JP3561374B2 - Sampler for molten metal - Google Patents

Sampler for molten metal Download PDF

Info

Publication number
JP3561374B2
JP3561374B2 JP15919796A JP15919796A JP3561374B2 JP 3561374 B2 JP3561374 B2 JP 3561374B2 JP 15919796 A JP15919796 A JP 15919796A JP 15919796 A JP15919796 A JP 15919796A JP 3561374 B2 JP3561374 B2 JP 3561374B2
Authority
JP
Japan
Prior art keywords
small
diameter cylindrical
diameter
cylindrical portion
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15919796A
Other languages
Japanese (ja)
Other versions
JPH09318620A (en
Inventor
孝之 國島
始 安永
政雄 竹内
国利 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP15919796A priority Critical patent/JP3561374B2/en
Publication of JPH09318620A publication Critical patent/JPH09318620A/en
Application granted granted Critical
Publication of JP3561374B2 publication Critical patent/JP3561374B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、外気に触れない健全な試料が採取でき、かつ異なる形状の試料を同時かつ正確に採取する溶融金属のサンプリング器に関するものである。
【0002】
【従来の技術】
金属の精錬過程や処理状態における溶融金属の成分情報を得るために分析用試料をサンプリングすることが行われるが、高純度溶融金属を扱う場合においては、サンプリング時に分析用試料が汚染されないよう極力注意を払う必要がある。そのため高純度溶融金属のサンプリング器として汚染が少ないと考えられる真空吸い上げ管を使用するタイプのサンプリング器が用いられる。真空吸い上げ管を使用するタイプの溶融金属のサンプリング器としては、特開昭57−211555号に開示されているように径大筒部の底部下向きに径小筒部が凸状に接合された図4のタイプ1ものや、実開昭63−120159号のように径大筒部の円筒側面に沿って該径大筒部の下方まで径小筒部を伸ばし、径大筒部の上方で接合した図5のタイプ2のものが知られている。
【0003】
【発明が解決しようとする課題】
これら公知のサンプリング器は実用に供されてきたが、以下の課題があり常時信頼して使用できるものではなかった。タイプ1のサンプリング器は、径大筒部で得られる試料において径小筒部の上方に当たる部分に引け巣や気泡が発生し易く、健全な試料が得られる確率が低い。またタイプ2のサンプリング器は、小筒部の形状が複雑で、かつ径大筒部以上の長さが必要なため取扱時に壊れ易くまた健全な試料が得られる確率も低い。このため、これらタイプ1、2のサンプリング器を使用するとき、成分分析を行う上で支障のない確実な試料を採取するためには、安全を見込んで複数回試料を採取する必要があった。複数回サンプリングするとサンプリングによる作業性の悪化や採取時間の延長が発生すると共に、サンプリング器を組み込んだ複合プローブの消耗量が増して、それに伴い複合プロープの交換回数が増し、費用の増大をもたらしていた。本発明は、このような実状に鑑みなされたもので、径大筒部と径小筒部との連結部の構造を2重管構造にし、破損を起こしにくく取扱が容易で且つ健全な分析試料を確実に採取できる溶融金属のサンプリング器を提供することを目的としたものである。
【0004】
【課題を解決するための手段】
金属溶融体の融液から分析用試料を採取する耐熱材料容器であって、径大筒部と径小筒部からなり、かつ径小筒部の外側先端に薄肉部をもつ内部を真空にした溶融金属のサンプリング器において、径大筒部の内部に径小筒部の導管部が径大筒部の底部を突き抜けて貫通して、径大筒部と径小筒部とが連結し、この連結部を径小筒部の導管部と径大筒部との2重管構造とすることによって、径小筒部の分析に供する必要試料長さを確保しながら外部凸部の径小筒部の長さを極力短くすることができるため、前記真空容器の外形はシンプルで、壊れ易い径小筒部が短いため破損の頻度を極めて低減する。また、径大筒部の内側に径小筒部の導管部を貫通させ2重管構造とすることで、径小筒部内にある未凝固の溶融金属が重力により降下するに伴う径大筒部内溶融金属へ働く負の吸引応力を局部小領域内に留めることができ、径大筒部内の溶融金属が凝固する際の引け巣や気泡を少なくすることができる。
【0005】
また、径大筒部の底部の円周側から貫通し、径小筒部の導管部が径大筒部の円筒中心に向けて湾曲していることによって、径小筒部の溶融金属に対する重力作用が径大筒部内溶融金属へ働く影響をより小さく且つ分散することができるため、一層径大筒部内の溶融金属が凝固する際の引け巣や気泡を少なくすることができる。
【0006】
【発明の実施の形態】
図1、図2は本発明の溶融金属のサンプリング器断面図であり、図3は本発明品を組み込んだ複合プロ−ブの断面説明図である。図4、図5は従来品のサンプリング器であり比較のため、同じ作用の構成部には同一の符号を付けている。以下、図面を用いて本発明の実施の形態について説明する。図1、図2でわかるように本発明品である溶融金属のサンプリング器は、径大筒部(1)と径小筒部(2)からなり径小筒部(2)が径大筒部(1)の円周側底部を突き抜け、その先端が径大筒部(1)の円筒中心方向に曲げられた導管部(4)を有し、尚且つ相互に連結するように接合した耐熱材料の気密中空容器である。該気密中空容器は、この中空内が高真空状態に減圧されており、径小筒部(2)の外側先端には薄肉部(3)がもうけてある。
【0007】
図1,図2のサンプリング器は、石英で作った例を示しており、径大筒部(1)も径小筒部(2)も円柱状に形成してあり、その内部は高真空状態に減圧してある。径小筒部(2)は、径大筒部(1)の円周側底部より内部に突き抜けており、その先端は湾曲した導管部(4)を形成している。該湾曲部の形状は、先端が径大筒部(1)の円筒中心に向き且つ90度が最も好ましいが、長さや湾曲形状を種々変形させて形成することができる。この石英容器は全体がほぼ等しい肉厚であるが、径小筒部(2)の外側先端にはこれよりも薄い薄肉部(3)が形成してある。この薄肉部(3)の厚みは、この石英容器を金属溶融体に浸漬したときに、その浸漬深さにおける溶融体の圧力と温度で自壊するような厚みに形成してある。すなわち、機械的な力を加えなくとも溶融体中の採取位置において自壊するようになっている。径小筒部(2)で採取された試料は、溶融金属中に含まれるガス量の分析用に用いられ、径大筒部(1)で採取された試料は、溶融金属成分分析の発光分光分析や蛍光X線分析用に適したものが得られる。
径大筒部(1)の形状は、本例では円柱状としているが、前記分析のための試料であり、取り扱いやすい台形円柱等であってもよい。
【0008】
本発明の溶融金属のサンプリング器は、径大筒部(1)と径小筒部(2)の接合部を一体物とせず、2重管構造としたところに最大の特徴がある。図4のように一体ものとした場合は、サンプリング器を溶融体から引き上げた時点で、径小筒部(2)の部分に採取された溶融金属が完全凝固していなかった場合、径大筒部(1)の部分に採取された溶融金属は、径小筒部(2)の溶融金属の凝固の際の押し湯として作用するため、径小筒部(2)の上方にあたる径大筒部の溶湯金属が凝固する際に引け巣や気泡が発生しやすくなる。これに対して、2重管構造の導管部(4)を設けることにより、径小筒部(2)が重力方向に対して90度の角度を持って開かれているため径大筒部(1)の押し湯としての作用が軽減され凝固金属の収縮が特定部分に集中することなく分散するため引け巣や気泡が抑制されると考えられる。さらに本発明のサンプリング器は、径小筒部(2)の加工部分が径大筒部(1)の内部にあることに加え、溶融金属に含まれているガスの分析に供される試料の必要量の長さが、径大筒部(1)内の径小筒部(2)の導管部(4)で確保されるため、径小筒部(1)の外部凸部の長さを極力短くできるので破損の恐れが少く且つ取扱が容易となる。
【0009】
【実施例】
以下溶鋼の分析試料を採取するのに適用した実施例について説明する。図3は本発明品である溶融金属のサンプリング器を実使用のため、溶湯温度検出器(6)と共に組み込んだ複合プロ−ブ(10)断面説明図である。本発明品及び従来品であるタイプ1、タイプ2各々の寸法を表1に示す。これらを図3とほぼ同様の構造で組み込み複合プロ−ブ(10)を製作した。製作した複合プロ−ブ本数は、タイプ1、タイプ2とも80本である。使用方法は、複合プロ−ブ(10)を複合プロ−ブ支持部材(11)に嵌め合せ、該複合プロ−ブ(10)の先端から約300mmを溶湯内へ浸漬させ、10〜15秒後に引き上げることにより、溶鋼試料を採取した。そして、引上げ後複合プロ−ブ(10)を切断破壊してサンプリング器内の凝固試料を取り出し分析用試料として使用した。前記記載の複合プロ−ブ(10)を使用しサンプリングの結果発生する試料の不良率を試験した結果を表2へ示す。試験はRH脱ガス設備を用いて溶鋼の脱ガス処理を行なう脱ガス前と後の溶鋼を収容した鍋内の溶鋼サンプリングで行った。ここで、タイプ2のサンプリング数が72となっているのは試験前の取扱でサンプリング器の8本が壊れたため少なくなったものである。表2の試験結果から明らかなように、本発明品は従来品に比べ不良率がすこぶる低くなっており、健全な試料の採取確率が改善されていることがわかる。
【0010】
【表1】

Figure 0003561374
【0011】
【表2】
Figure 0003561374
【0012】
【発明の効果】
本発明品の溶融金属のサンプリング器によれば、前述したように壊れにくく頑丈であり、且つ健全な溶融金属試料が確実に採取できるため、下記のような効果が生じた。
ア、一度のサンプリング作業で、形状の異なる試料が健全で確実に採取できるため、作業性の改善や試料採取時間の短縮を図ることができる。
イ、サンプリング器の破損頻度が極めて低下し、健全な試料を採取できる確率が大幅に向上したため複合プロ−ブ使用本数が減り、製品原価低減を図ることができる。
ウ、特に製鉄業の溶銑・溶鋼を生産する大量生産産業にあっては、1ロットの成分不良が大量の製品不良となり、また数秒の試料採取時間遅れが1日換算で数十トンの生産減少となるため、健全な試料採取確率の向上は、生産性の向上に寄与し非常に工業的価値の大きい技術である。
【図面の簡単な説明】
【図1】本発明である溶融金属のサンプリング器断面図である。
【図2】本発明である図1のA−A’部断面図である。
【図3】本発明を組み込んだ複合プロ−ブの断面説明図である。
【図4】従来品であるタイプ1のサンプリング器の断面図である。
【図5】従来品であるタイプ2のサンプリング器の断面図である。
【符号の説明】
1 径大筒部
2 径小筒部
3 薄肉部
4 導管部
5 保護管部
5a 保護キャップ
5b 保護シェルベット
5c 保護耐熱管
5d 保護内紙管
6 溶湯温度検出器
7 紙キャップ
8 リ−ド線
9 中継コネクタ−
10 複合プロ−ブ
11 複合プロ−ブ支持部材[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sampler for a molten metal capable of simultaneously collecting a sample having a different shape and accurately collecting a sample having a different shape without contact with the outside air.
[0002]
[Prior art]
Samples for analysis are obtained to obtain information on the components of the molten metal in the metal refining process and processing conditions.However, when handling high-purity molten metal, be extremely careful not to contaminate the analysis sample during sampling. Need to pay. For this reason, a high-purity molten metal sampler using a vacuum suction pipe, which is considered to be less contaminated, is used. As a sampler of a molten metal of a type using a vacuum suction pipe, as shown in Japanese Patent Application Laid-Open No. 57-212555, FIG. FIG. 5 shows that the small-diameter tube portion is extended below the large-diameter tube portion along the cylindrical side surface of the large-diameter tube portion as in Japanese Utility Model Application Laid-Open No. 63-120159, and is joined above the large-diameter tube portion. Type 2 is known.
[0003]
[Problems to be solved by the invention]
Although these known sampling devices have been put to practical use, they have the following problems and cannot be used reliably at all times. In the sampler of the type 1, in a sample obtained from the large-diameter cylindrical portion, shrinkage cavities and bubbles are easily generated in a portion above the small-diameter cylindrical portion, and the probability of obtaining a healthy sample is low. In addition, the sampler of type 2 has a complicated shape of the small cylindrical portion and requires a length longer than the large-diameter cylindrical portion, so that it is easily broken during handling and the probability of obtaining a sound sample is low. For this reason, when using these type 1 and type 2 samplers, it is necessary to take a plurality of samples in anticipation of safety in order to collect a reliable sample that does not hinder the component analysis. When sampling is performed multiple times, the workability is deteriorated and the sampling time is prolonged due to the sampling.In addition, the consumption of the composite probe incorporating the sampler is increased, and the number of times of replacing the composite probe is increased, which leads to an increase in cost. Was. The present invention has been made in view of such a situation, and the structure of the connecting portion between the large-diameter cylindrical portion and the small-diameter cylindrical portion has a double-tube structure. It is an object of the present invention to provide a sampler of a molten metal that can be reliably sampled.
[0004]
[Means for Solving the Problems]
A heat-resistant material container for collecting a sample for analysis from a melt of a metal melt, which consists of a large-diameter cylindrical part and a small-diameter cylindrical part, and has a thin-walled part at the outer tip of the small-diameter cylindrical part. in sampler metal conduit portion of the small diameter cylinder portion to the inside of the large diameter tube portion penetrates penetrates the bottom of the large diameter tubular section, coupled and a large diameter cylindrical portion and a small diameter cylindrical portion, the diameter of the connecting portion By adopting a double tube structure consisting of a conduit part of a small cylinder part and a large- diameter cylinder part, the length of the small-diameter cylinder part of the outer convex part is minimized while ensuring the necessary sample length for analysis of the small-diameter cylinder part. Since the vacuum vessel can be shortened, the outer shape of the vacuum vessel is simple, and the frequency of breakage is extremely reduced because the fragile small-diameter tube portion is short. In addition, by making the conduit portion of the small-diameter tube portion penetrate inside the large-diameter cylinder portion to form a double-pipe structure, the molten metal in the large-diameter cylinder portion due to the unsolidified molten metal in the small-diameter cylinder portion falling by gravity. The negative attractive stress acting on the large diameter cylindrical portion can be kept within the small local region, and shrinkage cavities and bubbles when the molten metal in the large-diameter cylindrical portion solidifies can be reduced.
[0005]
In addition, by penetrating from the circumferential side of the bottom of the large- diameter cylinder portion, and the conduit portion of the small-diameter cylinder portion is curved toward the center of the cylinder of the large-diameter cylinder portion, the gravity action on the molten metal of the small-diameter cylinder portion is reduced. Since the influence on the molten metal in the large-diameter cylindrical portion can be reduced and dispersed, shrinkage cavities and bubbles when the molten metal in the large-diameter cylindrical portion solidifies can be reduced.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
1 and 2 are cross-sectional views of a molten metal sampling device according to the present invention, and FIG. 3 is a cross-sectional explanatory view of a composite probe incorporating the product of the present invention. FIGS. 4 and 5 show a conventional sampler. For comparison, components having the same function are denoted by the same reference numerals. Hereinafter, embodiments of the present invention will be described with reference to the drawings. As can be seen from FIGS. 1 and 2, the molten metal sampler according to the present invention comprises a large-diameter cylindrical portion (1) and a small-diameter cylindrical portion (2), and the small-diameter cylindrical portion (2) has a large-diameter cylindrical portion (1). ) Has a conduit portion (4) bent at the tip of the large-diameter cylindrical portion (1) in the direction of the center of the cylinder, and is connected to the airtight hollow of a heat-resistant material. Container. The inside of the airtight hollow container is depressurized to a high vacuum state, and a thin portion (3) is provided at the outer end of the small diameter cylindrical portion (2).
[0007]
The sampler shown in FIGS. 1 and 2 shows an example made of quartz, in which both the large-diameter cylindrical portion (1) and the small-diameter cylindrical portion (2) are formed in a columnar shape, and the inside thereof is in a high vacuum state. Depressurized. The small-diameter cylindrical portion (2) penetrates into the large-diameter cylindrical portion (1) from the circumferential bottom portion, and a distal end thereof forms a curved conduit portion (4). The shape of the curved portion is most preferably 90 degrees with the tip directed toward the center of the cylinder of the large-diameter cylindrical portion (1), but can be formed by variously changing the length and the curved shape. This quartz container has almost the same wall thickness as a whole, but a thinner portion (3) thinner than this is formed at the outer end of the small-diameter cylindrical portion (2). The thickness of the thin portion (3) is such that when the quartz container is immersed in a metal melt, it will self-destruct at the pressure and temperature of the melt at the immersion depth. That is, self-destruction occurs at the sampling position in the melt without applying mechanical force. The sample collected at the small-diameter cylinder (2) is used for analyzing the amount of gas contained in the molten metal, and the sample collected at the large-diameter cylinder (1) is used for emission spectroscopy of molten metal component analysis. And those suitable for X-ray fluorescence analysis.
The shape of the large-diameter cylindrical portion (1) is cylindrical in this example, but may be a trapezoidal cylinder or the like which is a sample for the analysis and is easy to handle.
[0008]
The greatest feature of the molten metal sampling device of the present invention is that the joining portion between the large-diameter cylindrical portion (1) and the small-diameter cylindrical portion (2) is not formed as a single body but is formed as a double pipe structure. As shown in FIG. 4, when the sampler is pulled up from the melt, when the molten metal sampled in the small-diameter cylindrical portion (2) is not completely solidified, the large-diameter cylindrical portion is used. The molten metal collected in the portion (1) acts as a feeder when solidifying the molten metal in the small-diameter cylindrical portion (2), so that the molten metal in the large-diameter cylindrical portion above the small-diameter cylindrical portion (2). When the metal solidifies, shrinkage cavities and bubbles are likely to be generated. On the other hand, by providing the conduit portion (4) having a double pipe structure, the small-diameter cylindrical portion (2) is opened at an angle of 90 degrees with respect to the direction of gravity, so that the large-diameter cylindrical portion (1) is opened. It is considered that the action of (2) as a hot water is reduced and the shrinkage cavities and bubbles are suppressed because the shrinkage of the solidified metal is dispersed without concentrating on a specific portion. Furthermore, in the sampling device of the present invention, in addition to the fact that the machined portion of the small-diameter cylindrical portion (2) is inside the large-diameter cylindrical portion (1), it is also necessary to provide a sample for analysis of gas contained in the molten metal. Since the length of the amount is secured by the conduit part (4) of the small diameter cylinder part (2) inside the large diameter cylinder part (1), the length of the outer convex part of the small diameter cylinder part (1) is shortened as much as possible. As a result, there is little risk of breakage and handling becomes easy.
[0009]
【Example】
Hereinafter, an example applied to collecting an analysis sample of molten steel will be described. FIG. 3 is an explanatory sectional view of a composite probe (10) in which a sampler of a molten metal according to the present invention is incorporated together with a molten metal temperature detector (6) for practical use. Table 1 shows the dimensions of the present invention and the conventional type 1 and type 2. These were assembled into a composite probe (10) having substantially the same structure as that shown in FIG. The number of manufactured composite probes is 80 for both Type 1 and Type 2. The method of use is to fit the composite probe (10) to the composite probe support member (11), soak about 300 mm from the tip of the composite probe (10) into the molten metal, and after 10 to 15 seconds By pulling up, a molten steel sample was collected. After pulling up, the composite probe (10) was cut and broken, and a coagulated sample in the sampling device was taken out and used as a sample for analysis. Table 2 shows the results of testing the defective rate of a sample generated as a result of sampling using the composite probe (10) described above. The test was conducted by sampling molten steel in a pot containing molten steel before and after degassing, in which molten steel was degassed using an RH degassing facility. Here, the number of samplings of type 2 is 72, which is reduced because eight of the samplers were broken in the handling before the test. As is clear from the test results in Table 2, the product of the present invention has a remarkably low rejection rate as compared with the conventional product, indicating that the probability of obtaining a healthy sample is improved.
[0010]
[Table 1]
Figure 0003561374
[0011]
[Table 2]
Figure 0003561374
[0012]
【The invention's effect】
According to the molten metal sampling device of the present invention, as described above, since the molten metal sample is hard and fragile, and a sound molten metal sample can be reliably collected, the following effects are produced.
A. Since a sample having a different shape can be sampled soundly and reliably by a single sampling operation, the workability can be improved and the sample collection time can be shortened.
B) The frequency of damage to the sampler is extremely reduced, and the probability of obtaining a healthy sample is greatly improved. Therefore, the number of composite probes used is reduced, and the cost of the product can be reduced.
(C) In the mass production industry, particularly in the iron and steel industry, which produces hot metal and molten steel, one lot of defective components causes a large number of defective products, and a delay of several seconds in sampling time reduces production by several tens of tons per day. Therefore, improving the probability of sound sampling is a technique that contributes to the improvement of productivity and is of great industrial value.
[Brief description of the drawings]
FIG. 1 is a sectional view of a molten metal sampling device according to the present invention.
FIG. 2 is a sectional view taken along the line AA ′ of FIG. 1 according to the present invention.
FIG. 3 is an explanatory sectional view of a composite probe incorporating the present invention.
FIG. 4 is a cross-sectional view of a conventional type 1 sampler.
FIG. 5 is a cross-sectional view of a conventional type 2 sampler.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Large diameter cylinder part 2 Small diameter cylinder part 3 Thin part 4 Conduit part 5 Protective tube part 5a Protective cap 5b Protective shell bed 5c Protective heat resistant tube 5d Protective inner paper tube 6 Melt temperature detector 7 Paper cap 8 Lead wire 9 Relay Connector
10 Composite probe 11 Composite probe support member

Claims (2)

金属溶融体の融液から分析用試料を採取する耐熱材料容器であって、径大筒部と径小筒部からなり、かつ径小筒部の外側先端に薄肉部をもつ内部を真空にした溶融金属のサンプリング器において、径大筒部の内部に径小筒部の導管部が径大筒部の底部を突き抜けて貫通して、径大筒部と径小筒部とが連結し、この連結部が径小筒部の導管部と径大筒部との2重管構造となっていることを特徴とする溶融金属のサンプリング器。A heat-resistant material container for collecting a sample for analysis from a melt of a metal melt, which consists of a large-diameter cylindrical part and a small-diameter cylindrical part, and has a thin-walled part at the outer tip of the small-diameter cylindrical part. in sampler metal conduit portion of the small diameter cylinder portion to the inside of the large diameter tube portion penetrates penetrates the bottom of the large diameter tubular section, coupled and a large diameter cylindrical portion and a small diameter cylindrical portion, the connecting portion diameter A molten metal sampling device having a double pipe structure of a conduit portion of a small cylinder portion and a large diameter cylinder portion . 径小筒部が径大筒部の底部の円周側から貫通し、径小筒部の導管部が径大筒部の円筒中心に向けて湾曲している、請求項1に記載の溶融金属のサンプリング器。The sampling of the molten metal according to claim 1, wherein the small-diameter cylindrical portion penetrates from the circumferential side of the bottom of the large-diameter cylindrical portion, and the conduit portion of the small-diameter cylindrical portion is curved toward the center of the cylinder of the large-diameter cylindrical portion. vessel.
JP15919796A 1996-05-31 1996-05-31 Sampler for molten metal Expired - Lifetime JP3561374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15919796A JP3561374B2 (en) 1996-05-31 1996-05-31 Sampler for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15919796A JP3561374B2 (en) 1996-05-31 1996-05-31 Sampler for molten metal

Publications (2)

Publication Number Publication Date
JPH09318620A JPH09318620A (en) 1997-12-12
JP3561374B2 true JP3561374B2 (en) 2004-09-02

Family

ID=15688452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15919796A Expired - Lifetime JP3561374B2 (en) 1996-05-31 1996-05-31 Sampler for molten metal

Country Status (1)

Country Link
JP (1) JP3561374B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117101521B (en) * 2023-10-20 2024-02-13 东莞市欣辰新材料科技有限公司 Mixer for producing medical PVC material and mixing method thereof

Also Published As

Publication number Publication date
JPH09318620A (en) 1997-12-12

Similar Documents

Publication Publication Date Title
JP6539716B2 (en) Direct analysis sampler
JP5406332B2 (en) Sampler for sampling a molten metal having a melting point of 600 ° C. or more
JP5822814B2 (en) Equipment for measuring parameters or taking samples in molten steel or molten steel
KR101785735B1 (en) Method and apparatus for analyzing samples of metal melts
US7621191B2 (en) Immersion probe
JP3561374B2 (en) Sampler for molten metal
CN110595832B (en) Molten metal sampler for high and low oxygen applications
JP4965491B2 (en) Metal sampling sampler and sampling method using the same
US4170139A (en) Sampling device for analysis of molten metal for hydrogen
US4067242A (en) Molten metal sampling device and method
JPH11304669A (en) Molten metal and slag collecting device
JP3467514B2 (en) Molten metal sampling device, member for molten metal sampling device, and sampling method
JP2574720B2 (en) Mold for sampling molten metal
JP2721647B2 (en) Apparatus and method for sampling molten metal
JP2009121822A (en) Molten metal sampling probe
JP2000249680A (en) Slag degree-of-oxidation measurement probe
US4624149A (en) Sampling tube
GB2040750A (en) Molten metal sampler
RU2672646C1 (en) Steel melts process parameters measuring device with simultaneous sample selection
CN207779756U (en) A kind of steel-making molten steel elemental gas sampler
JP2727486B2 (en) Tuyere sampling device, sampling method and converter operation method
JPH0525345U (en) Silicon melt sampling tool
RU2122194C1 (en) Molten metal sampling device
JP2535341B2 (en) Sampling device and method for collecting gas analysis samples in molten steel
JPS6322527Y2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term