JP3560655B2 - Manufacturing method of optical thin film - Google Patents

Manufacturing method of optical thin film Download PDF

Info

Publication number
JP3560655B2
JP3560655B2 JP25913994A JP25913994A JP3560655B2 JP 3560655 B2 JP3560655 B2 JP 3560655B2 JP 25913994 A JP25913994 A JP 25913994A JP 25913994 A JP25913994 A JP 25913994A JP 3560655 B2 JP3560655 B2 JP 3560655B2
Authority
JP
Japan
Prior art keywords
thin film
resin
fluoride
fluororesin
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25913994A
Other languages
Japanese (ja)
Other versions
JPH08101301A (en
Inventor
健 川俣
延好 豊原
利明 生水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP25913994A priority Critical patent/JP3560655B2/en
Publication of JPH08101301A publication Critical patent/JPH08101301A/en
Application granted granted Critical
Publication of JP3560655B2 publication Critical patent/JP3560655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、光学部品に用いられる反射防止膜と、ハーフミラーやエッジフィルターなどの光学薄膜と、それらの製造方法に関する。
【0002】
【従来の技術】
近年、基板を加熱せずに膜の密着性が優れている点や、自動化の容易性から、スパッタリング法による光学薄膜の形成技術が研究されている。しかし、真空蒸着法の場合に低屈折率材料として最も一般的に用いられるMgFを、ターゲットにしてスパッタリングを行うと、フッ素が乖離し可視光の吸収を生ずる欠点があり、これを使用することができなかった。そのため、一般的には低屈折率材料としてSiOまたはSiOと他の物質との混合物をターゲットとして用いることが試みられている。この例として、特開平2−96701号公報所載の技術が開示されている。
【0003】
上記従来技術によれば、低屈折率材料にSiO、SiOとアルミナ(Al)の混合物、またはSiOを主成分とする物質を用い、高屈折率材料にTiO、Ta、ZrO、In、SnO、NbもしくはYbまたはこれらの混合物を用いて、透明基板上に前記高屈折率材料と前記低屈折率材料とをスパッタリングにより交互に積層することにより反射防止膜を得る。これにより、分光反射特性に優れた多層反射防止膜をスパッタリング法により高効率かつ低コストで提供することができる。
【0004】
【発明が解決しようとする課題】
しかし、低屈折率材料としてのSiOの屈折率は1.46であり、MgFと比較して高いため、反射防止膜に用いる場合、単層のみでは充分な反射防止効果を得られない。そのため、2層以上の膜構成としなければ実用的な反射防止効果は得られず、さらに、得れた反射防止効果も充分とはいえない。また、偏光ビームスプリッターやエッジフィルターなどを構成する場合には高屈折率物質と低屈折率物質との屈折率差が大きいほうが望ましいが、低屈折率物質としてSiOを使うと充分な特性が得られなかったり、層数が増えてコストアップにつながるという問題点がある。
【0005】
本発明は上記問題点に鑑みてなされたもので、請求項1〜9に係る発明の目的は、少ない層数で充分な光学特性を有する光学薄膜をスパッタリング法により形成する光学薄膜の製造法を提供することである。
【0006】
【課題を解決するための手段】
上記課題を解決するために、請求項1〜9に係る発明は、無機フッ化物とフッ素樹脂との混合物で、あるいは前記フッ化物の上にフッ素樹脂を置いて、あるいは前記フッ化物を分割してその内のいくつかをフッ素樹脂とするように構成した固体状態のターゲットを、スパッタリングすることにより、基板上に薄膜を形成することを特徴とする。
請求項2に係る発明は、上記手段に加え、前記無機フッ化物が、AlF3、LiF、MgF2、CaF2、SrF2、BaF2 Na AlF 、NaAl14またはこれらの混合物からなることを特徴とする。
請求項3に係る発明は、上記手段に加え、前記フッ素樹脂が、四フッ化エチレン樹脂(PTFE)、三フッ化塩化エチレン樹脂(PCTFE)、六フッ化エチレンプロピレン樹脂(PFEP)、フッ化ビニル樹脂(PVF)またはフッ化ビニリデン樹脂(PVDF)からなることを特徴とする。
【0007】
【作用】
請求項1〜9に係る発明の作用は以下のとおりである。無機フッ化物にフッ素を含む有機物を混合したターゲットをスパッタリングすることにより、膜中でフッ素が不足することなく、吸収の極めて少ない薄膜を容易に得ることが可能となることを鋭意研究の結果見出した。
【0008】
無機フッ化物のみをターゲットとしてスパッタリングすると、スパッタリング時にフッ素が乖離し、その一部はガスとなって排気される。その結果、膜中でフッ素が不足し金属状態に近い膜が形成され、光吸収の原因となる。一方、有機物内部の結合はスパッタリング時に切れやすく、フッ素樹脂をスパッタリングした際には炭素(C)やフッ素(F)などがばらばらになった反応性の高い状態で膜中に供給される。したがって、フッ素樹脂は、膜中にフッ素(F)を供給する役目を果たすことになり、その結果、膜中でフッ素(F)が不足することなく、吸収の極めて少ない膜を容易に得ることが可能となった。なお、フッ素樹脂からは、膜中にフッ素(F)だけでなく炭素(C)も供給されることになるが、C−H結合であれば光吸収の原因とはならず、大きな問題となることはない。また、スパッタリングを行う際に酸素ガス(O)を真空槽内に導入すれば、炭素(C)はC−O結合となりその大部分はガス化して排気されるため、膜中の炭素(C)を取り除くことも容易に行うことができる。
【0009】
なお、フッ素を供給するためには、フッ素を含むガスをプロセスガスとして使用することも可能であるが、一般的にフッ素を含むガスは有毒であり、安全性に問題がある。そのため、特別なガス導入系や排ガス処理系を必要とするなど、設備面でのコストが掛かることになる。しかし、請求項1〜9に係る発明では、安定な固体状態でフッ素を供給することになるため、安全性の面でもコストの面でも極めて有利である。
【0010】
請求項2に係る発明の作用では、上記作用に加え、無機フッ化物をAlFなど、またはこれらの混合物に限定することにより成膜された光学薄膜の屈折率を低く抑えることに効果的である。請求項2に表示したAlFなど以外の無機フッ化物では、請求項1に係る発明に使用できるのは勿論であるが、その場合は低屈折率と高屈折率との中間的な屈折率となる。
【0011】
請求項3に係る発明の作用では、上記作用に加え、フッ素樹脂を四フッ化エチレン樹脂(PTFE)などに限定することにより、これらの樹脂は耐久性および安定性が優れているので、低屈折率薄膜へのフッ素の供給が効果的に働く。
【0012】
なお、有機物は一般的にスパッタリングされる速度が著しく速いため、無機フッ化物中に少量加えるだけで充分な効果を発揮する。その混合割合は、たとえば、ターゲット表面の面積比で1%以上あれば効果が認められるが、特に制限するものではない。最低必要な量は成膜条件に依存する。一方、フッ素樹脂を加えることにより一般的に薄膜の密着性や擦傷性などの耐久性は低下してしまうため、必要量以上に混合するのはあまり望ましいことではない。なお、ターゲットの形態としては、混合してあってもよいし、無機フッ化物の上にフッ素樹脂を単に置くだけ、あるいは、ターゲットを分割しその内のいくつかをフッ素樹脂とするようにしてもよい。
【0013】
請求項1〜9に係る発明の光学薄膜の製造方法により形成した薄膜を、基板上に少なくとも1層設けたことにより、その薄膜の屈折率は、混合物の添加量や成膜条件にもよるが、1.37〜1.43であって、従来技術の薄膜に較べてかなり低い屈折率が得られるので、少ない層数で充分な分光特性を得ることができる。また、フッ素樹脂は撥水性があるため、形成された薄膜も撥水性があり、基板上の最上層にこの薄膜を形成すれば、汚れが付きにくい。
【0014】
【実施例1】
図1は第1実施例を示し、本実施例の光学薄膜の製造方法で成膜された反射防止膜の分光反射特性を示す図表である。
【0015】
本実施例は、下記の表1に示すように、ガラス基板上に単層の光学薄膜を成膜する場合について説明する。屈折率1.75のガラス基板(LaSK01)を真空槽にセットし、2×10−4Paまで排気した後、分圧が0.3PaのArガス、および0.1PaのOガスを真空槽に導入した。無機フッ化物たるAlF焼結体の上にフッ素樹脂たる四フッ化エチレン樹脂(PTFE)を面積比で15:1となるように載置したものをターゲットとして使用した。高周波マグネトロンスパッタリング法を用い、投入電力400Wとして、表1に示す光学的膜厚で、基板上に単層膜を形成した。
【0016】
本実施例の反射防止膜の分光反射特性を図1に示す。薄膜の屈折率は1.37であり、波長520nmでの反射率が0.5%以下であって、単層で充分な反射防止効果が得られた。また、可視域(400〜700nm)での吸収もなかった。本実施例で使用した四フッ化エチレン樹脂(PTFE)は特に撥水性に優れており、形成された膜も充分な撥水性を有していた。水の濡れ角は約80°であり、指紋が付きにくいなど、取扱上のメリットが大きい。
【0017】
【表1】

Figure 0003560655
【0018】
なお、本実施例では無機フッ化物にAlFを用いたが、これに替えて、LiF、MgF、CaF、SrF、BaF、NaAlF、NaAl14のいづれでも同様の効果を得ることができた。また、撥水性においては若干劣るものの、フッ素樹脂たる四フッ化エチレン樹脂(PTFE)に替えて、三フッ化塩化エチレン樹脂(PCTFE)、六フッ化エチレンプロピレン樹脂(PFEP)、フッ化ビニル樹脂(PVF)またはフッ化ビニリデン樹脂(PVDF)を用いても同様な分光反射特性を得ることができた。
【0019】
【実施例2】
図2は第2実施例を示し、本実施例の光学薄膜の製造方法で成膜された反射防止膜の分光反射特性を示す図表である。
【0020】
本実施例は、下記の表2に示すように、ポリカーボネート樹脂基板上に多層の光学薄膜を成膜する場合について説明する。ポリカーボネート樹脂基板を真空槽にセットし、4×10−3Paまで排気した後、分圧が4PaのArガスを真空槽に導入した。ターゲットは、無機フッ化物材料たるMgFおよびCaFと、フッ素樹脂たるフッ化ビニリデン樹脂(PVDF)の粉末を、重量比が10:10:1の割合で混合し、真空中約300度で加熱したのち徐冷して固化させたものを低屈折率材料として使用した。また、無機フッ化物材料たるCeFと、フッ素樹脂たる六フッ化エチレンプロピレン樹脂(PFEP)粉末とを重量比が30:1の割合で混合し、同様の処理により固化させたものを中間屈折率材料として使用した。さらに、高屈折率材料としてTaを使用した。それぞれ200Wの高周波マグネトロンスパッタリング法にて、表2に示す光学的膜厚で基板上に多層膜を形成した。
【0021】
本実施例の反射防止膜の分光反射特性を図2に示す。本実施例の反射防止膜は可視域全域(400〜700nm)で反射率が2%以下であり、優れた反射防止効果が得られた。また第1実施例と同様に吸収は全くみられなかった。
【0022】
【表2】
Figure 0003560655
【0023】
なお、本実施例では、第1層にフッ素樹脂として六フッ化エチレンプロピレン樹脂(PFEP)を用いたが、これに替えて、フッ化ビニル樹脂(PVF)を用いても同様な効果が得られた。また、第3層にフッ素樹脂として、フッ化ビニリデン樹脂(PVDF)を用いたが、これに替えて、四フッ化エチレン樹脂(PTFE)、三フッ化塩化エチレン樹脂(PCTFE)、六フッ化エチレンプロピレン樹脂(PFEP)、またはフッ化ビニル樹脂(PVF)を用いても同様な効果を得ることができた。
【0024】
【実施例3】
図3〜図4は第3実施例を示し、図3はカソード上に低屈折率材料を配置した配置図、図4は本実施例の光学薄膜の製造方法で成膜された半透明多層膜の分光特性を示す図表である。
【0025】
本実施例は、下記の表3に示すように、光学ガラス製のプリズム基板上に半透明多層膜を成膜する場合について説明する。BK系の光学ガラス製の三角プリズムを真空槽にセットし、1×10−3Paまで排気した後、分圧が0.5PaのHeガス、0.1PaのOガスを真空槽に導入した。低屈折率層は、NaAlFと三フッ化塩化エチレン樹脂(PCTFE)を図3に示すように、面積比で3:1になるようにカソード上に配置したものをターゲットとして用い、高周波マグネトロンスパッタリング法により形成した。また、高屈折率層は、Tiをターゲットとして直流マグネトロンスパッタリング法により形成した。これをもう一つのBK系の光学ガラス製の三角プリズムとUV硬化型接着剤により接合し、偏光比が9:1のキューブ型の偏光ビームスプリッターを製作した。
【0026】
本実施例の半透明多層膜の分光特性を図4に示す。本実施例では、わずか11層で図4に示すように、波長400〜700nmの領域で、反射率・透過率ともにほぼ50%であり、充分な分光特性を有する偏光ビームスプリッターを得ることができた。
【0027】
【表3】
Figure 0003560655
【0028】
なお、本実施例では、低屈折率層に三フッ化塩化エチレン樹脂(PCTFE)を用いたが、これに替えて、四フッ化エチレン樹脂(PTFE)、六フッ化エチレンプロピレン樹脂(PFEP)、フッ化ビニル樹脂(PVF)またはフッ化ビニリデン樹脂(PVDF)を用いても同様な効果を得ることができる。
【0029】
【発明の効果】
請求項1〜9に係る発明によれば、基板を加熱せずに、充分な密着性を確保することができ、自動化が容易であるなどの利点を持つスパッタリング法により、少ない層数で可視光の吸収の少ない低屈折率の光学薄膜を容易に得ることができる。また、安定な固体状態でフッ素を供給することになるため、安全性の面でもコストの面でも極めて有利である。
請求項2に係る発明によれば、上記効果に加え、請求項1に係る発明の無機フッ化物が、AlF3、LiF、MgF2、CaF2、SrF2、BaF2 Na AlF 、NaAl14またはこれらの混合物であるようにすると、屈折率の充分に低い光学薄膜を得ることができる。
請求項3に係る発明によれば、上記効果に加え、請求項1に係る発明のフッ素樹脂が、四フッ化エチレン樹脂(PTFE)、三フッ化塩化エチレン樹脂(PCTFE)、六フッ化エチレンプロピレン樹脂(PFEP)、フッ化ビニル樹脂(PVF)またはフッ化ビニリデン樹脂(PVDF)であるようにすると、樹脂の耐久性および安定性が優れているので、フッ素の供給が効果的に働き、屈折率の充分に低い光学薄膜を得ることができる。また、これらのフッ素樹脂は入手性がよいので、安定した生産を続行することができる。
【図面の簡単な説明】
【図1】第1実施例の光学薄膜の製造方法で成膜された反射防止膜の分光反射特性を示す図表である。
【図2】第2実施例の光学薄膜の製造方法で成膜された反射防止膜の分光反射特性を示す図表である。
【図3】第3実施例のカソード上に低屈折率材料を配置した配置図である。
【図4】第3実施例の光学薄膜の製造方法で成膜された反射防止膜の分光反射特性を示す図表である。[0001]
[Industrial applications]
The present invention includes an antireflection film used in the optical component, an optical thin film such as a half mirror or an edge filter, relates to their preparation how.
[0002]
[Prior art]
In recent years, a technique of forming an optical thin film by a sputtering method has been studied because of excellent adhesion of a film without heating a substrate and easiness of automation. However, when sputtering is performed using MgF 2, which is most commonly used as a low-refractive index material in the case of vacuum deposition, as a target, there is a disadvantage that fluorine separates and visible light is absorbed. Could not. Therefore, it has been generally attempted to use SiO 2 or a mixture of SiO 2 and another substance as a target as a low refractive index material. As an example of this, a technique disclosed in Japanese Patent Application Laid-Open No. 2-96901 is disclosed.
[0003]
According to the above prior art, SiO 2 , a mixture of SiO 2 and alumina (Al 2 O 2 ), or a substance containing SiO 2 as a main component is used as the low refractive index material, and TiO 2 , Ta 2 is used as the high refractive index material. Using O 5 , ZrO 2 , In 2 O 3 , SnO 2 , Nb 2 O 5 or Yb 2 O 3 or a mixture thereof, the high refractive index material and the low refractive index material are formed on a transparent substrate by sputtering. An antireflection film is obtained by alternately laminating. Thus, a multilayer antireflection film having excellent spectral reflection characteristics can be provided with high efficiency and low cost by a sputtering method.
[0004]
[Problems to be solved by the invention]
However, the refractive index of SiO 2 as a low-refractive-index material is 1.46, which is higher than that of MgF 2. Therefore, when used for an anti-reflection film, a single layer alone cannot provide a sufficient anti-reflection effect. Therefore, a practical antireflection effect cannot be obtained unless the film configuration has two or more layers, and the obtained antireflection effect cannot be said to be sufficient. Further, when a polarizing beam splitter or an edge filter is formed, it is desirable that the refractive index difference between the high refractive index material and the low refractive index material is large. However, if SiO 2 is used as the low refractive index material, sufficient characteristics can be obtained. However, there is a problem that the number of layers cannot be increased and the cost increases.
[0005]
The present invention has been made in view of the above problems, and an object of the present invention according to claims 1 to 9 is to provide a method of manufacturing an optical thin film by forming an optical thin film having sufficient optical characteristics with a small number of layers by a sputtering method. To provide.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the invention according to claims 1 to 9 is a mixture of an inorganic fluoride and a fluororesin, or a fluororesin placed on the fluoride, or the fluoride is divided. A thin film is formed on a substrate by sputtering a solid-state target in which some of the targets are made of a fluororesin.
In the invention according to claim 2, in addition to the above-mentioned means, the inorganic fluoride is preferably selected from the group consisting of AlF 3 , LiF, MgF 2 , CaF 2 , SrF 2 , BaF 2 , Na 3 AlF 6 , Na 5 Al 3 F 14 or a mixture thereof. It is characterized by consisting of a mixture.
In the invention according to claim 3, in addition to the above-described means, the fluororesin is selected from the group consisting of ethylene tetrafluoride resin (PTFE), ethylene trifluoride chloride resin (PCTFE), ethylene hexafluoride propylene resin (PFEP), and vinyl fluoride. It is made of resin (PVF) or vinylidene fluoride resin (PVDF).
[0007]
[Action]
The operation of the invention according to claims 1 to 9 is as follows. As a result of earnest research, it has been found that by sputtering a target in which an inorganic substance containing fluorine is mixed with an inorganic fluoride, it is possible to easily obtain a thin film having extremely low absorption without shortage of fluorine in the film. .
[0008]
When sputtering is performed using only an inorganic fluoride as a target, fluorine separates at the time of sputtering, and a part of the fluorine is exhausted as a gas. As a result, a film close to a metallic state is formed due to a shortage of fluorine in the film, which causes light absorption. On the other hand, the bond inside the organic substance is easily broken at the time of sputtering, and when the fluororesin is sputtered, carbon (C), fluorine (F), and the like are supplied into the film in a highly reactive state in which they are separated. Therefore, the fluororesin plays a role of supplying fluorine (F) into the film, and as a result, a film having extremely low absorption can be easily obtained without shortage of fluorine (F) in the film. It has become possible. In addition, from the fluororesin, not only fluorine (F) but also carbon (C) is supplied into the film, but if it is a C—H bond, it does not cause light absorption and becomes a serious problem. Never. Further, when oxygen gas (O 2 ) is introduced into the vacuum chamber during sputtering, carbon (C) becomes a CO bond and most of the carbon (C) is gasified and exhausted. ) Can also be easily removed.
[0009]
In order to supply fluorine, a gas containing fluorine can be used as a process gas. However, a gas containing fluorine is generally toxic and has a problem in safety. Therefore, a special gas introduction system and an exhaust gas treatment system are required, so that equipment costs are increased. However, in the inventions according to the first to ninth aspects, fluorine is supplied in a stable solid state, which is extremely advantageous in terms of safety and cost.
[0010]
In the operation of the invention according to claim 2, in addition to the above operation, it is effective to suppress the refractive index of the formed optical thin film to a low level by limiting the inorganic fluoride to AlF 3 or the like or a mixture thereof. . Inorganic fluorides other than AlF 3 and the like described in claim 2 can of course be used in the invention according to claim 1, but in this case, the refractive index is an intermediate refractive index between the low refractive index and the high refractive index. Become.
[0011]
In the operation of the invention according to claim 3, in addition to the above operation, by limiting the fluororesin to tetrafluoroethylene resin (PTFE) or the like, these resins have excellent durability and stability, and therefore have a low refractive index. The supply of fluorine to the thin film works effectively.
[0012]
Since the sputtering rate of an organic substance is generally remarkably high, a sufficient effect is exhibited by adding a small amount to an inorganic fluoride. The mixing ratio is, for example, 1% or more in terms of the area ratio of the target surface, but the effect is recognized, but is not particularly limited. The minimum required amount depends on the film forming conditions. On the other hand, the addition of the fluororesin generally reduces the durability of the thin film, such as adhesion and abrasion, so that it is not very desirable to mix it more than necessary. In addition, as a form of the target, it may be mixed, a fluororesin may be simply placed on the inorganic fluoride, or the target may be divided and some of the targets may be made of the fluororesin. Good.
[0013]
Since at least one thin film formed by the method for manufacturing an optical thin film according to the first to ninth aspects of the present invention is provided on a substrate, the refractive index of the thin film depends on the amount of the mixture added and the film forming conditions. 1.37 to 1.43, which is a considerably lower refractive index than the prior art thin film, so that sufficient spectral characteristics can be obtained with a small number of layers. In addition, since the fluororesin has water repellency, the formed thin film also has water repellency, and if this thin film is formed on the uppermost layer on the substrate, it is hard to be stained.
[0014]
Embodiment 1
FIG. 1 shows the first embodiment, and is a table showing the spectral reflection characteristics of the antireflection film formed by the method for manufacturing an optical thin film of the present embodiment.
[0015]
This embodiment describes a case where a single-layer optical thin film is formed on a glass substrate as shown in Table 1 below. After setting a glass substrate (LaSK01) having a refractive index of 1.75 in a vacuum chamber and evacuating it to 2 × 10 −4 Pa, an Ar gas having a partial pressure of 0.3 Pa and an O 2 gas having a partial pressure of 0.1 Pa were evacuated. Introduced. A target in which an aluminum tetrafluoride resin (PTFE) as a fluororesin was placed on an AlF 3 sintered body as an inorganic fluoride at an area ratio of 15: 1 was used as a target. Using a high-frequency magnetron sputtering method, a single-layer film was formed on the substrate with an optical film thickness shown in Table 1 at an input power of 400 W.
[0016]
FIG. 1 shows the spectral reflection characteristics of the antireflection film of this embodiment. The refractive index of the thin film was 1.37, the reflectance at a wavelength of 520 nm was 0.5% or less, and a sufficient antireflection effect was obtained with a single layer. In addition, there was no absorption in the visible region (400 to 700 nm). The ethylene tetrafluoride resin (PTFE) used in this example was particularly excellent in water repellency, and the formed film also had sufficient water repellency. The wetting angle of water is about 80 °, and there are great merits in handling, such as the difficulty in attaching fingerprints.
[0017]
[Table 1]
Figure 0003560655
[0018]
In this example, AlF 3 was used as the inorganic fluoride, but any of LiF, MgF 2 , CaF 2 , SrF 2 , BaF 2 , Na 3 AlF 6 , and Na 5 Al 3 F 14 may be used instead. A similar effect was obtained. Although the water repellency is slightly inferior, instead of the fluororesin tetrafluoroethylene resin (PTFE), ethylene trifluoride chloride resin (PCTFE), hexafluoroethylene propylene resin (PFEP), vinyl fluoride resin ( Similar spectral reflection characteristics could be obtained by using (PVF) or vinylidene fluoride resin (PVDF).
[0019]
Embodiment 2
FIG. 2 shows the second embodiment, and is a table showing the spectral reflection characteristics of the antireflection film formed by the method for manufacturing an optical thin film of the present embodiment.
[0020]
In this example, as shown in Table 2 below, a case where a multilayer optical thin film is formed on a polycarbonate resin substrate will be described. After the polycarbonate resin substrate was set in a vacuum chamber and evacuated to 4 × 10 −3 Pa, an Ar gas having a partial pressure of 4 Pa was introduced into the vacuum chamber. The target was prepared by mixing MgF 2 and CaF 2 as inorganic fluoride materials and powder of vinylidene fluoride resin (PVDF) as a fluororesin in a weight ratio of 10: 10: 1, and heating at about 300 ° C. in a vacuum. After that, a material solidified by slow cooling was used as a low refractive index material. Further, CeF 2 as an inorganic fluoride material and hexafluoroethylene propylene resin (PFEP) powder as a fluororesin are mixed at a weight ratio of 30: 1 and solidified by the same treatment to obtain an intermediate refractive index. Used as material. Further, Ta 2 O 5 was used as a high refractive index material. Multilayer films were formed on the substrates with optical thicknesses shown in Table 2 by high-frequency magnetron sputtering at 200 W each.
[0021]
FIG. 2 shows the spectral reflection characteristics of the antireflection film of this embodiment. The antireflection film of this example had a reflectance of 2% or less in the entire visible region (400 to 700 nm), and an excellent antireflection effect was obtained. As in the first embodiment, no absorption was observed.
[0022]
[Table 2]
Figure 0003560655
[0023]
In this example, although the hexafluoroethylene propylene resin (PFEP) was used for the first layer as the fluororesin, a similar effect can be obtained by using a vinyl fluoride resin (PVF) instead. Was. Further, vinylidene fluoride resin (PVDF) was used as the fluorine resin for the third layer, but instead of this, ethylene tetrafluoride resin (PTFE), ethylene trifluoride chloride resin (PCTFE), and hexafluoroethylene resin were used. Similar effects could be obtained by using propylene resin (PFEP) or vinyl fluoride resin (PVF).
[0024]
Embodiment 3
3 and 4 show a third embodiment, FIG. 3 is a layout diagram in which a low refractive index material is disposed on a cathode, and FIG. 4 is a translucent multilayer film formed by the method of manufacturing an optical thin film of the present embodiment. 3 is a table showing spectral characteristics of the light emitting device.
[0025]
In the present embodiment, as shown in Table 3 below, a case where a translucent multilayer film is formed on a prism substrate made of optical glass will be described. After a BK-based triangular prism made of optical glass was set in a vacuum chamber and evacuated to 1 × 10 −3 Pa, a partial pressure of 0.5 Pa He gas and 0.1 Pa O 2 gas were introduced into the vacuum chamber. . The low-refractive-index layer uses, as a target, a layer in which Na 3 AlF 6 and ethylene trifluoride chloride resin (PCTFE) are arranged on the cathode so as to have an area ratio of 3: 1 as shown in FIG. It was formed by a magnetron sputtering method. The high refractive index layer was formed by a DC magnetron sputtering method using Ti as a target. This was joined to another BK-based triangular prism made of optical glass with a UV-curable adhesive to produce a cube-type polarization beam splitter having a polarization ratio of 9: 1.
[0026]
FIG. 4 shows the spectral characteristics of the translucent multilayer film of this embodiment. In this embodiment, as shown in FIG. 4, only 11 layers have a reflectance and a transmittance of about 50% in a wavelength region of 400 to 700 nm, and a polarizing beam splitter having sufficient spectral characteristics can be obtained. Was.
[0027]
[Table 3]
Figure 0003560655
[0028]
In this example, although ethylene trifluoride chloride (PCTFE) was used for the low refractive index layer, instead of this, tetrafluoroethylene resin (PTFE), hexafluoroethylene propylene resin (PFEP), Similar effects can be obtained by using a vinyl fluoride resin (PVF) or a vinylidene fluoride resin (PVDF).
[0029]
【The invention's effect】
According to the inventions according to the first to ninth aspects, it is possible to secure sufficient adhesion without heating the substrate, and to reduce visible light with a small number of layers by a sputtering method having advantages such as easy automation. It is possible to easily obtain an optical thin film having a low refractive index and little absorption. Further, since fluorine is supplied in a stable solid state, it is extremely advantageous in terms of safety and cost.
According to the invention according to claim 2, in addition to the above-mentioned effects, the inorganic fluoride according to the invention according to claim 1 is characterized in that AlF 3 , LiF, MgF 2 , CaF 2 , SrF 2 , BaF 2 , Na 3 AlF 6 , Na An optical thin film having a sufficiently low refractive index can be obtained by using 5 Al 3 F 14 or a mixture thereof.
According to the invention according to claim 3, in addition to the above effects, the fluororesin of the invention according to claim 1 is characterized in that the fluororesin is ethylene tetrafluoride resin (PTFE), ethylene trifluoride chloride resin (PCTFE), and hexafluoroethylene propylene. When the resin (PFEP), vinyl fluoride resin (PVF) or vinylidene fluoride resin (PVDF) is used, the durability and stability of the resin are excellent, so that the supply of fluorine works effectively and the refractive index Can be obtained. In addition, since these fluororesins are easily available, stable production can be continued.
[Brief description of the drawings]
FIG. 1 is a table showing a spectral reflection characteristic of an antireflection film formed by a method of manufacturing an optical thin film according to a first embodiment.
FIG. 2 is a table showing a spectral reflection characteristic of an antireflection film formed by a method of manufacturing an optical thin film according to a second embodiment.
FIG. 3 is an arrangement diagram in which a low refractive index material is arranged on a cathode according to a third embodiment.
FIG. 4 is a table showing a spectral reflection characteristic of an antireflection film formed by a method of manufacturing an optical thin film according to a third embodiment.

Claims (9)

無機フッ化物とフッ素樹脂との混合物で、あるいは前記フッ化物の上にフッ素樹脂を置いて、あるいは前記フッ化物を分割してその内のいくつかをフッ素樹脂とするように構成した固体状態のターゲットを、スパッタリングすることにより、基板上に薄膜を形成することを特徴とする光学薄膜の製造方法。A solid-state target composed of a mixture of an inorganic fluoride and a fluororesin, or a fluororesin placed on the fluoride, or the fluoride is divided so that some of the fluoride is a fluororesin Forming a thin film on a substrate by sputtering. 前記無機フッ化物が、AlF3、LiF、MgF2、CaF2、SrF2、BaF2 Na AlF 、NaAl14またはこれらの混合物からなることを特徴とする請求項1記載の光学薄膜の製造方法。The inorganic fluoride, AlF 3, LiF, according to claim 1, characterized in that it consists of MgF 2, CaF 2, SrF 2 , BaF 2, Na 3 AlF 6, Na 5 Al 3 F 14 or mixtures thereof Manufacturing method of optical thin film. 前記フッ素樹脂が、四フッ化エチレン樹脂(PTFE)、三フッ化塩化エチレン樹脂(PCTFE)、六フッ化エチレンプロピレン樹脂(PFEP)、フッ化ビニル樹脂(PVF)またはフッ化ビニリデン樹脂(PVDF)からなることを特徴とする請求項1又は2記載の光学薄膜の製造方法。The fluororesin is made of tetrafluoroethylene resin (PTFE), ethylene trifluoride chloride resin (PCTFE), hexafluoroethylene propylene resin (PFEP), vinyl fluoride resin (PVF) or vinylidene fluoride resin (PVDF); The method for producing an optical thin film according to claim 1, wherein: 前記スパッタリングは、高周波マグネトロンスパッタリングであることを特徴とする請求項1乃至3のいずれかに記載の光学薄膜の製造方法。4. The method according to claim 1, wherein the sputtering is high-frequency magnetron sputtering. 前記基板は、ガラス基板またはポリカーボネート樹脂基板であることを特徴とする請求項1乃至3のいずれかに記載の光学薄膜の製造方法。4. The method according to claim 1, wherein the substrate is a glass substrate or a polycarbonate resin substrate. 前記スパッタリングする際のガスは、OThe gas for the sputtering is O 2 2 、ArとO, Ar and O 2 、Ar、またはHeとO, Ar, or He and O 2 のいずれかであることを特徴とする請求項1乃至3のいずれかに記載の光学薄膜の製造方法。The method for producing an optical thin film according to any one of claims 1 to 3, wherein: 前記薄膜は、屈折率が1.37〜1.43であることを特徴とする請求項1乃至3のいずれかに記載の光学薄膜の製造方法。4. The method according to claim 1, wherein the thin film has a refractive index of 1.37 to 1.43. 前記混合物の無機フッ化物に対する有機物の混合割合は、ターゲット表面の面積比1%以上であることを特徴とする請求項1乃至3のいずれかに記載の光学薄膜の製造方法。4. The method according to claim 1, wherein a mixture ratio of the organic substance to the inorganic fluoride in the mixture is 1% or more of an area ratio of a target surface. 5. 前記フッ素樹脂は四フッ化エチレン樹脂(PTFE)であることを特徴とする請求項3記載の光学薄膜の製造方法。The method according to claim 3, wherein the fluororesin is a tetrafluoroethylene resin (PTFE).
JP25913994A 1994-09-29 1994-09-29 Manufacturing method of optical thin film Expired - Fee Related JP3560655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25913994A JP3560655B2 (en) 1994-09-29 1994-09-29 Manufacturing method of optical thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25913994A JP3560655B2 (en) 1994-09-29 1994-09-29 Manufacturing method of optical thin film

Publications (2)

Publication Number Publication Date
JPH08101301A JPH08101301A (en) 1996-04-16
JP3560655B2 true JP3560655B2 (en) 2004-09-02

Family

ID=17329874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25913994A Expired - Fee Related JP3560655B2 (en) 1994-09-29 1994-09-29 Manufacturing method of optical thin film

Country Status (1)

Country Link
JP (1) JP3560655B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3897853B2 (en) * 1997-03-12 2007-03-28 株式会社アルバック Method for producing water-repellent window material
JP4803416B2 (en) 2004-02-09 2011-10-26 コニカミノルタオプト株式会社 Optical pickup device
CN103882392A (en) * 2012-12-21 2014-06-25 比亚迪股份有限公司 Preparation method of fingerprint resistant film and fingerprint resistant film
KR20160092896A (en) * 2015-01-28 2016-08-05 한국화학연구원 Fluoropolymer composite target for deposition
JP2017067836A (en) * 2015-09-28 2017-04-06 リコーイメージング株式会社 Ocular optical system
JP7157976B2 (en) * 2018-07-31 2022-10-21 國雄 吉田 Method for forming thin film and porous thin film
CN111910152B (en) * 2020-09-01 2022-10-25 台州星星光电科技有限公司 Coating method of hydrophobic alkali-resistant coating on surface of cover plate

Also Published As

Publication number Publication date
JPH08101301A (en) 1996-04-16

Similar Documents

Publication Publication Date Title
JP3808917B2 (en) Thin film manufacturing method and thin film
KR102218086B1 (en) Color solar module for bipv and manufacturing method thereof
JP4854552B2 (en) Antireflection film and optical component having the same
EP1437609A1 (en) Optical element and production method therefor, and band pass filter, near infrared cut filter and anti-reflection film
JP3905035B2 (en) Method for forming optical thin film
JP3560655B2 (en) Manufacturing method of optical thin film
JP2003248103A (en) Anti-reflection film, optical lens and optical lens unit
JP2006317603A (en) Front surface mirror
JP2007310335A (en) Front surface mirror
JP2005031298A (en) Transparent substrate with antireflection film
US5879820A (en) Multilayer stack of fluoride materials usable in optics and its production process
JP4764137B2 (en) Anti-reflection coating
JP2566634B2 (en) Multi-layer antireflection film
EP3605154B1 (en) Thin film forming method and porous thin film
JP2007127725A5 (en)
JP2007041194A (en) Antireflection film and optical film
JPH01257801A (en) Antireflection film
JP3670697B2 (en) Optical thin film manufacturing method
JPH09263936A (en) Production of thin film and thin film
JP3404346B2 (en) Method of manufacturing optical thin film and method of manufacturing substrate having optical thin film
JP3353931B2 (en) Optical thin film, optical component formed with this optical thin film, antireflection film, and plastic optical component formed with this antireflection film
JP3401062B2 (en) Optical thin film and method for manufacturing the same
JPH08211201A (en) Optical thin film and production therefor
JP2001295039A (en) Water-repellent article, and method of water-repellent thin film coating
JP2001262317A (en) Optical thin film and its production method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040526

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees