JP3562197B2 - Binder for hydrogen storage electrode - Google Patents

Binder for hydrogen storage electrode Download PDF

Info

Publication number
JP3562197B2
JP3562197B2 JP05850397A JP5850397A JP3562197B2 JP 3562197 B2 JP3562197 B2 JP 3562197B2 JP 05850397 A JP05850397 A JP 05850397A JP 5850397 A JP5850397 A JP 5850397A JP 3562197 B2 JP3562197 B2 JP 3562197B2
Authority
JP
Japan
Prior art keywords
binder
weight
hydrogen storage
meth
acrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05850397A
Other languages
Japanese (ja)
Other versions
JPH10241693A (en
Inventor
信幸 伊藤
直史 安田
芳佳 則武
安正 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP05850397A priority Critical patent/JP3562197B2/en
Priority to KR1019980005914A priority patent/KR19980071685A/en
Publication of JPH10241693A publication Critical patent/JPH10241693A/en
Application granted granted Critical
Publication of JP3562197B2 publication Critical patent/JP3562197B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は結着性、充放電サイクル性、保存特性、安全性に優れた2次電池電極用バインダーに関するものである。さらに詳しくは、水素吸蔵合金が集電材に保持された水素吸蔵電極用バインダー組成物に関する。
【0002】
【従来の技術】
近年、電子産業における技術進歩は著しく、電池技術においても高エネルギー密度、安全性等の要求が増大している。ニッケル/水素電池は、単位容積あたりのエネルギー密度が大きく、しかも公害物質を含んでいないので安全性に優れた電池として注目されている。ニッケル/水素電池は、負極の活物質に水素吸蔵合金を使用しそれは水素雰囲気下において発熱、吸熱を伴い自由に水素イオンを放出する。この水素イオンの吸放出し易さが、高容量化、長寿命化につながる。また、ニッケル/水素電池は急速充放電可能、過充電、過放電に強くかつ高容量、小型、軽量化という点で優れた性能を有し、すでに実用化されている。ニッケル/水素電池では、活物質を集電材に固定させる目的にポリマーバインダーが使用され、このバインダーに要求される性能としては、(1)活物質と集電材の結着性が良好であること、(2)電解液中の水素イオンをできるだけ抵抗なく自由に移動させること、(3)電解液や充放電によって体積変化しないこと、等があげられる。例えば、従来水素吸蔵合金用のバインダーとしては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素系ポリマーが知られているが、これらフッ素系ポリマーでは集電材との結着性が悪く、充放電サイクルの繰り返しで活物質の剥離が生じやすいという問題点があった。かかる問題点を解決すべく、例えば熱可塑性エラストマーであるSEBS(スチレン−エチレン−ブチレン−スチレンブロック共重合体)を用いる試みがなされているが、サイクル初期の充放電効率が悪いという問題点があり、さらにトルエン等の有機溶剤を使用するため、工業的規模の製造プロセスに於いて水素吸蔵合金との混合プロセスで発火の危険性の大きい問題点があった。また、水系のスチレン−ブタジエン共重合体の乳化物を用いる試みもなされているが、バインダーが活物質全体を包み込んでしまうため、充放電効率が悪く、集電体との密着性も不十分という問題があった。
【0003】
【発明が解決しようとする課題】
本発明では水素吸蔵合金を電極活物質とするニッケル/水素二次電池において、水素吸蔵合金とバインダーとの混合プロセスにおいて発火の危険性がない水系で、電極活物質に対する影響が少なく、高い導電性を維持し、かつ集電材との結着性に優れたバインダーを用いて長寿命、高容量化を達成することにある。
【0004】
【課題を解決するための手段】
本発明は、上記の課題を解決するために、芳香族ビニル単位、共役ジエン単位、(メタ)アクリル酸エステル単位および官能基含有化合物酸単位からなり、(メタ)アクリル酸エステル単位が共重合体の10〜40重量%であることを特徴とする共重合体(以下、「特定共重合体」という)の水分散体からなることを特徴とする水素吸蔵電極用バインダーを提供するものである。
【0005】
以下に本発明を詳細に説明する。本発明において、「単位」というのはモノマーがラジカル重合した後の各モノマー由来の構造を示すものである。本発明の特定共重合体を構成するための芳香族ビニル化合物としては、スチレン、α−メチルスチレン、ジビニルベンゼンなど、好ましくはスチレンが、共役ジエン化合物としては、1,3−ブタジエン、イソプレンなど、好ましくはブタジエンが、(メタ)アクリル酸エステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸i−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸i−ブチル、(メタ)アクリル酸n−アミル、(メタ)アクリル酸i−アミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2−ヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸i−ノニル、(メタ)アクリル酸デシル、ヒドロヒシメチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレートなど、好ましくは(メタ)アクリル酸ブチル、(メタ)アクリル酸メチルなどのアルキル基の炭素数4未満のものを、官能基含有化合物としては、アクリル酸、(メタ)アクリル酸、イタコン酸、フマル酸、マレイン酸などのエチレン性不飽和カルボン酸、;(メタ)アクリルアミド、N−メチロールアクリルアミドなどのエチレン性不飽和カルボン酸のアルキルアミド;酢酸ビニル、プロピオン酸ビニルなどのカルボン酸ビニルエステル;エチレン系不飽和ジカルボン酸の酸無水物、モノアルキルエステル、モノアミド類;アミノエチルアクリレート、ジメチルアミノエチルアクリレート、ブチルアミノエチルアクリレートなどのエチレン系不飽和カルボン酸のアミノアルキルエステル;アミノエチルアクリルアミド、ジメチルアミノメチルメタクリルアミド、メチルアミノプロピルメタクリルアミドなどのエチレン系不飽和カルボン酸のアミノアルキルアミド;(メタ)アクリロニトリル、α−クロルアクリロニトリルなどのシアン化ビニル系化合物;グリシジル(メタ)アクリレートなどの不飽和脂肪族グリシジルエステルなど、好ましくは不飽和カルボン酸またはエチレン系不飽和カルボン酸アミノアルキルアミドを挙げることができる。本発明において、芳香族ビニル単位は特定共重合体の20〜55重量%、共役ジエン化合物は30〜60重量%、(メタ)アクリル酸エステルは10〜40重量%および官能基含有化合物は0.1〜10重量%、好ましくは2〜10重量%、さらに好ましくは3〜10重量%である。特定共重合体において、官能基含有化合物単位が0.1重量%未満では、共重合体のバインダー性能、耐薬品性が劣り、一方10%を超えると、耐水性、貯蔵安定性が劣るものとなり好ましくない。
【0006】
本発明において特定共重合体は、上記のモノマーを乳化重合することにより製造することができる。本発明で使用する特定共重合体は、トルエン不溶分が20〜100重量%、好ましくは30〜90重量%、特に好ましくは50〜85重量%である。本発明において、トルエン不溶分は、0.5Nアンモニア水または0.5N塩酸でpH8に調整した固形分50重量%の共重合体水分散液を120℃で1時間乾燥させて成膜しフィルム化した後、この乾燥フィルムをポリマー重量の100重量部のトルエンと共に三角フラスコ等の容器に入れ、3時間振とう後200メッシュのフィルターで濾過して不溶分を採取し、120℃で1時間乾燥させて不溶分の重量を測定し、次式でゲル量を求める。
ゲル量=(トルエン不溶分重量/浸漬前の重量)×100(%)
共重合体のトルエン不溶分が20重量%未満では、電極を形成し加熱乾燥するときにポリマーフローが生じて電極活物質を過度に覆い、過電圧が上昇し使用できなくなる。また、電解液である水酸化カリウムの耐久性も劣り、水素吸蔵合金の集電材からの脱離が生じてしまう。本発明で使用する特定共重合体のガラス転移点(Tg)は5℃以下である。Tgが5℃を超えると、共重合体により得られるポリマーフィルムは柔軟性、粘着性が乏しく活材の集電材への接着性が劣る。本発明において、特定共重合体は水系分散体として使用される。この水系分散体中に分散する共重合体粒子の平均粒子径は、0.05〜5μmが好ましく、さらに好ましくは0.1〜2μmで、電極活物質の1/3より小さいことが望ましい。
【0007】
本発明において、特定共重合体の水系分散体をバインダーとする電池電極組成物には、必要に応じて添加剤として増粘剤を共重合体100重量部に対して1〜200重量部用いてもよい。
水溶性増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(塩)、酸化スターチ、リン酸化スターチ、カゼインなどが含まれる。また、共重合体の水分散体の固形分濃度は、通常20〜65重量%、好ましくは35〜60重量%である。
【0008】
本発明の水素吸蔵電極用バインダーは、水素吸蔵合金粉末と配合して電池電極用組成物とし、この電池電極用組成物を集電体に塗布し、乾燥することにより、水素吸蔵電極を製造することができる。
本発明で用いる水素吸蔵合金粉末は、MmNi5をベースにNiの1部をMn、Al、Coなどで置き換えたものである。ここでMmは希土類の混合物であるミッシュメタルを表している。また、粉体の形状は、100メッシュを通過した粉末であり、粒子径は、3〜400μm程度である。
本発明の水素吸蔵電極用バインダーは、水素吸蔵合金粉末100重量部に対して固形分で0.1〜20重量部、好ましくは0.5〜10重量部配合される。
水素吸蔵電極用バインダーの配合量が0.1重量部未満では良好な接着力が得られず、20重量部を超えると過電圧が著しく上昇し電池特性に悪影響をおよぼす。
電池電極用組成物は、水素吸蔵合金粉末と水素吸蔵電極用バインダーと必要に応じて水溶性増粘剤からなるが、その他に、ヘキサメタリン酸ソーダ、トリポリリン酸ソーダ、ピロリン酸ソーダ、ポリアクリル酸ソーダなどの分散剤、さらにラテックスの安定化剤としてのノニオン性、アニオン性界面活性剤などの添加剤、電極の導電性付与の目的でカーボンを加えてもよい。
【0009】
水素吸蔵電極を形成するには、前記電池電極用組成物を、好ましくはスラリー状にして集電体に塗布し、加熱し、乾燥する。
集電体としては、例えばニッケルなどの金属からなる厚さ40〜80μmの芯板であり、多孔であることが好ましい。このとき、金属芯板の開孔率は、通常、30〜60%である。
この時、必要とすれば集電体材料と共に成形してもよいし、また別法としてNiメッシュ、パンチングNiなどの集電体基材に塗布して用いることもできる。
電池電極用組成物の塗布方法としては、リバースロール法、コンマバー法、グラビヤ法、エアーナイフ法など任意のコーターヘッドを用いることができ、乾燥方法としては放置乾燥、送風乾燥機、温風乾燥機、赤外線加熱機、遠赤外線加熱機などが使用できる。
乾燥温度は、通常150℃で行う。
【0010】
上記のようにして得られた電池電極を用いて、ニッケル/水素電池を組み立てる場合、電解液に5規定以上の水酸化カリウムを使用し、正極材料NiOOH、負極に水素吸蔵合金を用いる。
さらに、要すればセパレーター、集電体、端子、絶縁板などの部品を用いて電池が構成される。また、電池の構造としては、特に限定されるものではないが、正極、負極、さらに要すればセパレーターを単層または複層としたペーパー型電池、または正極、負極、さらに要すればセパレーターをロール状に巻いた円筒状電池などの形態が一例として挙げられる。
本発明の水素吸蔵電極用バインダーを用いて製造した電池電極は、具体的にOA機器、ポータブルタイプのAV機器などに好適に使用することができる。
【0011】
【実施例】
以下に実施例にて本発明をさらに詳しく説明する。但し、本発明はこれらの実施例に何ら制約されるものではない。
測定法
(1)トルエンゲル量測定;0.5Nアンモニア水および0.5N塩酸でpH8に調整したラテックスを120℃で1時間乾燥させて成膜させた後、ポリマー重量の100重量部のトルエンに浸漬し、3時間振とう後200メッシュのフィルターで濾過して不溶分を採取し、120℃で1時間乾燥させて不溶分の重量を測定し、次式でゲル量を求めた。
ゲル量=(トルエン不溶分重量/浸漬前の重量)×100(%)
(2)ガラス転移点の測定;(1)で作成したフィルムを使用し、セイコー電子工業(株)製(示差走査熱量計)を用いてガラス転移点を求めた。
(3)平均粒子径の測定;大塚電子(株)製レーザー粒径解析システムLPA−3000s/3100を用いて粒子径を測定した。
【0012】
実施例1〜4
攪拌機を備えたオートクレーブに、イオン交換水70重量部および過硫酸カリウム0.3重量部をそれぞれ仕込み、気相部を15分間窒素ガスで置換し、80℃に昇温した。一方、別容器で表1に示す成分と乳化剤ドデシルベンゼンスルホン酸0.2重量部を混合し、15時間かけて前記オートクレーブに滴下した。滴下中は、80℃で反応を行った。滴下終了後、さらに85℃で5時間攪拌した後反応を終了させた。25℃に冷却後、水酸化カリウムでpHを7に調整し、その後スチームを導入して残留モノマーを除去し、次いで濃縮して共重合体の水分散体を得た。
比較例1〜3実施例1において、単量体成分の組成を表2のとおりとした以外は、実施例1と同様にして重合体の水分散体を得た。
【0013】

Figure 0003562197
【0014】
Figure 0003562197
【0015】
試験例
平均粒径が170μmの水素吸蔵合金粉末(La0.99重量%、Ni3.41重量%、Co1.20重量%、Mn0.10重量%、Al0.29重量%)と実施例1〜6および比較例1〜3で製造した電池電極用バインダー1重量部、増粘剤としてポリビニルアルコール水溶液を固形分で1重量部を加え、よく混合して電池電極用組成物を製造し、得られた電池電極を用いて下記の試験を行った。結果を表3および表4をに示す。
(1)Niメッシュとの結着性; 厚さ1mmNiメッシュを基材として、アプリケーターでこの得られた電池電極用組成物を400g/ 2 の厚さで塗工し、150℃×20分乾燥、圧着し、厚さ200μm電池電極を得た。得られた電池電極に粘着テープを貼り付け、剥がした後に粘着面に付着した塗布膜の具合で評価した。例えば粘着面にほとんど、塗布膜が付着しないときを5点、粘着面全体の塗布膜が剥離した場合を1点とする。
(2)導電性の測定法;100μmのPETフィルムに電池電極組成物を400g/ 2 の厚さで塗工し、150℃×20分乾燥、圧着し、膜厚200μmの塗布膜を得た。これを4端子法で抵抗を測定した。
(3)耐電解液性;上記(1)で得られた電池電極を電解液6N KOHに24時間浸漬した。変化のないときを5点、完全に剥離した場合を1点とする。
(4)電池特性;正極にニッケル酸化物、上記(1)で得られた電池電極を負極とし、0.9cm×5.5cmに切り出してそれぞれにNiのリード線を溶接し、6規定の水酸化カリウム水溶液を電解液として、セパレーターと組み合わせて電池を組み立てた。この電池を2.0Vまで充電し、10mAで1.0Vまで放電するサイクルを繰り返し、容量保存率を測定した。また、2.0Vに充電したセルを70℃×30日間保存し、保存安定性を測定した。
【0016】
Figure 0003562197
【0017】
Figure 0003562197
【0018】表1の実施例1〜4は、本発明の範囲のポリマー、表2は本発明の範囲外のポリマーの組成および、トルエンゲル、Tg、平均粒子径である。表3から明らかなように、本発明のポリマーを用いた場合結着性、導電性、耐電解液性のバランスがとれ、さらに電池特性のサイクル性、保存特性、安全性に優れている。これに対し、比較例1は、高Tgのポリマーの例であり、結着力、柔軟性にが低く電池特性に劣る。
比較例2は、アクリル組成の割合が10重量%より少ないの例であり、結着性が低く、サイクル効率に劣る。
比較例3は、官能基を有するモノマーを導入していないポリマーの例であり、結着性、耐電解液性、電池特性に劣る。
【0019】
【発明の効果】
本発明の水素吸蔵電極用バインダーにより、水素吸蔵合金を電極活物質とする電池、主にニッケル/水素二次電池において、耐電解液性に優れ、高い導電性を維持し、かつ集電材との高い結着性を有する水素吸蔵合金電極を得ることができる。また水を分散媒として使用するため電極作成行程も容易となる。更に本発明のバインダーを使用した水素吸蔵合金電極は、充放電サイクル特性に優れたニッケル/水素二次電池を与える。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a binder for a secondary battery electrode having excellent binding properties, charge / discharge cycle properties, storage characteristics, and safety. More specifically, the present invention relates to a binder composition for a hydrogen storage electrode in which a hydrogen storage alloy is held by a current collector.
[0002]
[Prior art]
In recent years, technological progress in the electronics industry has been remarkable, and demands for battery technology, such as high energy density and safety, are increasing. Nickel / hydrogen batteries have attracted attention as batteries having excellent energy density per unit volume and excellent safety because they do not contain pollutants. Nickel / hydrogen batteries use a hydrogen storage alloy as the active material of the negative electrode, and emit hydrogen ions freely with heat generation and heat absorption in a hydrogen atmosphere. The ease of absorbing and releasing hydrogen ions leads to higher capacity and longer life. Nickel / hydrogen batteries have already been put to practical use because they are capable of rapid charge / discharge, are resistant to overcharge and overdischarge, and have excellent performance in terms of high capacity, small size, and light weight. In a nickel / hydrogen battery, a polymer binder is used for the purpose of fixing the active material to the current collector, and the performance required for the binder is as follows: (1) good binding between the active material and the current collector; (2) free movement of hydrogen ions in the electrolytic solution with as little resistance as possible; and (3) no change in volume due to the electrolytic solution or charge / discharge. For example, conventionally, as binders for hydrogen storage alloys, fluorine-based polymers such as polytetrafluoroethylene and polyvinylidene fluoride have been known, but these fluorine-based polymers have poor binding properties with a current collector, and have a poor charge / discharge cycle. There was a problem that the active material was easily peeled off by repeating the above. In order to solve such problems, attempts have been made to use, for example, SEBS ( styrene-ethylene-butylene-styrene block copolymer), which is a thermoplastic elastomer, but there is a problem that the charge / discharge efficiency at the beginning of the cycle is poor. In addition, since an organic solvent such as toluene is used, there is a problem in that there is a high risk of ignition in a mixing process with a hydrogen storage alloy in an industrial-scale manufacturing process. Attempts have also been made to use an aqueous emulsion of a styrene-butadiene copolymer, but since the binder wraps around the entire active material, the charge / discharge efficiency is poor and the adhesion to the current collector is insufficient. There was a problem.
[0003]
[Problems to be solved by the invention]
In the present invention, in a nickel / hydrogen secondary battery using a hydrogen storage alloy as an electrode active material, there is no danger of ignition in the process of mixing the hydrogen storage alloy and the binder, and there is little influence on the electrode active material and high conductivity. And to achieve long life and high capacity by using a binder excellent in binding property with the current collector.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the present invention comprises an aromatic vinyl unit, a conjugated diene unit, a (meth) acrylate unit and a functional group-containing compound acid unit, wherein the (meth) acrylate unit is a copolymer. A hydrogen storage electrode binder comprising an aqueous dispersion of a copolymer (hereinafter, referred to as a “specific copolymer”), which is 10 to 40% by weight of the above.
[0005]
Hereinafter, the present invention will be described in detail. In the present invention, the “unit” indicates a structure derived from each monomer after radical polymerization of the monomer. As the aromatic vinyl compound for constituting the specific copolymer of the present invention, styrene, α -methylstyrene, divinylbenzene and the like, preferably styrene, and as the conjugated diene compound, 1,3-butadiene, isoprene and the like, Preferably, butadiene is used as the (meth) acrylic acid ester as methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, (meth) acrylic acid. N-butyl acid, i-butyl (meth) acrylate, n-amyl (meth) acrylate, i-amyl (meth) acrylate, hexyl (meth) acrylate, 2-hexyl (meth) acrylate, (meth) ) Octyl acrylate, i-nonyl (meth) acrylate, decyl (meth) acrylate, hydrohismethyl (meth) a Compounds having less than 4 carbon atoms in an alkyl group such as acrylate, hydroxyethyl (meth) acrylate, ethylene glycol di (meth) acrylate and the like, preferably butyl (meth) acrylate and methyl (meth) acrylate, are used as functional group-containing compounds. Examples include: ethylenically unsaturated carboxylic acids such as acrylic acid, (meth) acrylic acid, itaconic acid, fumaric acid, and maleic acid; and alkylamides of ethylenically unsaturated carboxylic acids such as (meth) acrylamide and N-methylolacrylamide ; vinyl acetate, vinyl carboxylates such as vinyl propionate; anhydride of ethylenically unsaturated dicarboxylic acids, monoalkyl esters, monoamides; aminoethyl acrylate, dimethylaminoethyl acrylate, ethylene and butyl aminoethyl acrylate Aminoalkyl esters of unsaturated carboxylic acids; Aminoalkylamides of ethylenically unsaturated carboxylic acids such as aminoethylacrylamide, dimethylaminomethylmethacrylamide, and methylaminopropylmethacrylamide; Cyanation such as (meth) acrylonitrile and α-chloroacrylonitrile Vinyl compounds; unsaturated aliphatic glycidyl esters such as glycidyl (meth) acrylate, preferably unsaturated carboxylic acids or ethylenically unsaturated carboxylic acid aminoalkylamides. In the present invention, the aromatic vinyl unit is 20 to 55% by weight of the specific copolymer, the conjugated diene compound is 30 to 60% by weight, the (meth) acrylate is 10 to 40% by weight, and the functional group-containing compound is 0.1 to 40% by weight. It is 1 to 10% by weight, preferably 2 to 10% by weight, more preferably 3 to 10% by weight. In the specific copolymer, if the functional group-containing compound unit is less than 0.1% by weight, the binder performance and chemical resistance of the copolymer are inferior, while if it exceeds 10%, the water resistance and storage stability are inferior. Not preferred.
[0006]
In the present invention, the specific copolymer can be produced by emulsion polymerization of the above monomers. The specific copolymer used in the present invention has a toluene-insoluble content of 20 to 100% by weight, preferably 30 to 90% by weight, particularly preferably 50 to 85% by weight. In the present invention, the toluene-insoluble matter is obtained by drying a copolymer aqueous dispersion having a solid content of 50% by weight adjusted to pH 8 with 0.5N ammonia water or 0.5N hydrochloric acid at 120 ° C. for 1 hour to form a film to form a film. After that, the dried film was put into a container such as an Erlenmeyer flask together with 100 parts by weight of toluene based on the weight of the polymer, shaken for 3 hours, and then filtered through a 200-mesh filter to collect insolubles, followed by drying at 120 ° C. for 1 hour. The weight of the insoluble matter is measured using the following formula, and the gel amount is determined by the following equation.
Gel amount = (weight of toluene-insoluble matter / weight before immersion ) × 100 (%)
If the toluene-insoluble content of the copolymer is less than 20% by weight, a polymer flow occurs when the electrode is formed and heated and dried, so that the electrode active material is excessively covered, and the overvoltage rises, making it unusable. In addition, the durability of potassium hydroxide, which is an electrolyte, is poor, and the hydrogen storage alloy is detached from the current collector. The glass transition point (Tg) of the specific copolymer used in the present invention is 5 ° C. or less. If the Tg exceeds 5 ° C., the polymer film obtained from the copolymer has poor flexibility and tackiness, and poor adhesion of the active material to the current collector. In the present invention, the specific copolymer is used as an aqueous dispersion. The average particle diameter of the copolymer particles dispersed in the aqueous dispersion is preferably 0.05 to 5 μm, more preferably 0.1 to 2 μm, and desirably smaller than one third of the electrode active material.
[0007]
In the present invention, the battery electrode composition using the aqueous dispersion of the specific copolymer as a binder, if necessary, using a thickener as an additive in an amount of 1 to 200 parts by weight based on 100 parts by weight of the copolymer. Is also good.
Examples of the water-soluble thickener include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphorylated starch, casein and the like. The solid content concentration of the aqueous dispersion of the copolymer is usually 20 to 65% by weight, preferably 35 to 60% by weight.
[0008]
The binder for a hydrogen storage electrode of the present invention is mixed with a hydrogen storage alloy powder to form a composition for a battery electrode, and the composition for a battery electrode is applied to a current collector and dried to produce a hydrogen storage electrode. be able to.
The hydrogen storage alloy powder used in the present invention is obtained by replacing a part of Ni with Mn, Al, Co or the like based on MmNi5. Here, Mm represents a misch metal which is a mixture of rare earth elements. The shape of the powder is a powder that has passed through 100 mesh, and the particle diameter is about 3 to 400 μm.
The binder for a hydrogen storage electrode of the present invention is blended in a solid content of 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the hydrogen storage alloy powder.
If the compounding amount of the binder for a hydrogen storage electrode is less than 0.1 part by weight, good adhesive strength cannot be obtained, and if it exceeds 20 parts by weight, the overvoltage increases significantly and adversely affects battery characteristics.
The composition for a battery electrode is composed of a hydrogen storage alloy powder, a binder for a hydrogen storage electrode, and a water-soluble thickener as required. And the like. Further, an additive such as a nonionic or anionic surfactant as a stabilizer for the latex, or carbon for the purpose of imparting electrode conductivity may be added.
[0009]
In order to form a hydrogen storage electrode, the above-mentioned composition for a battery electrode is preferably applied in the form of a slurry to a current collector, heated and dried.
The current collector is a core plate made of a metal such as nickel and having a thickness of 40 to 80 μm, and is preferably porous. At this time, the opening ratio of the metal core plate is usually 30 to 60%.
At this time, if necessary, it may be molded together with the current collector material, or alternatively, it may be applied to a current collector base material such as Ni mesh or punched Ni for use.
As a method for applying the composition for a battery electrode, any coater head such as a reverse roll method, a comma bar method, a gravure method, and an air knife method can be used. , An infrared heater, a far infrared heater and the like can be used.
The drying temperature is usually set at 150 ° C.
[0010]
When assembling a nickel / hydrogen battery using the battery electrodes obtained as described above, potassium hydroxide of 5N or more is used as an electrolyte, a positive electrode material NiOOH, and a hydrogen storage alloy is used as a negative electrode.
Further, if necessary, a battery is configured using components such as a separator, a current collector, a terminal, and an insulating plate. In addition, the structure of the battery is not particularly limited, but a positive electrode, a negative electrode, and, if necessary, a paper type battery having a single-layer or multiple-layer separator, or a positive electrode, a negative electrode, and a separator, if necessary. A form such as a cylindrical battery wound in a shape is given as an example.
The battery electrode manufactured using the binder for a hydrogen storage electrode of the present invention can be suitably used for OA equipment, portable AV equipment and the like.
[0011]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to these embodiments.
Measurement method (1) Toluene gel amount measurement: A latex adjusted to pH 8 with 0.5N ammonia water and 0.5N hydrochloric acid was dried at 120 ° C. for 1 hour to form a film, and then 100 parts by weight of toluene based on the polymer weight was added. After immersing and shaking for 3 hours, the mixture was filtered through a 200-mesh filter to collect insolubles, dried at 120 ° C. for 1 hour, weighed, and the amount of gel was determined by the following formula.
Gel amount = (weight of toluene-insoluble matter / weight before immersion ) × 100 (%)
(2) Measurement of glass transition point: Using the film prepared in (1), the glass transition point was determined by using a differential scanning calorimeter (manufactured by Seiko Instruments Inc.).
(3) Measurement of average particle diameter: The particle diameter was measured using a laser particle size analysis system LPA-3000s / 3100 manufactured by Otsuka Electronics Co., Ltd.
[0012]
Examples 1-4
70 parts by weight of ion-exchanged water and 0.3 parts by weight of potassium persulfate were charged into an autoclave equipped with a stirrer, the gas phase was replaced with nitrogen gas for 15 minutes, and the temperature was raised to 80 ° C. On the other hand, the components shown in Table 1 and 0.2 parts by weight of the emulsifier dodecylbenzenesulfonic acid were mixed in a separate container, and added dropwise to the autoclave over 15 hours. During the dropping, the reaction was performed at 80 ° C. After the completion of the dropwise addition, the mixture was further stirred at 85 ° C. for 5 hours to terminate the reaction. After cooling to 25 ° C., the pH was adjusted to 7 with potassium hydroxide, then steam was introduced to remove residual monomers, and then concentrated to obtain an aqueous dispersion of a copolymer.
Comparative Examples 1 to 3 Polymer aqueous dispersions were obtained in the same manner as in Example 1 except that the composition of the monomer component was changed as shown in Table 2.
[0013]
Figure 0003562197
[0014]
Figure 0003562197
[0015]
Test Example Hydrogen storage alloy powder having an average particle size of 170 μm (La 0.99 wt%, Ni 3.41 wt%, Co 1.20 wt%, Mn 0.10 wt%, Al 0.29 wt%) and Examples 1 to 6 and 1 part by weight of the binder for a battery electrode manufactured in Comparative Examples 1 to 3 and 1 part by weight of a polyvinyl alcohol aqueous solution as a thickener in solid content were added and mixed well to produce a composition for a battery electrode, and the obtained battery was obtained. The following tests were performed using the electrodes. The results are shown in Tables 3 and 4.
(1) Binding property with Ni mesh; Using a 1-mm-thick Ni mesh as a base material, the obtained battery electrode composition is applied with an applicator at a thickness of 400 g / m 2 , and dried at 150 ° C. for 20 minutes. Then, pressure bonding was performed to obtain a battery electrode having a thickness of 200 μm. An adhesive tape was attached to the obtained battery electrode, peeled off, and evaluated by the condition of the coating film attached to the adhesive surface. For example, 5 points when the coating film hardly adheres to the adhesive surface, and 1 point when the coating film on the entire adhesive surface peels off.
(2) Conductivity measurement method: A battery electrode composition was applied to a 100 μm PET film at a thickness of 400 g / m 2 , dried at 150 ° C. for 20 minutes, and pressed to obtain a coating film having a thickness of 200 μm. . The resistance was measured by a four-terminal method.
(3) Electrolytic solution resistance: The battery electrode obtained in the above (1) was immersed in an electrolytic solution 6N KOH for 24 hours. 5 points when there is no change, and 1 point when completely peeled.
(4) Battery characteristics: Nickel oxide was used as the positive electrode, the battery electrode obtained in the above (1) was used as the negative electrode, cut into 0.9 cm × 5.5 cm, and Ni lead wires were welded to each, and 6N water was used. A battery was assembled by using a potassium oxide aqueous solution as an electrolytic solution in combination with a separator. The cycle of charging the battery to 2.0 V and discharging it to 1.0 V at 10 mA was repeated, and the capacity retention was measured. Further, the cell charged to 2.0 V was stored at 70 ° C. for 30 days, and the storage stability was measured.
[0016]
Figure 0003562197
[0017]
Figure 0003562197
Examples 1 to 4 in Table 1 show the polymers within the scope of the present invention, and Table 2 shows the compositions of the polymers outside the scope of the present invention, toluene gel, Tg, and average particle size. As is clear from Table 3, when the polymer of the present invention is used, the binding property, the conductivity, and the resistance to the electrolytic solution are balanced, and the cycle characteristics, storage characteristics, and safety of the battery characteristics are excellent. On the other hand, Comparative Example 1 is an example of a polymer having a high Tg, and has low binding power and low flexibility and is inferior in battery characteristics.
Comparative Example 2 is an example in which the proportion of the acrylic composition is less than 10% by weight, and has a low binding property and poor cycle efficiency.
Comparative Example 3 is an example of a polymer into which a monomer having a functional group was not introduced, and was inferior in binding properties, electrolyte resistance, and battery characteristics.
[0019]
【The invention's effect】
With the binder for a hydrogen storage electrode of the present invention, in a battery using a hydrogen storage alloy as an electrode active material, mainly in a nickel / hydrogen secondary battery, it has excellent electrolytic solution resistance, maintains high conductivity, and is used as a collector. A hydrogen storage alloy electrode having high binding properties can be obtained. In addition, since water is used as a dispersion medium, the process of forming an electrode is also facilitated. Further, the hydrogen storage alloy electrode using the binder of the present invention provides a nickel / hydrogen secondary battery having excellent charge / discharge cycle characteristics.

Claims (8)

芳香族ビニル単位、共役ジエン単位、(メタ)アクリル酸エステル単位および官能基含有化合物単位からなり、(メタ)アクリル酸エステル単位が共重合体の10〜40重量%である共重合体の水分散体からなることを特徴とする水素吸蔵電極用バインダー。Aqueous dispersion of a copolymer comprising an aromatic vinyl unit, a conjugated diene unit, a (meth) acrylate unit and a functional group-containing compound unit, wherein the (meth) acrylate unit is 10 to 40% by weight of the copolymer. A binder for a hydrogen storage electrode, comprising a body. 官能基含有化合物単位が共重合体の0.1〜10重量%である請求項1記載の水素吸蔵電極用バインダー。The binder for a hydrogen storage electrode according to claim 1, wherein the functional group-containing compound unit accounts for 0.1 to 10% by weight of the copolymer. 官能基含有化合物がエチレン性不飽和カルボン酸、エチレン性不飽和カルボン酸のアルキルアミド、カルボン酸ビニルエステル、エチレン系不飽和ジカルボン酸の酸無水物、エチレン系不飽和カルボン酸のアミノアルキルエステル、エチレン系不飽和カルボン酸のアミノアルキルアミド、シアン化ビニル系化合物、および不飽和脂肪族グリシジルエステルからなる群から選ばれる少なくとも1種である請求項1または2記載の水素吸蔵電極用バインダー。The functional group-containing compound is ethylenically unsaturated carboxylic acid, alkylamide of ethylenically unsaturated carboxylic acid, vinyl carboxylate, acid anhydride of ethylenically unsaturated dicarboxylic acid, aminoalkyl ester of ethylenically unsaturated carboxylic acid, ethylene 3. The binder for a hydrogen storage electrode according to claim 1, wherein the binder is at least one selected from the group consisting of aminoalkylamides of unsaturated carboxylic acids, vinyl cyanide compounds, and unsaturated aliphatic glycidyl esters. 官能基含有化合物がアクリル酸、(メタ)アクリル酸、イタコン酸、フマル酸、マレイン酸、(メタ)アクリルアミド、N−メチロールアクリルアミド、酢酸ビニル、プロピオン酸ビニル、アミノエチルアクリレート、ジメチルアミノエチルアクリレート、ブチルアミノエチルアクリレート、アミノエチルアクリルアミド、ジメチルアミノメチルメタクリルアミド、メチルアミノプロピルメタクリルアミド、(メタ)アクリロニトリル、α−クロルアクリロニトリルおよびグリシジル(メタ)アクリレートからなる群から選ばれる少なくとも1種である請求項1〜3いずれかに記載の水素吸蔵電極用バインダー。The functional group-containing compound is acrylic acid, (meth) acrylic acid, itaconic acid, fumaric acid, maleic acid, (meth) acrylamide, N-methylolacrylamide, vinyl acetate, vinyl propionate, aminoethyl acrylate, dimethylaminoethyl acrylate, butyl At least one member selected from the group consisting of aminoethyl acrylate, aminoethyl acrylamide, dimethylaminomethyl methacrylamide, methylaminopropyl methacrylamide, (meth) acrylonitrile, α-chloroacrylonitrile and glycidyl (meth) acrylate. 3. The binder for a hydrogen storage electrode according to any one of 3. 上記共重合体の芳香族ビニル単位は20〜55重量%、共役ジエン化合物は30〜60重量%、(メタ)アクリル酸エステルは10〜40重量%および官能基含有化合物は0.1〜10重量%である請求項1記載の水素吸蔵電極用バインダー。The aromatic vinyl unit of the copolymer is 20 to 55% by weight, the conjugated diene compound is 30 to 60% by weight, the (meth) acrylate is 10 to 40% by weight, and the functional group-containing compound is 0.1 to 10% by weight. % Of the binder for a hydrogen storage electrode according to claim 1. トルエン不溶分が20〜100重量%である請求項1〜5いずれかに記載の水素吸蔵電極用バインダー。The binder for a hydrogen storage electrode according to any one of claims 1 to 5, wherein a toluene-insoluble content is 20 to 100% by weight. 共重合体のガラス転移点(Tg)は5℃以下である請求項1〜6いずれかに記載の水素吸蔵電極用バインダー。The binder for a hydrogen storage electrode according to any one of claims 1 to 6, wherein a glass transition point (Tg) of the copolymer is 5 ° C or less. 共重合体の水分散体の固形分濃度は20〜65重量%である請求項1〜7いずれかに記載の水素吸蔵電極用バインダー。The binder for a hydrogen storage electrode according to any one of claims 1 to 7, wherein a solid content concentration of the aqueous dispersion of the copolymer is 20 to 65% by weight.
JP05850397A 1997-02-26 1997-02-26 Binder for hydrogen storage electrode Expired - Lifetime JP3562197B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP05850397A JP3562197B2 (en) 1997-02-26 1997-02-26 Binder for hydrogen storage electrode
KR1019980005914A KR19980071685A (en) 1997-02-26 1998-02-25 Binder for Ni-MH Battery Electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05850397A JP3562197B2 (en) 1997-02-26 1997-02-26 Binder for hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPH10241693A JPH10241693A (en) 1998-09-11
JP3562197B2 true JP3562197B2 (en) 2004-09-08

Family

ID=13086235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05850397A Expired - Lifetime JP3562197B2 (en) 1997-02-26 1997-02-26 Binder for hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JP3562197B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111425A1 (en) 2011-02-14 2012-08-23 昭和電工株式会社 Slurries obtained using binder for cell electrodes, electrodes obtained using slurries, and lithium-ion secondary cell obtained using electrodes
KR20160087657A (en) 2015-01-14 2016-07-22 주식회사 엘지화학 Slurry composition for electrodes, electrode and secondary cell

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1069634A2 (en) 1999-07-13 2001-01-17 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy electrode and nickel-metal hydride battery
JP5164031B2 (en) * 2001-04-27 2013-03-13 日本エイアンドエル株式会社 Secondary battery negative electrode binder
JP4795556B2 (en) * 2001-04-27 2011-10-19 日本エイアンドエル株式会社 Secondary battery negative electrode binder
KR100845702B1 (en) 2005-08-23 2008-07-11 주식회사 엘지화학 Binder with improved adhesive strength and coating properties for secondary battery
JP5394716B2 (en) * 2008-12-15 2014-01-22 日本エイアンドエル株式会社 Secondary battery electrode binder
JP5547507B2 (en) * 2009-02-03 2014-07-16 日本エイアンドエル株式会社 Nonaqueous electrolyte secondary battery electrode binder.
KR20120038994A (en) 2009-08-07 2012-04-24 제이에스알 가부시끼가이샤 Electrochemical device and binder composition
JP5696664B2 (en) * 2009-09-28 2015-04-08 日本ゼオン株式会社 Secondary battery electrode, secondary battery electrode binder, and secondary battery
KR101047243B1 (en) 2009-11-18 2011-07-06 주식회사 엘지화학 Binder for Electrode of Lithium Secondary Battery, Electrode with Lithium Secondary Battery
JP6269914B2 (en) * 2012-06-18 2018-01-31 Jsr株式会社 Electrode for power storage device, slurry for electrode, and power storage device
JP6211752B2 (en) * 2012-08-09 2017-10-11 東洋インキScホールディングス株式会社 Binder resin composition for nickel metal hydride secondary battery electrode and composite ink containing the same
JP6774415B2 (en) 2015-08-11 2020-10-21 昭和電工株式会社 A positive electrode slurry for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery obtained by using a positive electrode slurry for a lithium ion secondary battery, a method for manufacturing the same, and a lithium ion provided with a positive electrode for a lithium ion secondary battery. Secondary battery and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111425A1 (en) 2011-02-14 2012-08-23 昭和電工株式会社 Slurries obtained using binder for cell electrodes, electrodes obtained using slurries, and lithium-ion secondary cell obtained using electrodes
KR20160087657A (en) 2015-01-14 2016-07-22 주식회사 엘지화학 Slurry composition for electrodes, electrode and secondary cell

Also Published As

Publication number Publication date
JPH10241693A (en) 1998-09-11

Similar Documents

Publication Publication Date Title
JP3721727B2 (en) Battery electrode binder
JP3562197B2 (en) Binder for hydrogen storage electrode
WO2019242318A1 (en) Waterborne binder, preparation method therefor and use thereof
JP4692693B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery
US6652773B2 (en) High gel-content polymer dispersed in a high-boiling organic medium
JP4543634B2 (en) Electrode layer forming material
EP1629556A1 (en) Composite binder for an electrode with dispersants chemically bound
JP6135396B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery
JPH09320604A (en) Conductive-binded composition for secondary battery electrode and manufacture thereof
KR20090104723A (en) Composition for forming a binder for capacitor electrode
CN105814720B (en) Collector coating bonding agent coating fluid
JP4969734B2 (en) Secondary battery negative electrode binder and secondary battery electrode composition
JP2022074127A (en) Graft copolymer and use thereof
JP4438104B2 (en) Secondary battery binder composition, battery electrode slurry, battery electrode, and secondary battery
JP2014165108A (en) Slurry composition for lithium ion secondary battery positive electrode use, method for manufacturing lithium ion secondary battery positive electrode, lithium ion secondary battery positive electrode, and lithium ion secondary battery
JP4552235B2 (en) Lithium ion secondary battery electrode and secondary battery
WO2023226765A1 (en) Positive electrode active material, and positive electrode sheet and battery which comprise positive electrode active material
JP2005063735A (en) Binder for secondary battery
JP3580072B2 (en) Binder for hydrogen storage electrode
JP4795556B2 (en) Secondary battery negative electrode binder
JP5164031B2 (en) Secondary battery negative electrode binder
CN112759712B (en) Polyvinyl alcohol graft copolymer and application thereof
JP2002279980A (en) Electrode and battery using the electrode
CN117363275B (en) High-pressure-resistant copolymer binder, preparation method thereof and lithium ion battery
JP2002025547A (en) Electrode for alkaline secondary battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term