JP3560754B2 - Heating element structure - Google Patents

Heating element structure Download PDF

Info

Publication number
JP3560754B2
JP3560754B2 JP01184697A JP1184697A JP3560754B2 JP 3560754 B2 JP3560754 B2 JP 3560754B2 JP 01184697 A JP01184697 A JP 01184697A JP 1184697 A JP1184697 A JP 1184697A JP 3560754 B2 JP3560754 B2 JP 3560754B2
Authority
JP
Japan
Prior art keywords
heating element
electrode
phase
element structure
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01184697A
Other languages
Japanese (ja)
Other versions
JPH10199660A (en
Inventor
誠一 前田
Original Assignee
株式会社イゼナ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イゼナ filed Critical 株式会社イゼナ
Priority to JP01184697A priority Critical patent/JP3560754B2/en
Publication of JPH10199660A publication Critical patent/JPH10199660A/en
Application granted granted Critical
Publication of JP3560754B2 publication Critical patent/JP3560754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Resistance Heating (AREA)
  • Central Heating Systems (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、発熱体において電磁波の放射を極力低減した発熱体構造に関するものであり、特に、冬季、及び厳寒地における床暖房に好適な発熱体構造に関するものである。
【0002】
【従来の技術】
従来から商業電源、つまり、一般家庭、一般的なオフィス等に提供されているAC100Vの電源の電流の二つの電極の極性の変化(例えば周波数50Hz又は60Hzで変化)については通常、使用機器に影響がないことから無視して使用されている。なおここで極性とは電極におけるプラスの荷電あるいはマイナスの荷電を意味する。従って電極の極性の変化とは特定の電極において電極がプラスからマイナス、或いはマイナスからプラスに変化することを意味する。
【0003】
つの電極の極性が特定の周波数で相互にプラス極とマイナス極に位相を異ならせて変化する交流電源を用いる面状発熱体構造、及び、線状発熱体構造の施工も、単に、以下実施例も含めてこれら逆位相で極性が変化する二つの電極の間にカーボン又はニクロム線等から成る発熱体を配設し、リード線或いはコード類等の電線をこれらの電極の間に介装し、電の極性の変化については無視されたまま電源と直接接続するか、プラグをコンセントに差し込んで使用している。
【0004】
【発明が解決しようとする課題】
しかしながら、近年、電磁波の測定機器の普及と、家電製品、OA機器等の電気を使用する機器、装置等の氾濫により、これ等の電気機器や配線から放射される電磁波に対する関心が向上し、電磁波が身体に与える悪影響が懸念されている。
【0005】
特に、床暖房は長時間使用することと、床面の上には絶えず身体を密着させていることから、床暖房の発熱体から放射される電磁波は極力抑えることが望ましいことである。
【0006】
従って、本発明の目的は、交流電源を必要とする発熱体を備えた装置において、発熱体からも、この発熱体と電源とを電気的に接続する電線からも電磁波放射を極力減少させた発熱体構造を提供するもので、特に、発熱体を用いた床暖房構造おいては、電磁波の放射が極力抑えられているため快適で、人体に安全な居住空間を創作することが可能な無電磁波の発熱体構造を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明は前述の課題に鑑みて構成されたものであり、第1の構成は交流電源に接続することにより二つの電極の極性が逆位相で周期的に変化する発熱体構造であって、これら二つの電極の一方の電極(以下実施例も含めて「位相A電極」とする)とこの位相A電極と逆の位相で極性が変化する他方の電極(以下実施例も含めて「位相B電極」とする)との間に面状発熱体を介設して一つの発熱体構造Cを構成し、かつこの発熱体構造Cと同じ構造の発熱体構造Dを両発熱体構造C及びDの投影面がほぼ一致するよう重畳して配置し、かつ発熱体構造Cの位相A電極に近接する発熱体構造Dの電極が位相B電極となり、かつ発熱体構造Cの位相A電極に近接する発熱体構造Dの電極が位相B電極となるようこれら発熱体構造C及びDの各電極を交流電源に対して直接或いは他の発熱体構造の電極を介して間接に接続することにより、重畳配置された各発熱体構造C及びDにおいて、各発熱体構造C及びDの各電極間の面状発熱体を流れる電流が常時逆位相となるよう構成することにより電磁波の放射を極力減少させるよう構成した発熱体構造である。
【0008】
第2の構成は、交流電源の一方の位相A電極に一端が接続し、かつ他端が位相B電極に接続する二つの線状発熱体E及びFを有し、二つの線状発熱体E及びFを平行に配置した場合に両線状発熱体E及びFのうち同じ側に位置する一方の端部をそれぞれE1及びF1とし、かつ同じ側に位置する他方の端部をそれぞれE2及びF2とし、第1の線状発熱体Eの一方の端部E1は位相A電極に接続し、かつ他方の端部E2は位相B電極に接続し、第2の線状発熱体Fの一方の端部F1は位相B電極に接続し、かつ他方の端付F2は位相A電極に接続するよう構成され、かつ両線状発熱体E及びFは近接配置されることより近接する各線状発熱体E及びFを流れる電流は常時逆位相となるようにすることにより電磁波の放射を極力減少させるよう構成した発熱体構造である。
【0009】
【作用】
第1の構成においては、重畳して配置された二つの発熱体構造の面状発熱体を流れる電流の位相が相互に常時逆となるため、電流により発生する磁界の形成或いは発生する電磁波の位相も逆となることにより、これらの電磁波が相互に打ち消しあい、結果的に発生する電磁波が極めて少なくなるものと思料される。第2の構成における線状発熱体においても線状発熱体相互において同様の作用が推測され、電磁波の発生が極小化されたものと思料される。
【実施例】
以下、本発明に係る発熱体構造を図面によって具体的に説明する。
【0010】
図1は本発明に係る無電磁波の発熱体構造を床暖房に使用した場合の概要図であり、図2は本発明の無電磁波の発熱体構造の実施例の概要を示す当該発熱体構造の斜視図であり、図3は本発明の無電磁波の発熱体構造の実施例の概要を示す当該発熱体構造の側面図であり、図4は本発明の無電磁波の発熱体構造の概要を示す当該発熱体構造の平面図である。
【0011】
図2は本発明の第1の実施例を示す。
本発明における極性A、Bを有する交流電源とは一般家庭、一般のオフィス等に提供されているAC100Vの交流電源であり、三相交流で発電され電圧を落とすとともに、一相はアースされ二相の交流として供給されているものであり、又、動力用電源として提供されているAC200Vの交流の電源にも適応されることはも勿論である。
【0012】
次いで、この交流電源を用いる面状の発熱体構造は従来技術でも製造できるものである。図2及び図3に示す如く、二つの発熱体構造C(符号1)及び発熱体構造D(符号2)はそれぞれ絶縁層で両面が覆われている。また各発熱体構造C(符号1)と発熱体構造D(符号2)のそれぞれの電極(電極の特性の特性については後述する)1Aと1B、及び2Aと2Bとの間にカーボン等の面状発熱体1C、2Cが配設されている。
【0013】
本発明は前記面状の発熱体構造を対として二つの発熱体構造C(符号1)及び発熱体構造D(符号2)を用いるものであり、両発熱体構造C及びDをその投影面がほぼ一致するよう重畳して用いるものである。
【0014】
先ず、発熱体構造D(符号2)の面状発熱体2Cの一側にはプラグP及び電線12Aを介して交流電源に接続する位相A電極(符号2A)設けられ、他側には同様にプラグP及び電線12Bを介して交流電源に接続する位相B電極(符号2B)が設けられている。このように各電極2A、2Bは交流電源に接続されることより位相A電極(符号2A)と位相B電極(符号2B)とは逆の位相で極性が変化することになる。
【0015】
次にこの発熱体構造D(符号2)の上部に重畳して位置する発熱体構造C(符号1)のそれぞれの電極に対しては発熱体構造D(符号2)の位相A電極(符号2A)の上部に位置する発熱体構造C(符号1)の電極が位相B電極(符号1B)となり、かつ発熱体構造D(符号2)の位相B電極(符号2B)の上部に位置する発熱体構造C(符号1)の電極が位相A電極(符号1A)となるよう、各発熱体構造C及びDの電極に対して、電線12A及び12Bを交差させて結線する。
【0016】
また各々の面状発熱体1C、2Cの間にはアースのためのアルミ板或いは保温材等を介装することは可能であり、又、一対の面状発熱体1C、2Cを一体化した面状発熱体構造を形成することも可能なものである。
【0017】
上述の構成とすることより重畳的に配置(図示の場合るは上下に配置)された発熱体構造C(符号1)及びD(符号2)においては、上下に近接する電極が交流周波数に対応しして常時逆となる。つまり発熱体構造C(符号1)と発熱体構造D(符号2)においては、各発熱体構造の面状発熱体1Cと面状発熱体2Cとにおいて、交流周波数に対応して常時逆方向に電流が流れることになる。これにより発熱体構造C(符号1)及びD(符号2)全体では電磁波の発生が極小化される。
【0018】
これは、相互に電流が逆方向に流れることより、電流により発生する磁界の方向も逆となり、この結果それぞれの磁界が相殺され、磁界の発生と密接な関係のある電磁波もこの相殺効果によってその発生が極小化されたものと思料される。
【0019】
次に、図4に示した次実施例では、パネルの間に敷設する長さを有する線状発熱体E(符号3C)及び線状発熱体F(符号4C)或いはコンクリート、モルタル等の中に埋設する線状発熱体E(符号3C)、F(符号4C)を2本用いるものであり、前記一対の線状発熱体E(符号3C)、F(符号4C)を捻じる等して近接配設するもであり、その捻じり加減は適宜なものであり、特に限定するものではない。
【0020】
次に各線状発熱体E、Fの両端部を交流電源側にそれぞれ接続するが、この場合各線状 発熱体E、Fの両端部を次のように定義する。
即ち二つの線状発熱体E(符号3C)及びF(符号4C)を平行に配置した場合に両線状発熱体E及びFのうち同じ側に位置する一方の端部をそれぞれE1及びF1とし、かつ同じ側に位置する他方の端部をそれぞれE2及びF2とする
【0021】
第1の線状発熱体E(符号3C)の一方の端部E1(符号3A)は位相A電極(5A)に接続し、かつ他方の端部E2(符号3B)は位相B電極(符号5B)に接続する。これに対して第2の線状発熱体F(部号4C)の一方の端部F1(符号4A)は位相B電極(5B)に接続し、かつ他方の端部F2(符号4B)は位相A電極(符号5A)に接続するよう構成される。また各電極5A、5BはプラグPを介して交流電源に接続している。
【0022】
以上の構成とすることにより近接配置された線状発熱体E(符号3C)と線状発熱体F(部号4C)とにおいては、交流周波数に対応して常時逆方向に電流が流れることになる。この結果前記実施例と同様の理由により磁界が相殺されかつこれにより電磁波の発生が極小化されるものと思料される。また同様の理由により交流電源と各電極5A及び5Bを接続する電線12A、12Bも捻じった構成とされている。
【0023】
次に、一般家庭等の小規模な施工から、学校、幼稚園、病院等の比較的大規模な施工迄可能とする床暖房において、前述のように構成した面状発熱体1C、2C及び線状発熱体3C、4Cの発熱体構造を表層床材6と下層受部材7との間に間隙層8を形成し、該間隙層8に熱伝導材として水等の液体9を充填した容器10を収納し、該容器10を加熱する床暖房の熱源11として用いたものである。
【0024】
この場合、面状発熱体1C、2Cは一定のスペースのものを重畳して用いており、又、線状発熱体E(符号3C)、線状発熱体F(符号4C)も2本を捻じって使用しているため、発熱範囲が狭いものとなるが、熱媒体として対流する水等の液体9を用いており、液体9の対流によって表層床材6まで熱が運ばれ、発熱範囲に関係無く広範囲の加熱が可能となるもである。
【0025】
【発明の効果】
本発明は前述の構成によって、面状発熱体構造、線状発熱体構造、及び、床暖房、電源と接続する電線等の人体に悪影響を及ぼすといわれている電磁波の放射を極力低減したものであり、特別な機材を用いることなく極めて簡単な構成で人体に安全な発熱体構造を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る発熱体構造を床暖房に使用した場合の概要図である。
【図2】本発明の第1の実施例を示す発熱体構造の斜視図である。
【図3】図2に示す発熱体構造の側面図である。
【図4】本発明の第2の実施例を示す発熱体構造の平面図である。
【符号の説明】
1 発熱体構造C
1A (発熱体構造Cの)位相A電極
1B (発熱体構造Cの)位相B電極
1C (発熱体構造Cの)面状発熱体
2 発熱体構造D
2A (発熱体構造Dの)位相A電極
2B (発熱体構造Dの)位相B電極
2C (発熱体構造Dの)面状発熱体
3、4 線状発熱体
3A (線状発熱体Eの)端部E1
3B (線状発熱体Eの)他端部E2
3C 線状発熱体E
4A (線状発熱体Fの)端部F1
4B (線状発熱体Fの)他端部F2
4C 線状発熱体F
5A 位相A電極
5B 位相B電極
[0001]
[Industrial applications]
The present invention relates to a heating element structure in which radiation of electromagnetic waves is reduced as much as possible in a heating element, and more particularly to a heating element structure suitable for floor heating in winter and in severely cold regions.
[0002]
[Prior art]
A change in the polarity of two electrodes (for example, a change at a frequency of 50 Hz or 60 Hz) of the current of a commercial power supply, that is, a power supply of AC 100 V provided to a general household, a general office, or the like usually affects the equipment used. It has been ignored and used. Here, the polarity means a positive charge or a negative charge in the electrode. Therefore, the change in the polarity of the electrode means that the electrode changes from plus to minus or from minus to plus at a specific electrode.
[0003]
Two planar heating structure using AC power polarity is changed each other at different phases to the positive pole and negative pole at a particular frequency of the electrode, and, even application of the linear heating element structure simply performed following Including the example, a heating element made of carbon or nichrome wire is placed between these two electrodes whose polarity changes in opposite phases, and wires such as lead wires or cords are interposed between these electrodes. while the power and either directly connected are ignored for polarity change of the electrodes, it is used by inserting the plug into the outlet.
[0004]
[Problems to be solved by the invention]
However, in recent years, due to the spread of electromagnetic wave measuring devices and the flooding of appliances and devices that use electricity such as home appliances and OA devices, interest in electromagnetic waves radiated from these electric devices and wiring has increased, There is a concern about the adverse effects of these on the body.
[0005]
In particular, since floor heating is used for a long time and the body is constantly in close contact with the floor surface, it is desirable to suppress the electromagnetic waves radiated from the heating element of floor heating as much as possible.
[0006]
Accordingly, an object of the present invention, there is provided an apparatus having a heating element that requires AC power, from the heating element, as much as possible to reduce the radiation of electromagnetic waves from electric wires electrically connecting the heating element and the power source It provides a heating element structure. Particularly, in a floor heating structure using a heating element, the radiation of electromagnetic waves is suppressed as much as possible , and it is possible to create a comfortable living space that is comfortable for the human body. An object of the present invention is to provide an electromagnetic wave heating element structure.
[0007]
[Means for Solving the Problems]
The present invention has been made in view of the above problems, and a first structure is a heating element structure in which the polarities of two electrodes periodically change in opposite phases by connecting to an AC power supply, One of these two electrodes (hereinafter referred to as “phase A electrode” also in the embodiment) and the other electrode whose polarity changes in a phase opposite to the phase A electrode (hereinafter “phase A electrode” also in the embodiment) And a heating element structure C having the same structure as the heating element structure C, with a sheet heating element interposed therebetween. The electrodes of the heating element structure D which are disposed so as to overlap with each other so that the projection planes of D substantially coincide with each other, and which are close to the phase A electrode of the heating element structure C are the phase B electrodes, and are close to the phase A electrode of the heating element structure C. Each of the heating element structures C and D so that the electrodes of the heating element structure D are phase B electrodes. Is connected directly to the AC power source or indirectly via an electrode of another heating element structure, so that in each of the superposed heating element structures C and D, between the electrodes of each heating element structure C and D This is a heating element structure in which the current flowing through the planar heating element is always in the opposite phase so that the radiation of electromagnetic waves is reduced as much as possible.
[0008]
The second configuration has two linear heating elements E and F, one end of which is connected to one phase A electrode of the AC power source and the other end of which is connected to the phase B electrode. When F and F are arranged in parallel, one end of both linear heating elements E and F located on the same side is E1 and F1, respectively, and the other end located on the same side is E2 and F2, respectively. And one end E1 of the first linear heating element E is connected to the phase A electrode, and the other end E2 is connected to the phase B electrode, and one end of the second linear heating element F is The portion F1 is connected to the phase B electrode, and the other end F2 is connected to the phase A electrode, and the two linear heating elements E and F are arranged close to each other and each of the linear heating elements E is closer to each other. And the current flowing through F should always be in anti-phase to minimize the emission of electromagnetic waves Is a heating element structure that form.
[0009]
[Action]
In the first configuration, since the phases of the currents flowing through the planar heating elements of the two heating element structures arranged in a superposed manner are always opposite to each other, the formation of the magnetic field generated by the current or the phase of the generated electromagnetic wave By reversing the above, it is considered that these electromagnetic waves cancel each other, and the resulting electromagnetic waves are extremely reduced. Similar effects are assumed between the linear heating elements in the linear heating elements in the second configuration, and it is considered that generation of electromagnetic waves is minimized.
【Example】
Hereinafter, the heating element structure according to the present invention will be specifically described with reference to the drawings.
[0010]
FIG. 1 is a schematic view of a case where the electromagnetic waveless heating element structure according to the present invention is used for floor heating, and FIG. 2 is a schematic view of an embodiment of the electromagnetic waveless heating element structure of the present invention. FIG. 3 is a perspective view, FIG. 3 is a side view of the heating element structure showing the outline of the embodiment of the electromagnetic waveless heating element structure of the present invention, and FIG. 4 is a view showing the outline of the electromagnetic waveless heating element structure of the present invention. It is a top view of the said heating element structure.
[0011]
FIG. 2 shows a first embodiment of the present invention.
The AC power supply having the polarities A and B in the present invention is an AC power supply of 100 V AC provided to general households, general offices, and the like. It is needless to say that the present invention is also applicable to an AC power supply of 200 V AC provided as a power supply for power.
[0012]
Next, the planar heating element structure using the AC power supply can be manufactured by a conventional technique. As shown in FIGS. 2 and 3, the two heating element structures C (reference number 1) and the heating element structure D (reference number 2) are each covered on both sides with an insulating layer. In addition, a surface of carbon or the like is placed between each of the electrodes (characteristics of the electrode characteristics) 1A and 1B, and between 2A and 2B of each heating element structure C (reference numeral 1) and heating element structure D (reference number 2). Heating elements 1C and 2C are provided.
[0013]
The present invention uses two heating element structures C (reference number 1) and heating element structure D (reference number 2) as a pair of the planar heating element structures. They are used by being superimposed so that they substantially coincide with each other.
[0014]
First, on one side of the planar heating element 2C of the heating element structure D (reference numeral 2), a phase A electrode (reference numeral 2A) connected to an AC power supply via a plug P and an electric wire 12A is provided, and similarly on the other side. A phase B electrode (reference numeral 2B) connected to an AC power supply via the plug P and the electric wire 12B is provided. As described above, since the electrodes 2A and 2B are connected to the AC power supply, the polarities of the phase A electrode (reference numeral 2A) and the phase B electrode (reference numeral 2B) change in opposite phases.
[0015]
Next, a phase A electrode (reference number 2A) of the heating element structure D (reference number 2) is applied to each of the electrodes of the heating element structure C (reference number 1) which is positioned on top of the heating element structure D (reference number 2). ), The electrode of the heating element structure C (reference numeral 1) becomes the phase B electrode (reference numeral 1B), and the heating element located above the phase B electrode (reference numeral 2B) of the heating element structure D (reference number 2). The wires 12A and 12B are crossed and connected to the electrodes of the heating element structures C and D such that the electrodes of the structure C (reference numeral 1) become the phase A electrodes (reference numeral 1A).
[0016]
It is possible to interpose an aluminum plate or a heat insulating material for grounding between the sheet heating elements 1C and 2C, and a surface in which a pair of sheet heating elements 1C and 2C are integrated. It is also possible to form a heating element structure.
[0017]
With the above configuration, in the heating element structures C (reference numeral 1) and D (reference numeral 2) arranged in a superimposed manner (in the illustrated case, arranged vertically), the vertically adjacent electrodes correspond to the AC frequency. And always the opposite. That is, in the heating element structure C (reference numeral 1) and the heating element structure D (reference number 2), the planar heating elements 1C and 2C of the respective heating element structures always have opposite directions corresponding to the AC frequency. Current will flow. As a result, generation of electromagnetic waves is minimized in the entire heating element structures C (reference numeral 1) and D (reference numeral 2).
[0018]
This is because the currents flow in opposite directions, so that the directions of the magnetic fields generated by the currents are also reversed.As a result, the respective magnetic fields are canceled out, and the electromagnetic waves closely related to the generation of the magnetic fields are also reduced by this canceling effect. It is considered that the occurrence was minimized.
[0019]
Next, in the next embodiment shown in FIG. 4, a linear heating element E (reference numeral 3C) and a linear heating element F (reference numeral 4C) having a length to be laid between the panels or concrete, mortar, or the like. The two linear heating elements E (reference number 3C) and F (reference number 4C) to be buried are used, and the pair of linear heating elements E (reference number 3C) and F (reference number 4C) are brought close to each other by twisting or the like. It is arranged, and its twisting degree is appropriate and is not particularly limited.
[0020]
Next, both ends of each of the linear heating elements E and F are connected to the AC power supply side. In this case , both ends of each of the linear heating elements E and F are defined as follows.
That is, when two linear heating elements E (reference numeral 3C) and F (reference numeral 4C) are arranged in parallel, one end of the two linear heating elements E and F located on the same side is designated as E1 and F1, respectively. , And the other ends located on the same side are referred to as E2 and F2, respectively .
[0021]
One end E1 (symbol 3A) of the first linear heating element E (symbol 3C) is connected to the phase A electrode (5A), and the other end E2 (symbol 3B) is connected to the phase B electrode (symbol 5B). ). On the other hand, one end F1 (symbol 4A) of the second linear heating element F (symbol 4C) is connected to the phase B electrode (5B), and the other end F2 (symbol 4B) is connected to the phase B electrode (5B). It is configured to be connected to the A electrode (reference numeral 5A). Each of the electrodes 5A and 5B is connected to an AC power supply via a plug P.
[0022]
With the above configuration, in the linear heating element E (reference numeral 3C) and the linear heating element F (part number 4C) arranged close to each other, current always flows in the opposite direction corresponding to the AC frequency. Become. As a result, it is considered that the magnetic field is canceled out for the same reason as in the above-described embodiment, and the generation of electromagnetic waves is thereby minimized. For the same reason, the wires 12A and 12B connecting the AC power supply and the electrodes 5A and 5B are also twisted.
[0023]
Next, the floor heating elements 1C and 2C and the linear heating elements configured as described above are used for floor heating that enables a small-scale construction such as a general home to a relatively large-scale construction such as a school, a kindergarten, and a hospital. The heating element structure of the heating elements 3C and 4C includes a container 10 in which a gap layer 8 is formed between the surface floor material 6 and the lower layer receiving member 7, and the gap layer 8 is filled with a liquid 9 such as water as a heat conductive material. It is housed and used as a heat source 11 for floor heating for heating the container 10.
[0024]
In this case, the planar heating elements 1C and 2C are used in such a manner that they are overlapped in a certain space, and two linear heating elements E (reference numeral 3C) and two linear heating elements F (reference numeral 4C) are twisted. However, since the liquid 9 such as water convection is used as a heat medium, heat is transferred to the surface floor material 6 by the convection of the liquid 9 and the heat generation range is reduced. Irrespective of this, a wide range of heating is possible.
[0025]
【The invention's effect】
According to the present invention, the surface heating element structure, the linear heating element structure, and the floor heating, the radiation of electromagnetic waves which are said to have an adverse effect on the human body such as electric wires connected to a power supply are reduced as much as possible by the above-described configuration. In addition, it is possible to provide a safe heating element structure for a human body with a very simple configuration without using any special equipment.
[Brief description of the drawings]
FIG. 1 is a schematic diagram when a heating element structure according to the present invention is used for floor heating.
FIG. 2 is a perspective view of a heating element structure according to the first embodiment of the present invention.
FIG. 3 is a side view of the heating element structure shown in FIG.
FIG. 4 is a plan view of a heating element structure according to a second embodiment of the present invention.
[Explanation of symbols]
1 Heating element structure C
1A Phase A electrode 1B (of heating element structure C) Phase B electrode 1C (of heating element structure C) Planar heating element 2 (of heating element structure C) Heating element structure D
2A Phase A electrode 2B (of heating element structure D) Phase B electrode 2C (of heating element structure D) Planar heating element 3, 4 (of heating element structure D) Linear heating element 3A (of linear heating element E) End E1
3B Other end E2 (of linear heating element E)
3C Linear heating element E
4A End F1 (of linear heating element F)
4B Other end F2 (of linear heating element F)
4C Linear heating element F
5A Phase A electrode 5B Phase B electrode

Claims (2)

交流電源に接続することにより二つの電極の極性が逆位相で周期的に変化する発熱体構造であって、これら二つの電極の一方の電極である位相A電極とこの位相A電極と逆の位相で極性が変化する他方の電極である位相B電極との間に面状発熱体を介設して一つの発熱体構造Cを構成し、かつこの発熱体構造Cと同じ構造の発熱体構造Dを構成し、両発熱体構造C及びDの投影面がほぼ一致するよう両者を重畳して配置し、かつ発熱体構造Cの位相A電極に近接する発熱体構造Dの電極が位相B電極となり、かつ発熱体構造Cの位相A電極に近接する発熱体構造Dの電極が位相B電極となるようこれら発熱体構造C及びDの各電極を交流電源に対して直接或いは他の発熱体構造の電極を介して間接に接続することにより、重畳配置された各発熱体構造C及びDにおいて、各発熱体構造C及びDの各電極間の面状発熱体を流れる電流が常時逆位相となるよう構成することにより電磁波の放射を極力減少させるよう構成したことを特徴とする発熱体構造。A heating element structure in which the polarities of two electrodes are periodically changed in opposite phases by connecting to an AC power supply, and a phase A electrode which is one of these two electrodes and a phase opposite to the phase A electrode A heating element structure C is formed by interposing a sheet heating element between the heating element structure D and the phase B electrode which is the other electrode whose polarity changes, and a heating element structure D having the same structure as the heating element structure C. The heating element structures C and D are arranged so that the projection planes of the heating element structures C and D substantially coincide with each other, and the electrode of the heating element structure D adjacent to the phase A electrode of the heating element structure C becomes the phase B electrode. The electrodes of the heating element structures C and D are directly connected to the AC power source or of another heating element structure so that the electrode of the heating element structure D adjacent to the phase A electrode of the heating element structure C becomes the phase B electrode. By connecting indirectly via electrodes, each of the superposed In the body structures C and D, the configuration is such that the current flowing through the planar heating element between the electrodes of the heating element structures C and D is always in the opposite phase, so that the radiation of electromagnetic waves is reduced as much as possible. The heating element structure. 交流電源に接続することにより二つの電極の極性が逆位相で周期的に変化する発熱体構造であって、交流電源の一方の位相A電極に一端が接続し、かつ他端が位相B電極に接続する二つの線状発熱体E及びFを有し、二つの線状発熱体E及びFを平行に配置した場合に、両線状発熱体E及びFのうち同じ側に位置する一方の端部をそれぞれE1及びF1とし、かつ同じ側に位置する他方の端部をそれぞれE2及びF2とし、第1の線状発熱体Eの一方の端部E1は位相A電極に接続し、かつ他方の端部E2は位相B電極に接続し、第2の線状発熱体Fの一方の端部F1は位相B電極に接続し、かつ他方の端部F2は位相A電極に接続するよう構成され、かつ両線状発熱体E及びFは近接配置されることより近接する各線状発熱体E及びFを流れる電流は常時逆位相となるうようにして電磁波の放射を極力減少させるよう構成した発熱体構造 A heating element structure in which the polarities of two electrodes periodically change in opposite phases by connecting to an AC power supply. One end is connected to one phase A electrode of the AC power supply, and the other end is connected to the phase B electrode. One end located on the same side of both the linear heating elements E and F when two linear heating elements E and F are connected and the two linear heating elements E and F are arranged in parallel. Parts are E1 and F1, respectively, and the other ends located on the same side are E2 and F2, respectively. One end E1 of the first linear heating element E is connected to the phase A electrode, and The end E2 is connected to the phase B electrode, one end F1 of the second linear heating element F is connected to the phase B electrode, and the other end F2 is connected to the phase A electrode, Further, since both linear heating elements E and F are arranged close to each other, they flow through the respective linear heating elements E and F closer to each other. Heating structure current configured to reduce as much as possible the emission of electromagnetic waves as will become opposite in phase at all times that.
JP01184697A 1997-01-08 1997-01-08 Heating element structure Expired - Fee Related JP3560754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01184697A JP3560754B2 (en) 1997-01-08 1997-01-08 Heating element structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01184697A JP3560754B2 (en) 1997-01-08 1997-01-08 Heating element structure

Publications (2)

Publication Number Publication Date
JPH10199660A JPH10199660A (en) 1998-07-31
JP3560754B2 true JP3560754B2 (en) 2004-09-02

Family

ID=11789094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01184697A Expired - Fee Related JP3560754B2 (en) 1997-01-08 1997-01-08 Heating element structure

Country Status (1)

Country Link
JP (1) JP3560754B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102257409B1 (en) 2017-02-01 2021-05-27 니뽄 도쿠슈 도교 가부시키가이샤 Holding device
KR102362324B1 (en) * 2020-03-09 2022-02-14 송근용 Plane heating element and manufacturing method thereof
KR102317470B1 (en) * 2020-08-31 2021-10-27 (주)이노로드 Planar heating complex sheet
KR102539535B1 (en) * 2023-01-25 2023-06-05 호서대학교 산학협력단 Modular heating panel using planar heating element

Also Published As

Publication number Publication date
JPH10199660A (en) 1998-07-31

Similar Documents

Publication Publication Date Title
US11792896B2 (en) Electromagnetic wave reducing heater
US10887948B2 (en) Sauna heating panel power distribution systems and methods
JPS5828602Y2 (en) Electrode plate for electric field therapy equipment
JP3560754B2 (en) Heating element structure
JP3513748B2 (en) Planar heating element from which electromagnetic waves have been removed and method of manufacturing the same
KR100682571B1 (en) Face type heating element for offsetting electron wave
US9393176B2 (en) Infrared heating panels with non-linear heat distribution
KR20100003163U (en) Heating Structure Of Heating Mat
KR20100129260A (en) Planar heating element and method for manufacturing it
JPH0251186B2 (en)
JP2004235112A (en) Electric power conductor reducing electromagnetic wave
JPH0755806B2 (en) Creepage discharge type ozonizer
KR0127713Y1 (en) Electro-magnetic wave shielding heating sheet
JP3354105B2 (en) Planar heating element
CN206134420U (en) High -frequency transformer and high frequency electric source
RU2163422C1 (en) Electric heating device
JP3943562B2 (en) Floor heating device with potential generating function and potential generating function auxiliary device
JPH0579649A (en) Floor heating panel
JP2005044764A (en) Sheet-like heating element
JP2001309869A (en) Device for heating toilet seat
KR200433552Y1 (en) A heating cable
KR20020086158A (en) Electric heating plate
KR100261967B1 (en) Heating element and its wire connection method for reducing electromagnetic field
KR200424357Y1 (en) Face type heating element for offsetting electron wave
JP3748916B2 (en) Inductive heating device with jacket

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040526

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees