JP3561147B2 - Light emitting diode element array mounting structure - Google Patents

Light emitting diode element array mounting structure Download PDF

Info

Publication number
JP3561147B2
JP3561147B2 JP14850898A JP14850898A JP3561147B2 JP 3561147 B2 JP3561147 B2 JP 3561147B2 JP 14850898 A JP14850898 A JP 14850898A JP 14850898 A JP14850898 A JP 14850898A JP 3561147 B2 JP3561147 B2 JP 3561147B2
Authority
JP
Japan
Prior art keywords
emitting diode
light emitting
fine particles
conductive adhesive
conductive fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14850898A
Other languages
Japanese (ja)
Other versions
JPH11340281A (en
Inventor
俊次 村野
真二郎 岡
哲也 硴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP14850898A priority Critical patent/JP3561147B2/en
Publication of JPH11340281A publication Critical patent/JPH11340281A/en
Application granted granted Critical
Publication of JP3561147B2 publication Critical patent/JP3561147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Description

【0001】
【発明の属する技術分野】
本発明は各種電子機器に利用される電子部品の実装構造に関するものである。
【0002】
【従来の技術】
従来より、電子部品を基板上に実装するのに異方性導電接着剤が用いられている。かかる異方性導電接着剤は、電子部品と基板との電気的接続、並びに基板に対する電子部品の固定を一度に、且つ簡便に行うことができるものとして、特に接続箇所が極めて多数に及ぶ液晶表示デバイスや画像記録デバイス等の技術分野において注目されている。
【0003】
このような異方性導電接着剤を用いた従来の電子部品の実装は、例えば電子部品として半導体素子を用いる場合、図5に示す如く、複数の回路導体12を有する基板11の上面に、下面に複数の端子電極14を有した半導体素子13を、異方性導電接着剤15を介して取着した構造を有しており、異方性導電接着剤15中に添加されている導電性微粒子17によって前記回路導体12と前記端子電極14とを電気的に接続し、また異方性導電接着剤15中の樹脂材16によって基板11の上面と半導体素子13の下面とを接着するようになっている。
【0004】
尚、前記異方性導電接着剤15の樹脂材16としてはエポキシ樹脂やアクリル樹脂等の透光性樹脂が、また導電性微粒子17としては粒径3〜20μm程度のNi(ニッケル)粒子等が一般に使用されており、これらの導電性微粒子17を前記樹脂材16の前駆体に10〜90重量%の比率で添加し、これに有機溶媒等を添加・混合してペースト状になしたものが異方性導電接着剤15として用いられる。
【0005】
またこのような異方性導電接着剤15を用いた半導体素子13の実装は、まず基板11の上面の所定領域に、ペースト状の異方性導電接着剤15を従来周知のスクリーン印刷法等によって印刷・塗布し、次にペースト状異方性導電接着剤15を塗布した基板11の上面の所定領域に半導体素子13を載置させ、これを基板11に対して所定の押圧力で押圧しながら前記異方性導電接着剤15に熱を印加し、異方性導電接着剤15中の樹脂材16を加熱・硬化させることによって行われる。
【0006】
【発明が解決しようとする課題】
しかしながら、この従来の実装構造においては、半導体素子13を基板11上に実装する際、基板11に対する半導体素子13の押圧等によって異方性導電接着剤15が大きく流動し、その一部が横にはみ出してしまうことがある。その場合、異方性導電接着剤15中に添加されている導電性微粒子17の多くも共に移動するため、回路導体12と端子電極14との間に介在される導電性微粒子17の個数が極端に少なくなり、両者の接続信頼性が低下する欠点を有していた。
【0007】
また前記半導体素子13として発光ダイオード素子アレイを適用し発光装置を構成するような場合、発光ダイオード素子アレイ13の実装工程において異方性導電接着剤15の一部が前述の如く流動して発光部である発光ダイオード素子13aの近傍まで及ぶことがある。この場合、発光ダイオード素子13の発する光の一部が異方性導電接着剤15中の不透明な導電性微粒子17に当たって四方に拡散したり、或いは光の一部が導電性微粒子17に吸収される等して光の強度を大幅に低下させてしまう。従って、このような発光装置を例えばLEDプリンタヘッド等の画像記録デバイスに使用した場合、感光体に鮮明な潜像を形成するのに十分な発光強度が得られず、画像記録を良好に行うことができないという欠点を有していた。
【0008】
【課題を解決するための手段】
本発明は上記欠点に鑑み案出されたものであり、本発明の発光ダイオード素子アレイの実装構造は、複数の回路導体を有する透光性の基板の上面に、下面に複数の発光ダイオード素子と複数の端子電極を有する発光ダイオード素子アレイを、透光性の樹脂材に多数の導電性微粒子を含有する異方性導電接着剤を介して、前記端子電極が対向する前記回路導体の表面に前記導電性微粒子の平均粒径よりも浅い深さの窪みを設けるとともに、該窪み内で前記異方性導電接着剤中の前記導電性微粒子を保持し、該導電性微粒子でもって前記回路導体と前記端子電極とを電気的に接続するようになし、かつ前記発光ダイオード素子と前記基板との間を前記異方性導電接着剤で充填しないようにして取着したことを特徴とするものである。
【0009】
【発明の実施の形態】
以下、本発明を添付図面に基づいて詳細に説明する。図1は本発明の発光ダイオード素子アレイ(以下、LEDアレイと略記する)の実装構造により発光装置を構成する場合の一形態を示す断面図、図2は図1のX−X線断面図であり、1は基板、2は回路導体、2aは回路導体2の表面の窪み、3はLEDアレイ、4は端子電極、6は異方性導電接着剤、8は異方性導電接着剤中に添加されている導電性微粒子である。
【0010】
前記基板1は、例えばホウ珪酸ガラスや結晶質ガラス,石英等の透光性を有した電気絶縁性材料から成り、その上面で複数の回路導体2やLEDアレイ3を支持するとともに、LEDアレイ3の発する光を下方に透過させる作用を為す。
【0011】
また前記基板1の上面の回路導体2は、Au(金)やAg(銀),Al(アルミニウム),Ni(ニッケル)等の金属から成り、その一部表面、具体的には、LEDアレイ3の各端子電極4が対面し接続される部位には、断面V字状の窪み2aが多数、設けられる。
【0012】
前記回路導体2はLEDアレイ3の発光ダイオード素子3aに後述する異方性導電接着剤6等を介して所定の電力を供給する作用を為し、また回路導体2の表面の窪み2aは異方性導電接着剤6中の導電性微粒子8を窪み2a内に良好に保持し、導電性微粒子8がLEDアレイ3の実装時に異方性導電接着剤6の流動に伴って回路導体2の存在しない箇所に移動しようとするのを有効に防止する作用を為す。これら窪み2aの深さは、導電性微粒子8が窪み2a内に完全に埋没してしまわないように、導電性微粒子8の平均粒径wよりも浅く設定されており、例えば異方性導電接着剤6中に添加されている導電性微粒子8の平均粒径wが10μmの場合、窪み2aの深さは2〜9.5μmの範囲内に設定される。
【0013】
尚、前記回路導体2は、前述の金属材料をスパッタリング法やフォトリソグラフィー技術,エッチング技術等の薄膜形成技術によって所定パターンに微細加工したり、或いは所定の導電ペーストをスクリーン印刷法等の厚膜形成技術によって所定パターンに印刷・塗布し、これを高温で焼き付けたりすることによって基板1の上面に被着・形成され、回路導体2の表面の窪み2aは型材の押しつけやラッピングフィルム等を使用したラビング処理等によって所定の深さに形成される。
【0014】
そしてこのような回路導体2が被着されている基板1の上面には、LEDアレイ3が異方性導電接着剤6を介して取着・実装される。
【0015】
前記LEDアレイ3は、その下面に、一列状に並んだ複数の発光ダイオード素子3aと、これら発光ダイオード素子3aに電力を供給するための複数の端子電極4とを有し、これら端子電極4と該電極4に対応する回路導体2との間に異方性導電接着剤6中の導電性微粒子8を介在・挟持させておくことにより基板1に電気的に接続される。
【0016】
前記LEDアレイ3は、その上面に設けられるグランド端子(図示せず)と前記端子電極4との間に所定の電力を印加することによって発光ダイオード素子3aを発光させる作用を為し、かかるLEDアレイ3としてはGaAsP系やGaAlAs系の発光ダイオードが好適に使用される。
【0017】
尚、前記LEDアレイ3は、例えばGaAsP系発光ダイオードの場合、まずGaAsから成る半導体ウエハーを炉中にて高温に加熱するとともにAsHとPHとGaを適量に含むガスを接触させてウエハーの表面にn型半導体のGaAsP(ガリウム−砒素−リン)の単結晶を成長させ、次にGaAsP単結晶表面にSi(窒化シリコン)の窓付絶縁膜5を被着させ、その後、前記窓部にZn(亜鉛)のガスをさらし、GaAsP単結晶の一部にZnを拡散させてp型半導体層を形成することによってpn接合をもたせ、このような半導体ウエハーを複数の発光ダイオード素子、例えば128個の発光ダイオード素子毎にダイシングすることによって製作される。
【0018】
一方、前記LEDアレイ3と基板1とを電気的・機械的に接続する異方性導電接着剤6は、エポキシ樹脂やアクリル樹脂等の透光性の樹脂材7の前駆体中に、Ni(ニッケル)やAg(銀),Au(金)等の金属から成る導電性微粒子8(径3〜20μm)を例えば10〜90重量%の比率で含有させ、これに有機溶媒等を添加・混合してペースト状になしたもの等が用いられ、該異方性導電接着剤6はその中に添加した導電性微粒子8によって回路導体2と端子電極4とを電気的に接続し、またエポキシ樹脂等の樹脂材7によって基板1の上面と半導体素子3の下面とを接着する作用を為す。
【0019】
ここで前記導電性微粒子8は、回路導体2の表面に形成した複数の窪み2a内に良好に保持された状態で端子電極4と接触しており、前述した如く、LEDアレイ3の実装時等に異方性導電接着剤6中の導電性微粒子8が異方性導電接着剤6の流動に伴って回路導体2の存在しない領域に移動することは少なくなることから、回路導体2と端子電極4との間により多くの導電性微粒子を介在させておくことができ、これによって両者の接続信頼性を向上させることが可能となる。
【0020】
尚、前記LEDアレイ3の基板1への実装は、まずペースト状になした異方性導電接着剤6を準備し、これを従来周知のスクリーン印刷法等によって基板1の上面の所定領域に印刷・塗布し、次に異方性導電接着剤6を塗布した基板1の上面の所定領域にLEDアレイ3を載置し、これを基板1に対して所定の押圧力で押圧しながら異方性導電接着剤6に熱を印加し、異方性導電接着剤6中の樹脂材7を加熱・硬化させることによって行われ、これによってLEDアレイ3の各端子電極4と基板1の各回路導体2とが一度に電気的に接続され、また同時にLEDアレイ3が基板1に対して接着・固定されることとなる。
【0021】
このとき、異方性導電接着剤6の一部がLEDアレイ3の押圧等によって流動し発光ダイオード素子3aの近傍まで及んだとしても、導電性微粒子8の多くは前述した如く回路導体2の窪み2a内で良好に保持されるので、発光ダイオード素子3aの近傍まで達する導電性微粒子8の数は少なく、LEDアレイ3の発する光が導電性微粒子8に当たって四方に拡散したり、吸収されたりすることは殆どなくなる。従って、LEDアレイ3の発する光を高い強度に維持しつつ基板1の下面側まで導くことができ、このような発光装置を例えばLEDプリンタヘッド等の画像記録デバイスに使用する場合、LEDプリンタヘッドからの光の照射によって感光体に鮮明で良好な潜像を形成することが可能となる。
【0022】
かくして上述の発光装置は、外部からの電力を基板1上の回路導体2、LEDアレイ3の端子電極4等を介して発光ダイオード素子3aに供給し、発光ダイオード3aを所定波長で発光させるとともに、該発光した光を基板1の厚み方向に透過させて下方に導出し、これを所定の目的物に照射させることによって発光装置として機能する。
【0023】
尚、本発明は上述の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。
【0024】
例えば上述の形態においては本発明の実装構造をLEDアレイの実装に適用した形態を例に説明したが、LEDアレイ以外の半導体素子やチップコンデンサ,チップ抵抗器などの他の電子部品の実装にも適用可能であることは言うまでもない。
【0025】
また上述の形態においては回路導体2の表面に小さな窪み2aを多数設け、異方性導電接着剤6中の導電性微粒子8を各窪み2a内に個々に配置するようになしたが、これに代えて図3に示す如く、各回路導体2の表面に大きな窪み2bを1個ずつ設け、この窪み2b内に複数の導電性微粒子8を一度に配置させるようにしたり、或いは、基板1と電子部品3’との間に導電性微粒子8を介在させたくない箇所がある場合、例えば電子部品3’として用いるLEDアレイ下面の発光部以外のところにZnの拡散層3bが不所望に形成されているような場合に、拡散層3bの直下領域に導電性微粒子8の最大粒径よりも深い窪み2cを設け、この窪み2c内に導電性微粒子8を収容するようにすれば導電性微粒子8とLEDアレイ3’の拡散層3bとを非接触に保ち、両者が短絡するのを有効に防止することができる。
【0026】
更に上述の形態においては基板上の回路導体2を一層の導体で形成するようにしたが、これに代えて図4に示す如く、回路導体2を2層の導体2’,2”の積層構造になしても良い。この場合、上層の導体2”はLEDアレイ3の端子電極が対向する領域にのみカップ状をなすように形成され、この部分で異方性導電接着剤6中の導電性微粒子8を保持するための窪み2aを構成する。
【0027】
【発明の効果】
本発明の発光ダイオード素子アレイの実装構造によれば、異方性導電接着剤中の導電性微粒子は、回路導体の表面に形成した窪み内に良好に保持された状態で発光ダイオード素子アレイの端子電極と接触することから、発光ダイオード素子アレイの実装時等に導電性微粒子が異方性導電接着剤の流動に伴って回路導体の存在しない箇所に移動することは少なくなり、回路導体と端子電極との間により多くの導電性微粒子を介在させておくことができるようになる。これによって発光ダイオード素子アレイと基板との接続信頼性を向上させることが可能となる。
【0028】
また本発明のLEDアレイの実装構造によれば、発光ダイオード素子と基板との間は異方性導電接着剤で充填しないようにしてLEDアレイを取着しており、その実装時に異方性導電接着剤の一部がLEDアレイの押圧等によって流動し発光ダイオード素子の近傍まで及んだとしても、樹脂材は透光性であり、導電性微粒子の多くは前述した如く回路導体の窪み内で良好に保持されるので、発光ダイオード素子の近傍まで達する導電性微粒子は少なく、LEDアレイの発する光が導電性微粒子に当たって四方に拡散したり、吸収されたりすることは殆どなくなる。従って、LEDアレイの発する光を高い強度に維持しつつ所定の目的物に照射させることができるようになる。
【図面の簡単な説明】
【図1】本発明の発光ダイオード素子アレイの実装構造により発光装置を構成する場合の一形態を示す断面図である。
【図2】図1のX−X線断面図である。
【図3】本発明の発光ダイオード素子アレイの実装構造により発光装置を構成する場合の他の形態を示す断面図である。
【図4】本発明の発光ダイオード素子アレイの実装構造により発光装置を構成する場合の他の形態を示す断面図である。
【図5】従来の電子部品の実装構造を示す断面図である。
【符号の説明】
1・・・・・基板
2・・・・・回路導体
2a・・・・窪み
3・・・・・LEDアレイ(発光ダイオード素子アレイ
3a・・・・発光ダイオード素子
4・・・・・端子電極
6・・・・・異方性導電接着剤
7・・・・・樹脂材
8・・・・・導電性微粒子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a mounting structure for electronic components used in various electronic devices.
[0002]
[Prior art]
Conventionally, anisotropic conductive adhesives have been used to mount electronic components on a substrate. Such an anisotropic conductive adhesive is capable of performing electrical connection between an electronic component and a substrate and fixing the electronic component to the substrate at one time and easily, and particularly a liquid crystal display having an extremely large number of connection points. Attention has been paid to technical fields such as devices and image recording devices.
[0003]
In mounting a conventional electronic component using such an anisotropic conductive adhesive, for example, when a semiconductor element is used as the electronic component, a lower surface is provided on an upper surface of a substrate 11 having a plurality of circuit conductors 12 as shown in FIG. A semiconductor element 13 having a plurality of terminal electrodes 14 attached thereto via an anisotropic conductive adhesive 15, and conductive fine particles added to the anisotropic conductive adhesive 15. The circuit conductor 12 and the terminal electrode 14 are electrically connected by 17, and the upper surface of the substrate 11 and the lower surface of the semiconductor element 13 are bonded by the resin material 16 in the anisotropic conductive adhesive 15. ing.
[0004]
The resin material 16 of the anisotropic conductive adhesive 15 is a translucent resin such as an epoxy resin or an acrylic resin, and the conductive fine particles 17 are Ni (nickel) particles having a particle size of about 3 to 20 μm. Generally used, these conductive fine particles 17 are added to the precursor of the resin material 16 at a ratio of 10 to 90% by weight, and an organic solvent or the like is added and mixed to form a paste. Used as the anisotropic conductive adhesive 15.
[0005]
In mounting the semiconductor element 13 using such an anisotropic conductive adhesive 15, first, a paste-like anisotropic conductive adhesive 15 is applied to a predetermined region on the upper surface of the substrate 11 by a conventionally known screen printing method or the like. After printing and coating, the semiconductor element 13 is placed on a predetermined area of the upper surface of the substrate 11 on which the paste-like anisotropic conductive adhesive 15 is applied, and the semiconductor element 13 is pressed against the substrate 11 with a predetermined pressing force. The heat is applied to the anisotropic conductive adhesive 15 while heating and curing the resin material 16 in the anisotropic conductive adhesive 15.
[0006]
[Problems to be solved by the invention]
However, in this conventional mounting structure, when the semiconductor element 13 is mounted on the substrate 11, the anisotropic conductive adhesive 15 flows greatly due to the pressing of the semiconductor element 13 against the substrate 11, and a part of the adhesive 15 moves sideways. It may protrude. In this case, since many of the conductive fine particles 17 added to the anisotropic conductive adhesive 15 move together, the number of the conductive fine particles 17 interposed between the circuit conductor 12 and the terminal electrode 14 becomes extremely large. And the reliability of connection between the two is reduced.
[0007]
When a light emitting device is configured by applying a light emitting diode element array as the semiconductor element 13 , a part of the anisotropic conductive adhesive 15 flows as described above in the mounting process of the light emitting diode element array 13, and In some cases, the vicinity of the light emitting diode element 13a. In this case, or diffuse in all directions a part of the light emitted from the light emitting diode element 13 a is against the opaque conductive fine particles 17 in the anisotropic conductive adhesive 15, or a part of the light is absorbed by the conductive fine particles 17 For example, the light intensity is greatly reduced. Therefore, when such a light emitting device is used for an image recording device such as an LED printer head, it is not possible to obtain a sufficient light emission intensity to form a clear latent image on the photoreceptor, and to perform good image recording. Had the drawback that it could not be done.
[0008]
[Means for Solving the Problems]
The present invention has been devised in view of the above-described drawbacks, and the mounting structure of the light-emitting diode element array of the present invention includes a plurality of light-emitting diode elements on a lower surface on a light- transmitting substrate having a plurality of circuit conductors. the light emitting diode array having a plurality of terminal electrodes, via an anisotropic conductive adhesive containing a large number of conductive fine particles to the transparent resin material, the surface of the circuit conductor said terminal electrodes are opposed A recess having a depth shallower than the average particle diameter of the conductive fine particles is provided, and the conductive fine particles in the anisotropic conductive adhesive are held in the concave, and the conductive fine particles are used to form the circuit conductor. The terminal electrode is electrically connected , and the light emitting diode element and the substrate are attached so as not to be filled with the anisotropic conductive adhesive. is there.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing an embodiment in which a light-emitting device is configured by a mounting structure of a light- emitting diode element array (hereinafter, abbreviated as an LED array) of the present invention, and FIG. 2 is a cross-sectional view taken along line XX of FIG. 1, 1 is a substrate, 2 is a circuit conductor, 2a is a depression on the surface of the circuit conductor 2 , 3 is an LED array, 4 is a terminal electrode, 6 is an anisotropic conductive adhesive, 8 is an anisotropic conductive adhesive 6. The conductive fine particles added therein.
[0010]
The substrate 1 is made of a light-transmitting electrically insulating material such as borosilicate glass, crystalline glass, or quartz, and supports the plurality of circuit conductors 2 and the LED array 3 on the upper surface thereof. Has the function of transmitting the light emitted from the lower side.
[0011]
The circuit conductor 2 on the upper surface of the substrate 1 is made of a metal such as Au (gold), Ag (silver), Al (aluminum), or Ni (nickel), and has a partial surface, specifically, an LED array 3. A large number of recesses 2a having a V-shaped cross section are provided at portions where the respective terminal electrodes 4 face each other and are connected.
[0012]
The circuit conductor 2 acts to supply a predetermined power to the light emitting diode elements 3a of the LED array 3 via an anisotropic conductive adhesive 6 described later, and the depression 2a on the surface of the circuit conductor 2 is anisotropic. The conductive fine particles 8 in the conductive conductive adhesive 6 are satisfactorily held in the recesses 2 a, and the conductive fine particles 8 are not present due to the flow of the anisotropic conductive adhesive 6 when the LED array 3 is mounted. An effect of effectively preventing an attempt to move to a location is provided. The depth of the depressions 2a is set to be smaller than the average particle diameter w of the conductive fine particles 8 so that the conductive fine particles 8 are not completely buried in the depressions 2a. When the average particle diameter w of the conductive fine particles 8 added to the agent 6 is 10 μm, the depth of the depression 2 a is set in the range of 2 to 9.5 μm.
[0013]
The circuit conductor 2 is formed by finely processing the above-described metal material into a predetermined pattern by a thin film forming technique such as a sputtering method, a photolithography technique, or an etching technique, or by forming a predetermined conductive paste into a thick film by a screen printing method or the like. and printing and applied to a predetermined pattern by a technique, which is deposited, formed on the upper surface of the substrate 1 by the often a useful baking at a high temperature, the depression 2a of the surface of the circuit conductor 2 using a pressing and wrapping film or the like of the mold material It is formed to a predetermined depth by a rubbing process or the like.
[0014]
The LED array 3 is attached and mounted via an anisotropic conductive adhesive 6 on the upper surface of the substrate 1 on which the circuit conductor 2 is attached.
[0015]
The LED array 3 has, on its lower surface, a plurality of light emitting diode elements 3a arranged in a line and a plurality of terminal electrodes 4 for supplying power to the light emitting diode elements 3a. The conductive particles 8 in the anisotropic conductive adhesive 6 are interposed and sandwiched between the electrode 4 and the circuit conductor 2 corresponding to the electrode 4 to electrically connect to the substrate 1.
[0016]
The LED array 3 acts to emit light from the light emitting diode elements 3a by applying a predetermined power between a ground terminal (not shown) provided on the upper surface thereof and the terminal electrode 4. As 3, a GaAsP-based or GaAlAs-based light emitting diode is preferably used.
[0017]
In the case of a GaAsP-based light-emitting diode, for example, the LED array 3 first heats a semiconductor wafer made of GaAs to a high temperature in a furnace and contacts gas containing AsH 3 , PH 3 and Ga in an appropriate amount. An n-type semiconductor GaAsP (gallium-arsenic-phosphorus) single crystal is grown on the surface, and then a window insulating film 5 of Si 3 N 4 (silicon nitride) is deposited on the GaAsP single crystal surface. A window is exposed to a gas of Zn (zinc), and Zn is diffused into a part of the GaAsP single crystal to form a p-type semiconductor layer, thereby forming a p-type semiconductor layer, thereby forming a pn junction. For example, it is manufactured by dicing every 128 light emitting diode elements.
[0018]
On the other hand, the anisotropic conductive adhesive 6 that electrically and mechanically connects the LED array 3 and the substrate 1 includes Ni (Ni) in a precursor of a translucent resin material 7 such as an epoxy resin or an acrylic resin. For example, conductive fine particles 8 (diameter: 3 to 20 μm) made of a metal such as nickel (Ni), Ag (silver), or Au (gold) are contained at a ratio of 10 to 90% by weight, and an organic solvent or the like is added and mixed. The anisotropic conductive adhesive 6 electrically connects the circuit conductor 2 and the terminal electrode 4 with the conductive fine particles 8 added therein, and the epoxy resin or the like. The resin material 7 serves to bond the upper surface of the substrate 1 to the lower surface of the semiconductor element 3.
[0019]
Here, the conductive fine particles 8 are in good contact with the terminal electrodes 4 while being held in the plurality of depressions 2 a formed on the surface of the circuit conductor 2. Since the conductive fine particles 8 in the anisotropic conductive adhesive 6 are less likely to move to the region where the circuit conductor 2 does not exist due to the flow of the anisotropic conductive adhesive 6, the circuit conductor 2 and the terminal electrode 4, more conductive fine particles 8 can be interposed therebetween, thereby improving the connection reliability between the two.
[0020]
In mounting the LED array 3 on the substrate 1, first, an anisotropic conductive adhesive 6 in the form of a paste is prepared, and this is printed on a predetermined region on the upper surface of the substrate 1 by a conventionally known screen printing method or the like. The LED array 3 is placed on a predetermined area of the upper surface of the substrate 1 on which the coating and then the anisotropic conductive adhesive 6 is applied, and the LED array 3 is anisotropically pressed against the substrate 1 with a predetermined pressing force. This is performed by applying heat to the conductive adhesive 6 to heat and cure the resin material 7 in the anisotropic conductive adhesive 6, whereby each terminal electrode 4 of the LED array 3 and each circuit conductor 2 of the substrate 1 are formed. Are electrically connected at one time, and at the same time, the LED array 3 is bonded and fixed to the substrate 1.
[0021]
At this time, even if a part of the anisotropic conductive adhesive 6 flows due to the pressing of the LED array 3 or the like and reaches the vicinity of the light emitting diode element 3a, most of the conductive fine particles 8 are not covered with the circuit conductor 2 as described above. Since the conductive fine particles 8 are satisfactorily held in the depressions 2a, the number of the conductive fine particles 8 reaching the vicinity of the light emitting diode element 3a is small, and the light emitted from the LED array 3 hits the conductive fine particles 8 and is diffused or absorbed in all directions. Things are almost gone. Therefore, the light emitted from the LED array 3 can be guided to the lower surface side of the substrate 1 while maintaining a high intensity. When such a light emitting device is used for an image recording device such as an LED printer head, for example, Irradiating a clear and good latent image on the photoreceptor.
[0022]
Thus, the above-described light-emitting device supplies external power to the light-emitting diode element 3a via the circuit conductor 2 on the substrate 1, the terminal electrode 4 of the LED array 3, and the like, causing the light-emitting diode 3a to emit light at a predetermined wavelength. The emitted light is transmitted through the thickness direction of the substrate 1 and led out downward, and is irradiated on a predetermined target to function as a light emitting device.
[0023]
Note that the present invention is not limited to the above-described embodiment, and various changes, improvements, and the like can be made without departing from the gist of the present invention.
[0024]
For example, in the above embodiment, the embodiment in which the mounting structure of the present invention is applied to mounting of an LED array has been described as an example. It goes without saying that it is applicable.
[0025]
In the above-described embodiment, a large number of small depressions 2a are provided on the surface of the circuit conductor 2, and the conductive fine particles 8 in the anisotropic conductive adhesive 6 are individually arranged in each depression 2a. Instead, as shown in FIG. 3, one large dent 2b is provided on the surface of each circuit conductor 2 and a plurality of conductive fine particles 8 are arranged in the dent 2b at one time. If there is a place where the conductive fine particles 8 are not desired to be interposed between the component 3 ′ and the component 3 ′, for example, the Zn diffusion layer 3b is undesirably formed in a portion other than the light emitting portion on the lower surface of the LED array used as the electronic component 3 ′. In such a case, a recess 2c deeper than the maximum particle size of the conductive fine particles 8 is provided in a region immediately below the diffusion layer 3b, and the conductive fine particles 8 are accommodated in the recess 2c. Diffusion layer 3b of LED array 3 ' Was kept in a non-contact, both can be effectively prevented from being short-circuited.
[0026]
Further, in the above embodiment, the circuit conductor 2 on the substrate 1 is formed of a single layer conductor. Alternatively, as shown in FIG. 4, the circuit conductor 2 is formed by laminating two layers of conductors 2 'and 2 ". In this case, the upper conductor 2 ″ is formed in a cup shape only in a region where the terminal electrodes of the LED array 3 face each other, and the conductive material in the anisotropic conductive adhesive 6 is formed at this portion. The recesses 2 a for holding the conductive fine particles 8 are formed.
[0027]
【The invention's effect】
According to the mounting structure of a light emitting diode array of the present invention, the conductive fine particles in the anisotropic conductive adhesive, the light emitting diode element array while being better retained in the recess formed on the surface of the circuit conductor terminal Since the conductive fine particles are in contact with the electrodes, the conductive fine particles are less likely to move to a portion where no circuit conductor exists due to the flow of the anisotropic conductive adhesive during mounting of the light emitting diode element array , etc. And more conductive fine particles can be interposed therebetween. This makes it possible to improve the connection reliability between the light emitting diode element array and the substrate.
[0028]
Further, according to the mounting structure of the LED array of the present invention, the LED array is attached so as not to be filled with the anisotropic conductive adhesive between the light emitting diode element and the substrate. some of the adhesive to flow by the pressure or the like to the LED array as it extends to the vicinity of the light emitting diode element, a resin material is translucent, a lot of the conductive fine particles recess of the circuit conductors, as described above Therefore, the amount of the conductive fine particles reaching the vicinity of the light-emitting diode element is small, and the light emitted from the LED array hardly hits the conductive fine particles and is not diffused or absorbed in all directions. Therefore, it is possible to irradiate a predetermined target object with the light emitted from the LED array maintained at a high intensity.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating one embodiment in which a light-emitting device is configured by a mounting structure of a light- emitting diode element array according to the present invention.
FIG. 2 is a sectional view taken along line XX of FIG.
FIG. 3 is a cross-sectional view illustrating another embodiment in which a light emitting device is configured by a mounting structure of a light emitting diode element array according to the present invention.
FIG. 4 is a cross-sectional view showing another embodiment in which a light emitting device is configured by a mounting structure of a light emitting diode element array according to the present invention.
FIG. 5 is a cross-sectional view illustrating a conventional electronic component mounting structure.
[Explanation of symbols]
1 ... board 2 ... circuit conductor 2a ... recess 3 ... LED array ( light emitting diode element array )
3a: light emitting diode element 4: terminal electrode 6: anisotropic conductive adhesive 7: resin material 8: conductive fine particles

Claims (1)

複数の回路導体を有する透光性の基板の上面に、下面に複数の発光ダイオード素子と複数の端子電極を有する発光ダイオード素子アレイを、透光性の樹脂材に多数の導電性微粒子を含有する異方性導電接着剤を介して、前記端子電極が対向する前記回路導体の表面に前記導電性微粒子の平均粒径よりも浅い深さの窪みを設けるとともに、該窪み内で前記異方性導電接着剤中の前記導電性微粒子を保持し、該導電性微粒子でもって前記回路導体と前記端子電極とを電気的に接続するようになし、かつ前記発光ダイオード素子と前記基板との間を前記異方性導電接着剤で充填しないようにして取着したことを特徴とする発光ダイオード素子アレイの実装構造。The upper surface of the light transmitting substrate having a plurality of circuit conductors, the light emitting diode array having a plurality of light emitting diode elements and a plurality of terminal electrodes on the lower surface, containing a large number of conductive fine particles to the transparent resin material to via the anisotropic conductive adhesive, the with the terminal electrode provided recesses having an average particle size of shallower depth than the conductive fine particles on the surface of the circuit conductor facing said anisotropic in the depression holding the conductive fine particles in the conductive adhesive, with at conductive fine particles without so as to electrically connect the terminal electrode and the circuit conductor, and the between the substrate and the light emitting diode element A mounting structure of a light emitting diode element array , wherein the light emitting diode element array is mounted without being filled with an anisotropic conductive adhesive .
JP14850898A 1998-05-29 1998-05-29 Light emitting diode element array mounting structure Expired - Fee Related JP3561147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14850898A JP3561147B2 (en) 1998-05-29 1998-05-29 Light emitting diode element array mounting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14850898A JP3561147B2 (en) 1998-05-29 1998-05-29 Light emitting diode element array mounting structure

Publications (2)

Publication Number Publication Date
JPH11340281A JPH11340281A (en) 1999-12-10
JP3561147B2 true JP3561147B2 (en) 2004-09-02

Family

ID=15454341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14850898A Expired - Fee Related JP3561147B2 (en) 1998-05-29 1998-05-29 Light emitting diode element array mounting structure

Country Status (1)

Country Link
JP (1) JP3561147B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2265101B1 (en) 1999-09-02 2012-08-29 Ibiden Co., Ltd. Printed circuit board and method of manufacturing printed circuit board
CN101232776B (en) 1999-09-02 2011-04-20 揖斐电株式会社 Printed circuit board
JP4863546B2 (en) * 2000-07-21 2012-01-25 イビデン株式会社 Capacitor-embedded printed wiring board and manufacturing method of capacitor-embedded printed wiring board
JP3993475B2 (en) * 2002-06-20 2007-10-17 ローム株式会社 LED chip mounting structure and image reading apparatus having the same
JP5787617B2 (en) * 2011-05-24 2015-09-30 京セラディスプレイ株式会社 Flexible wiring board and display device
JP2013243344A (en) * 2012-04-23 2013-12-05 Nichia Chem Ind Ltd Light-emitting device
JP5986801B2 (en) * 2012-05-23 2016-09-06 日本発條株式会社 Wiring member for disk device suspension and disk device suspension
JP2015154066A (en) * 2014-02-19 2015-08-24 パイオニア株式会社 Electronic equipment and resin film
JP6796400B2 (en) 2016-05-31 2020-12-09 デクセリアルズ株式会社 Light emitting device and manufacturing method of light emitting device
WO2021200669A1 (en) * 2020-03-31 2021-10-07 京セラ株式会社 Thermal head and thermal printer

Also Published As

Publication number Publication date
JPH11340281A (en) 1999-12-10

Similar Documents

Publication Publication Date Title
CN102683538B (en) LED package and manufacture method
US7589351B2 (en) Light-emitting device
JP4818215B2 (en) Light emitting device
KR100854328B1 (en) LED package and method for making the same
KR101681343B1 (en) Method for producing lamps
CN104396035B (en) The phosphor separated by transparent partition object from LED
US20110210370A1 (en) Light emitting device
JP2008502159A (en) Power light emitting die package having a reflective lens and method of manufacturing
TW584972B (en) Optical device module and method of fabrication
JP3561147B2 (en) Light emitting diode element array mounting structure
KR20070075313A (en) Method of manufacturing light emitting apparatus
KR20110000730A (en) Surface-mounted led module and method for producing a surface-mounted led module
US8975102B2 (en) Method for producing an optoelectronic device with wireless contacting
JP2001358371A (en) Optical semiconductor device
TWI712823B (en) Self-alignment of optical structures to random array of printed micro-leds
JP2002064112A (en) Manufacturing method of photoelectron component
US10727373B2 (en) Light emitting diode, method for manufacturing light emitting diode, light emitting diode display device, and method for manufacturing light emitting diode display device
JP2000135814A (en) Optical printer head
JP2004288937A (en) Package for accommodating light emitting element and light emitting device
JP2002246652A (en) Light source device
JP4345591B2 (en) Light emitting device
JP2006351666A (en) Light emitting device mounting board and its manufacturing method, light emitting device module, lighting device, display device, and traffic signal
JP2023010799A (en) Light-emitting module and manufacturing method therefor
JP2006100687A (en) Packaging structure of light-emitting diode
KR100643475B1 (en) Optical module and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040527

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees