腰背部等を広範囲に温めて温熱治療する際には、その患部を万遍無く効果的に加温でき、好都合である。
【0015】
本発明は、パルス幅変調通電回路7に、該パルス幅変調通電回路7が出力する複数の各パルスの開始時期をずらすタイミング回路8を付加接続し、パルス幅変調通電回路7は、温度差が所定温度未満に小さくなると、最大パルス幅から徐々に減少した幅のパルスを発生し、温度差が零になると、ヒーター4へ空気冷却を補償するための保温電力が印加され、ヒーター駆動回路6は、変調された小電力を、複数個のヒーター4に互いに重ならないように順次配給印加するものであるから、複数個のヒーター4の温度制御を実施中に、瞬時の三個のヒーター4への通電電力の合計は、最大でも一個のヒーター4へ印加する電力又はそれ以下となり、安定した消費電力のもとで確実な温度制御ができる。二個の抵抗を直・並列制御する従来装置に比すと、本発明は、極めて消費電力が安定しており、同系統に繋がれた他の電気的治療器又は測定器へ、切り替え時のノイズや電圧変動による悪影響を与える心配がなく、好都合である。
【0016】
本発明は、パルス幅変調通電回路7、商用電源の周波数の1/50の1Hz以下の周波数のパルスを出力するものであるから、商用交流電力を確実に又使用に充分満足できる程度に変調できることとなり、好都合である。

【図面の簡単な説明】
【図1】本発明の実施例のブロック図である。
【図2】本発明の実施例のヒーターへの通電状況を示す図である。
【図3】本発明の実施例を備えた装置の外観斜視図である。
【符号の説明】
1 照射部
2 電源供給部
3 支持体
4 ヒーター
6 ヒーター駆動部
7 パルス幅変調通電回路
[0001]
[Industrial applications]
The present invention relates to a heater control mechanism of a far-infrared therapeutic device used for thermal treatment.
[0002]
[Prior art]
As a conventional technique, Japanese Patent Application Laid-Open No. 50-133687 discloses a reflector case, a far-infrared ray generating section, a unique far-infrared ray generating element, and the far-infrared ray generating section has two 300 W resistors. A health device using far-infrared rays having a control mechanism for setting the resistances R1 and R2 to parallel energization, series energization, or one energization of R1, respectively, is disclosed.
[0003]
[Problems to be solved by the invention]
The above-described conventional heater control mechanism for a health device using far-infrared rays controls the power consumption of the far-infrared ray generating section in three stages. Therefore, first, rough temperature control can be performed, but fine and appropriate. Second, when one resistor R1 is energized, far-infrared rays are emitted from one half of the outer casing, and uniform far-infrared rays can be obtained from the entire reflective casing. However, it is not suitable for uniformly heat treating a wide area such as the back of the human body.
An object of the present invention is to solve the above-mentioned problem, and to provide a heater control mechanism of a far-infrared ray therapeutic device capable of uniformly generating far-infrared rays from the entire surface of an irradiation unit and appropriately controlling generation of far-infrared rays. It is in.
[0004]
[Means for Solving the Problems]
That is, the present invention provides a plurality of heaters (4) for generating far-infrared rays, a heater drive circuit (6) for applying power to these heaters (4), and a pulse width modulation for controlling the heater drive circuit (6). energizing circuit (7), and a temperature difference detection circuit (10) for calculating a temperature difference between the temperature of the temperature input means (9) a target temperature and a plurality of heaters (4) set by a pulse width A timing circuit (8) for shifting the start timing of each of the plurality of pulses output by the pulse width modulation energizing circuit (7) is additionally connected to the modulation energizing circuit (7). When the difference becomes smaller than the predetermined temperature, a pulse having a width gradually reduced from the maximum pulse width is generated, and when the temperature difference becomes zero, a heat retaining power for compensating air cooling is applied to the heater (4), and the heater is heated. The drive circuit (6) is A small electric power, a far infrared therapy device of heater control mechanism, characterized by sequentially distributing applied so as not to overlap each other in the plurality of heater (4). Pulse width modulation the energizing circuit (7), Ru der outputs a following pulse 1 Hz.
[0005]
[Action]
The present invention is used for hyperthermia treatment for removing neuralgia and the like from the human body and relaxing the tensed muscle. A pulse is applied to the heater 6, and the heater drive circuit 6 applies pulse-width modulated power to the heater 4.
The pulse width modulation energizing circuit 7 outputs a pulse having a frequency of 1 Hz or less.
The timing circuit 8 acts on the pulse width modulation energizing circuit 7 to shift the start timing of the pulses so that the plurality of pulses output from the energizing circuit 7 do not overlap each other.
[0006]
【Example】
An embodiment of the present invention will be described with reference to the drawings. The embodiment shown in FIG. 3 includes an irradiation unit 1 for irradiating far infrared rays, a power supply unit 2 for supplying power to the irradiation unit 1 (see FIG. 1). And a support 3 that houses the power supply unit 2 and supports the irradiation unit 1.
[0007]
The irradiation unit 1 is provided with three heaters 4 that generate far-infrared rays and three sensors 5 that detect the temperature of each heater 4.
The power supply unit 2 shown in FIG. 1 includes a heater driving circuit 6 for applying electric power to the heater 4, a pulse width modulation energizing circuit 7 for applying a pulse to the heater driving circuit 6, A timing circuit 8 for shifting the start timing of a plurality of pulses output by the energizing circuit 7, a temperature input means 9 for manually setting the temperature of the heater 4 arbitrarily, and a signal of the sensor 5 being subtracted from a signal of the input means 9 And a temperature difference detection circuit 10.
The pulse width modulation energizing circuit 7 outputs a pulse having a frequency of 1 Hz or less.
In FIG. 3, reference numeral 11 denotes a treatment timer for setting a treatment time, and reference numeral 12 denotes a start switch for starting operation of the apparatus.
[0008]
In use, the front of the irradiation unit 1 of the embodiment is approached toward the treatment site of the human body, the temperature of the heater 4 is set by the heater temperature input means 9, the treatment time is set by the treatment timer 11, and the start switch 12 is set. By pressing, the electric power is supplied to the heater 4 to raise the temperature.
When the heater 4 reaches a predetermined temperature, the heater 4 generates far infrared rays and irradiates the far infrared rays to a human body.
[0009]
The operation of the heater control mechanism shown in FIG. 1 will be described. First, the target temperature is manually set by the temperature input means 9, and the treatment timer 11 is operated to start treatment.
The temperature difference detection circuit 10 subtracts the temperature value of the sensor 5 from the temperature value of the temperature input means 9 and calculates a temperature difference between the two.
As the first stage of the heater 4 control, when the temperature difference is larger than a predetermined temperature value (in one example, 50 ° C.), that is, when the heater 4 is almost equal to the outside air temperature, the pulse width modulation energizing circuit 7 sets the maximum pulse width. , And the heater drive circuit 6 simultaneously applies unmodulated commercial power to the three heaters 4.
That is, when the heater 4 rises, since the above-mentioned temperature difference is large, all the electric power of the commercial electric power is applied to each of the three heaters 4, and the temperature of the heater 4 rises rapidly. When the temperature of the heater 4 rises and reaches a specific temperature, the heater 4 starts generating far infrared rays.
[0010]
As the second stage of the heater 4 control, when the temperature of the heater 4 rises and the aforementioned temperature difference becomes smaller than the predetermined temperature, the pulse width gradually decreases from the maximum pulse width (100%), and the energization control of the heater 4 is performed. Changes from the modulation based on the maximum pulse width to the modulation based on the reduced pulse width, and the power supplied to the heater 4 decreases.
Furthermore, as the temperature of the heater 4 increases, the pulse width decreases.
Since each of the three pulses is generated by the timing circuit 8 with a shift of 1/3 second, if the pulse width is reduced to less than 33%, the pulses will not be generated simultaneously.
The heater drive circuit 6 modulates the commercial power with the pulse, and applies the modulated commercial power to the three heaters 4a, 4b, and 4c. When the pulse width is less than 33%, each heater 4 is sequentially energized one by one, and power is not applied to a plurality of heaters 4 at the same time (see FIG. 2). Once the temperature of the heater 4 is increased, the energization control of the heater 4 is performed in a state where the above-mentioned pulse width is less than 33%.
Although the temperature further rises even after the above-mentioned temperature difference becomes less than the predetermined temperature, the width of the pulse output from the pulse width modulation energizing circuit 7 gradually decreases at the time of this temperature rise.
[0011]
As a third stage of the heater 4 control, when the above-mentioned temperature difference becomes zero, heat retention power for compensating for air cooling is applied to the heater 4 to make the temperature of the heater 4 constant at a set value.
That is, the pulse width of the pulse width modulation energizing circuit 7 is narrow, and the heater drive circuit 6 modulates the commercial power with the narrow pulse, and transmits the modulated small power to the three heaters 4. Distribution is applied sequentially so as not to overlap.
[0012]
As a fourth stage of the heater 4 control, when the temperature value of the heater 4 exceeds the set temperature value and the above-mentioned temperature difference becomes a negative value, the temperature difference reaches a predetermined temperature value (-10 ° C. in one example). The pulse width modulation energizing circuit 7 does not generate a pulse and the output becomes zero, and the drive circuit does not apply commercial power to the heater 4. When the power supply to the heater 4 is stopped, the temperature of the heater 4 is cooled by the outside air and decreases.
When the temperature of the heater 4 decreases, energization starts again, the pulse width increases in proportion to the temperature difference caused by the temperature decrease, the amount of energized electric power increases, and the set temperature is stabilized.
[0013]
Since the pulse width modulation energizing circuit 7 outputs a pulse of 1 Hz or less, which is sufficiently lower than the frequency of the commercial power supply of 60 Hz or 50 Hz, the AC commercial power can be directly modulated. Further, since the heater 4 has a heat capacity, there is no adverse effect that the temperature pulsates due to the modulation of 1 Hz or less.
[0014]
【The invention's effect】
The present invention has a pulse width modulation energizing circuit 7 for applying a pulse to the heater drive circuit 6, and the heater drive circuit 6 applies pulse width modulated power to the plurality of heaters 4. By controlling the pulse width modulation of the power supplied to the heater 4, the temperature of the heater 4 can be kept constant at a set value. With a simple configuration, noise-free, fine and appropriate temperature control can be performed, furthermore, all the heaters 4 are uniformly heated, and far-infrared rays can be obtained from the entire front of the irradiation unit 1. When the heat treatment is performed by warming the lower back and the like over a wide area, the affected area can be effectively and uniformly heated, which is convenient.
[0015]
According to the present invention, the pulse width modulation energizing circuit 7 is additionally connected with a timing circuit 8 for shifting the start timing of each of a plurality of pulses output by the pulse width modulation energizing circuit 7, and the pulse width modulation energizing circuit 7 has a temperature difference. When the temperature becomes lower than the predetermined temperature, a pulse having a width gradually reduced from the maximum pulse width is generated, and when the temperature difference becomes zero, heat retaining power for compensating air cooling is applied to the heater 4, and the heater driving circuit 6 Since the modulated small electric power is sequentially distributed and applied to the plurality of heaters 4 so as not to overlap with each other , while the temperature control of the plurality of heaters 4 is being performed, instantaneous supply to the three heaters 4 is performed. The total of the energized power is at most the power applied to one heater 4 or less, and reliable temperature control can be performed with stable power consumption. Compared to a conventional device that controls two resistors in series / parallel, the power consumption of the present invention is extremely stable, and when switching to another electric therapy device or measurement device connected to the same system, This is convenient because there is no fear of adverse effects due to noise and voltage fluctuation.
[0016]
The present invention, pulse width modulation energization circuit 7, since outputs a pulse of 1/50 of 1Hz frequencies below the frequency of the commercial power supply, modulating the extent that satisfactory to ensure also use commercial AC power It is possible and convenient.

[Brief description of the drawings]
FIG. 1 is a block diagram of an embodiment of the present invention.
FIG. 2 is a diagram showing a state of energization of a heater according to the embodiment of the present invention.
FIG. 3 is an external perspective view of an apparatus provided with an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Irradiation part 2 Power supply part 3 Support 4 Heater 6 Heater drive part 7 Pulse width modulation energizing circuit

Claims (2)

遠赤外線を発生する複数個のヒーター(4)と、これらのヒーター(4)に電力を印加するヒーター駆動回路(6)と、ヒーター駆動回路(6)を制御するパルス幅変調通電回路(7)と、温度入力手段(9)により設定された目標温度と複数個のヒーター(4)の温度との温度差を算出する温度差検出回路(10)とを有し、パルス幅変調通電回路(7)に、該パルス幅変調通電回路(7)が出力する複数の各パルスの開始時期をずらすタイミング回路(8)を付加接続し、パルス幅変調通電回路(7)は、温度差が所定温度未満に小さくなると、最大パルス幅から徐々に減少した幅のパルスを発生し、温度差が零になると、ヒーター(4)へ空気冷却を補償するための保温電力が印加され、ヒーター駆動回路(6)は、変調された小電力を、複数個のヒーター(4)に互いに重ならないように順次配給印加することを特徴とする遠赤外線治療器のヒーター制御機構。A plurality of heaters (4) for generating far infrared rays; a heater drive circuit (6) for applying power to these heaters (4); and a pulse width modulation energizing circuit (7) for controlling the heater drive circuit (6) When, and a temperature difference detection circuit (10) for calculating a temperature difference between the temperature of the target temperature and a plurality of heaters set by the temperature input means (9) (4), a pulse width modulation energization circuit (7 ), A timing circuit (8) for shifting the start timing of each of the plurality of pulses output from the pulse width modulation energizing circuit (7) is additionally connected, and the pulse width modulation energizing circuit (7) has a temperature difference less than a predetermined temperature. When the temperature becomes smaller, a pulse having a width gradually reduced from the maximum pulse width is generated. When the temperature difference becomes zero, warming power for compensating air cooling is applied to the heater (4), and the heater drive circuit (6) Is modulated low power A plurality of heaters far infrared therapy device of heater control mechanism, characterized by sequentially distributing applied so as not to overlap each other (4). パルス幅変調通電回路(7)は、1Hz以下のパルスを出力するものであることを特徴とする請求項1記載の遠赤外線治療器のヒーター制御機構。The heater control mechanism for a far-infrared therapeutic device according to claim 1, wherein the pulse width modulation energizing circuit (7) outputs a pulse of 1 Hz or less.
JP12459694A 1994-05-13 1994-05-13 Heater control mechanism of far infrared treatment device Expired - Fee Related JP3562771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12459694A JP3562771B2 (en) 1994-05-13 1994-05-13 Heater control mechanism of far infrared treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12459694A JP3562771B2 (en) 1994-05-13 1994-05-13 Heater control mechanism of far infrared treatment device

Publications (2)

Publication Number Publication Date
JPH07303708A JPH07303708A (en) 1995-11-21
JP3562771B2 true JP3562771B2 (en) 2004-09-08

Family

ID=14889372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12459694A Expired - Fee Related JP3562771B2 (en) 1994-05-13 1994-05-13 Heater control mechanism of far infrared treatment device

Country Status (1)

Country Link
JP (1) JP3562771B2 (en)

Also Published As

Publication number Publication date
JPH07303708A (en) 1995-11-21

Similar Documents

Publication Publication Date Title
US5830211A (en) Probe to treat viral lesions
JP5566451B2 (en) Skin treatment device using light and temperature
KR910016298A (en) Cooking method by oven heated by a combination of microwave, convection and baking
JP3562771B2 (en) Heater control mechanism of far infrared treatment device
JP6281087B2 (en) Biological stimulator
TWI480076B (en) High voltage potential therapy device
KR200195478Y1 (en) Medical treatment system of low frequency with function of heating
JP3299786B2 (en) electric blanket
JP2005040241A (en) High voltage electro-potential therapy apparatus and high voltage electro-potential method using the same
JP3069078B2 (en) Potential therapy device and thermal / potential therapy device
JP2004173750A (en) Electrical thermotherapeutic device
KR950012371B1 (en) Treatment device using warmer-electricity
KR200262529Y1 (en) Electrotherapy Device having Multi-function
JP3480947B2 (en) Heated electric therapy equipment
JP3143201B2 (en) Heated electric therapy equipment
JP3192742B2 (en) Heated electric therapy equipment
JP3003680U (en) Microwave therapy
JP3480948B2 (en) Heated electric therapy equipment
KR940001871B1 (en) Heating treatment apparatus
RU2153866C1 (en) Device for photothermocryotherapy and method for its use
JP3480949B2 (en) Heated electric therapy equipment
KR960013396A (en) Control Circuit of Far Infrared Heat Therapy
JPH05293180A (en) Thermo-type electric medical treatment apparatus
KR200306142Y1 (en) Controller for negative potential and very low frequency generator
KR20150093136A (en) Moxibustion Therapeutic Apparatus With Electricity Heating

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees