JP3559475B2 - Liquid separation membrane module - Google Patents

Liquid separation membrane module Download PDF

Info

Publication number
JP3559475B2
JP3559475B2 JP16861099A JP16861099A JP3559475B2 JP 3559475 B2 JP3559475 B2 JP 3559475B2 JP 16861099 A JP16861099 A JP 16861099A JP 16861099 A JP16861099 A JP 16861099A JP 3559475 B2 JP3559475 B2 JP 3559475B2
Authority
JP
Japan
Prior art keywords
melting point
knitted fabric
separation membrane
membrane module
liquid separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16861099A
Other languages
Japanese (ja)
Other versions
JP2000354743A (en
Inventor
卓司 新谷
弘喜 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP16861099A priority Critical patent/JP3559475B2/en
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to EP99126091A priority patent/EP1059114B1/en
Priority to AT99126091T priority patent/ATE306312T1/en
Priority to DE69927674T priority patent/DE69927674D1/en
Priority to ES99126091T priority patent/ES2249867T3/en
Priority to US09/484,338 priority patent/US6454942B1/en
Priority to CNB001089838A priority patent/CN1136950C/en
Publication of JP2000354743A publication Critical patent/JP2000354743A/en
Application granted granted Critical
Publication of JP3559475B2 publication Critical patent/JP3559475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は液体分離膜モジュールにおいて、原液を受圧する半透膜の裏面側を支持する流路材を組み込み熱水や高温の原水を処理することを可能とした耐熱液体分離膜モジュールに関する。
【0002】
【従来の技術】
半透膜を用いた液体分離膜モジュールは、その半透膜を長尺の封筒(袋状)に形成すると共に、その封筒内に半透膜側からかかる原液圧力を支え且つ透過液を案内する流路となる流路材が内挿し、その流路材を内挿した封筒解放端側を中空軸に固定してのり巻き状に高密度に巻き付けてなるスパイラル型が代表的である。このような液体分離膜モジュールは、いずれも封筒の外側に膜の逆浸透圧以上の高圧の原液を通過させ、膜を通過した透過液は封筒の内側を通って取り出される。封筒自体高圧で外側から加圧されるため、透過液の流路として挿入されている流路材を押しつぶすことになり液の流れを悪くするので、一般に封筒の内側に封筒の外側を加圧されても透過液の流路をなす流路材がつぶされないように流路材自体を剛直化させ変形に耐えられるようにしている。このような液体分離膜モジュールは広くボイラ用水の前処理、排水の再利用、海水の淡水化や超純水などの造水装置として実用化されおり、使用する水温は40℃以下である。
【0003】
従来、この流路材に用いられているものは織物、編物などの多孔性でその内部に延びる微細な溝をもつ布帛が用いられ、特に表面に溝をもつ構造のものが用いられてきた。これらの布帛は膜を介して原液に加わる圧力によっても容易に変形しないようにエポキシ樹脂やメラミン樹脂などを含浸させて剛直化させていた。この要求を満たすには上記布帛の重量の半分近くまで樹脂を付着するように樹脂加工する必要がある。しかし、高純度の透過水を必要とする用途や高温の液体を処理する用途においては含浸樹脂の溶出による問題が生じていた。とくに、膜モジュールの処理対象とする原液が食品用の液や医薬用の液である場合、無菌であることが要求される。そのため膜分離処理の開始前あるいは終了後に雑菌汚染を防ぐために熱水による殺菌を行う。或いは、汚染防止や粘度を調整するためや結晶化を防止するために処理対象とする原液そのものを40℃を超える高温で処理することがある。
【0004】
前記問題を解決するために、3枚オサを用いたトリコット編機により、地編地の凸部分になる繊維が地組織の繊維より太い繊度のものを用い、かつ融着繊維を編み込んで編地全体を剛直構造にした流路材が提案されている(特公平3−66008号公報)。しかしながら、この流路材は3枚オサを用いること及び太い繊度(デニール)の糸と細い繊度(デニール)の糸を用いるため、生産性が低くコストが高くなるという問題があった。とくに低融点成分と高融点成分から成るコンジュゲート糸を使用する場合は、コストアップは無視できない問題であった。さらに流路材の厚さを薄くすることができないという問題もあった。
【0005】
本発明は、前記従来技術の問題を解決するため、流路抵抗を上げることなく透過液生産性を損なわなずに流路材の構造及び剛直性を長時間維持し、かつ溶出のない薄い厚さの流路材を組み込んだ液体分離膜モジュールをコスト安く提供することを目的とする。
【0006】
【発明が解決しようとする課題】
前記目的を達成するため、本発明の耐熱液体分離膜モジュール用流路材は、原液を受圧する半透膜の裏面側を支持する流路材を配置して形成した液体分離膜モジュールにおいて、
前記流路材は、2枚オサを有するトリコット編機により編成されたトリコット編地で、かつ地組織部分と凸部分とを有し、
前記トリコット編地はバック(逆)ハーフ組織であり、かつ一方のオサで形成された編目のシンカ・ループ部を前記地組織部分とし、ニードル・ループ部及び他方のオサで形成された鎖部分を前記凸部分とし、
前記トリコット編地を構成する繊維は、高融点成分が芯に配置され、低融点成分が鞘に配置された芯鞘型コンジュゲート繊維からなる熱可塑性合成繊維フィラメント糸条であり、
前記地組織部分と凸部分とを構成する熱可塑性合成繊維フィラメント糸条は、実質的に同一繊度であり、
前記トリコット編地の構成糸条は前記低融点成分の融着により、互いに接着され編地全体が剛直化され、前記地組織部分に透過水が流れ、前記凸部分が前記地組織部分の空間を保持して流路材が形成されていることを特徴とする。
【0007】
前記液体分離膜モジュールにおいては、地組織部分と凸部分とを構成する熱可塑性合成繊維フィラメント糸条の繊度は、45〜55デニールの範囲であることが好ましい。
【0009】
次に本発明の液体分離膜モジュールの製造方法は、原液を受圧する半透膜の裏面側を支持する流路材を用いた液体分離膜モジュールの製造方法において、
高融点成分が芯に配置され、低融点成分が鞘に配置された芯鞘型コンジュゲート繊維からなる熱可塑性合成繊維フィラメント糸条を使用し、
2枚オサを有するトリコット編機により、地組織部分と凸部分とを編成し、
前記トリコット編地はバック(逆)ハーフ組織であり、かつ一方のオサで形成された編目のシンカ・ループ部を前記地組織部分とし、ニードル・ループ部及び他方のオサで形成された鎖部分を前記凸部分とし、
その際に、前記地組織部分と凸部分とを構成する熱可塑性合成繊維フィラメント糸条は、実質的に同一繊度とし、
編地を編成した後に、コンジュゲート繊維の低融点成分の融点以上、高融点成分の軟化点未満の加熱処理をし、前記トリコット編地中の構成糸条を相互に融着固化して編地全体を剛直化させることにより、前記地組織部分に透過水が流れ、前記凸部分が前記地組織部分の空間を保持して流路材を形成し、
前記流路材を半透膜の裏面側に配置して液体分離膜モジュールを形成したことを特徴とする。
【0010】
前記方法においては、地組織部分と凸部分とを構成する熱可塑性合成繊維フィラメント糸条の繊度は、45〜55デニールの範囲であることが好ましい。
【0012】
【発明の実施の形態】
本発明の流路材の素材となるトリコット編地は2枚のオサ数のトリコット編機により編成される。その編地の一例である2枚オサ編地を図1、図2(図1のAの部分の拡大図)及び図3の(A),(B)に示した。図1〜2に示す2枚オサ編地は、地組織部分の糸条Fと同じ太さの凸部分の糸条Bが編込まれた構成になっている。上記糸条Fは、フロント・オサに供給し、図3(A)に示すような[1−0/1−2]に編成する。糸条Bはバック・オサに供給して図3(B)に示すような[2−3/1−O]に編成する。この編み組織を、バック(逆)ハーフ組織という。このような編成によってフロント・オサで形成された編目のシンカ・ループ部(デンビー編または1/1トリコット編)が地組織部分となり、ニードル・ループ部及びバック・オサで形成された鎖部分がコード編となり凸部分となる。すなわち、図1のXの部分が地組織部分となり、ここを透過水が流れ、図1のYの部分が凸部分となり、地組織部分Xの空間を保持する。図1の矢印Lは編み立て方向である。
【0013】
前記の通り、本発明の流路材素材のトリコット編地は同繊度の熱可塑性合成繊維フィラメント糸条を用い、2枚オサのトリコット編機を使用して編成することができ、一方の糸条により地組織部分を編成し、この糸条が形成するニードル・ループ部にもう一方の糸条を編むことによって凸部分を形成するもので、これによって地組織部分と凸部分とをもったトリコット編地が形成される。
【0014】
前記のように編成したトリコット編地は、さらに糸条相互を接着処理して剛直化させ、高圧の原液に対して簡単に潰れることがないようにする必要がある。
【0015】
低融点成分と高融点成分とからなる熱可塑性合成繊維フィラメント糸条としては、コンジュゲート糸(複合糸)の形態にすればよい。複合糸の場合は、鞘側に低融点成分を配置し、芯側に高融点成分を配置した芯鞘型複合糸が接着性が優れることから好ましい。
【0016】
2種類の異なる成分の比率は接着剤となる低融点成分が50%を超えない方が好ましいが、溶融後に骨格となる高融点成分が強度的に十分機能するならばこの限りではない。また、両成分の融点差は少なくとも10℃、好ましくは20℃以上あれば十分である。
【0017】
高融点成分と低融点成分との代表的な組合せは、高融点ポリエステルと低融点ポリエステル、高融点ポリアミドと低融点ポリアミド、高融点ポリオレフィンと低融点ポリオレフィンなどがあり、このうちでも融着加工後の剛性などの点から高融点ポリエステルと低融点ポリエステルとの組合せが好ましい。低融点成分は一般的に高分子共重合体とすることによって簡単に得ることができ、その融点差は共重合比率の変更、共重合成分の追加、共重合成分の変更、立体規則性あるいは重合度の変更等によって変更することができる。また、これとは別に融点差のある異種重合体との組合せによってもよい。ポリエステルの場合は、一般的に1モル%共重合することにより融点が2℃下がる。ポリエステルに共重合させるモノマー成分は、イソフタル酸、アジピン酸などの酸成分が一般的である。ポリエチレンテレフタレート(融点約260℃)を高融点成分として用いる場合、低融点成分にはポリブチレンテレフタレート(融点約225℃)またはポリブチレンテレフタレートに任意のモノマーを所定量共重合した共重合体を用いる。例えばポリブチレンテレフタレート(75モル%)−イソフタレート(25モル%)共重合体の融点は、融点約175℃となる。
【0018】
前記した両成分の組合せからなる熱可塑性合成繊維フィラメント糸条は、地組織部分及び凸部分の糸条において使用する必要があり、また、両部分に使用する低融点成分は同一の融点であることが望ましい。
【0019】
図4及び図5は、前記した流路材を使用したスパイラル型の液体分離膜モジュールを例示したものである。
【0020】
11は流体分離素子であり、12はこの流体分離素子11を収納している円筒容器である。流体分離素子11は円筒容器12内で一端をV字形のシール材13によりシールされ、他方の端部の透過液排出管14を円筒容器12の外側へ突出させている。円筒容器12はV字形のシール材13の開いた方の側壁に原液供給管15を、またもう一方の側壁に原液排出管16を設けている。
【0021】
液体分離素子11は、図5に示すように中心に小孔17を有する中空管からなる透過液排出管22を有し、その外側を封筒状の半透膜19がスパイラル状に巻回している。封筒状の半透膜19はその内側に本発明による透過液流路材20を内挿し、その開口端を上記小孔17に対向させて透過液排出管22の内側に連通している。またスパイラル状に巻回した封筒状の半透膜19の外側面同士の間には原液流路材21が介在している。18は封止部である。
【0022】
【実施例1】
高融点ポリエステル(ポリエチレンテレフタレート:融点約260℃)を芯成分(70重量%)に配置し、低融点ポリエステル(ポリブチレンテレフタレート(75モル%)−イソフタレート(25モル%)共重合体(融点約175℃))を鞘成分(30重量%)に配置し、トータル繊度が50デニール、フィラメント数が12本のフィラメント糸条を用意した。
【0023】
上記フィラメント糸条を用い、図1〜3に示す編組織(バック(逆)ハーフ組織)により28ゲージ2枚オサのトリコット編地を形成した。その後、前記トリコット編地を精練し、乾燥後、熱処理後のウエル、コース密度がそれぞれ38本/inch、45本/inchとなるようにテンタ条件を決めて180℃で1分間の熱融着加工を行い、本発明に相当する流路材Pを作成した。
【0024】
一方、芳香族ポリアミド系複合膜(トリメシン酸クロライドとm−フェニレンジアミンとを界面重縮合させた膜、日東電工社製)を準備し、上記流路材Pを分離膜面に配置して、図5に示すように耐熱性スパイラル型分離膜モジュール(膜面積6.5 2 )を製作し、図4に示す円筒容器12内に組み込んだ。
【0025】
上記耐熱性スパイラル型分離膜モジュールを1500ppm NaCl水溶液(PH=6.5に調整)を原水に用いて、圧力15kgf/cm 2 、温度23℃の条件下で逆浸透試験を行った。
【0026】
次に、温度90℃の熱水にて無加圧で1時間滅菌処理のため運転した。運転後、前記の逆浸透試験を行った。その結果、前記加熱滅菌処理前は、透過水量(m/day)は7.1であり、処理後は6.9であった。
【0027】
【比較例1】
実施例1の熱可塑性合成繊維フィラメント糸条にかえて、同繊度のレギュラーポリエステルフィラメント(ポリエチレンテレフタレート)糸条を用い、上記実施例と同様にトリコット編地を精錬した後、エポキシ樹脂(含浸量18wt%)にて剛直化させた流路材Qを用いた以外は、実施例1と同様にして温度90℃の熱水にて無加圧で1時間滅菌処理のため運転した。実施例1と同様に、前記の逆浸透試験を行い、スパイラル型分離膜モジュールの性能を評価した。
【0028】
比較例1の場合は、90℃の1時間滅菌処理のための運転前後において透過水量(m/day)は7.1から4.3に大幅に低下した。しかし、実施例1の本発明の耐熱性スパイラル型分離膜モジュールを使用すれば、90℃の1時間滅菌処理のための運転前後において透過水量(m/day)は7.1から6.9までの低下にとどめることができた。即ち本発明の分離膜モジュールを用いることで熱水処理後の透過水量は、従来の分離膜モジュールを用いる場合の1.5倍以上を達成できる。また、比較例1の場合は、90℃の1時間滅菌処理のための運転直後に有機成分が透過水に混入していることを紫外・可視分光光度計を用いて確認したが、実施例1の場合は、同様の分析を行った結果、上記有機成分が透過水に混入していないことを確認した。
【0029】
【実施例2】
実施例1で製作した耐熱性スパイラル型分離膜モジュールを用い、1500ppm NaCl水溶液(pH=6.5に調整)を原水に用いて、圧力15kgf/cm 2 、温度60℃の条件下で200時間の連続逆浸透試験を行った。その結果、200時間前後の透過水量(m3/day)は7.1から6.8とほとんど低下しなかった。
【0030】
【比較例2】
比較例1のスパイラル型分離膜モジュールを用いた以外は実施例2と同様な試験を行った。
【0031】
比較例2の場合、200時間前後の透過水量(m/day)は7.1から3.3に連続的に低下した。これに対し、実施例2の本発明の耐熱性スパイラル型分離膜モジュールを使用した場合、200時間前後の透過水量(m/day)は7.1から6.8とほとんど低下しなかった。また、連続運転により比較例1より比較例2の方が低下度合いが大きく、この原因として、剛直化させるためのエポキシ樹脂が60℃×200時間の連続運転間に溶出し、流路材Qが操作圧力により潰れ透過側の抵抗が上昇し透過水量の低下に繋がった。実施例2の場合エポキシ樹脂を含浸していないため剛直性が保たれており透過水量の低下を阻止することができた。
【0032】
以上の実施例、比較例から本発明の優位性が確認できた。なお、本発明と特公平3−66008号公報の3枚オサを用いて凸部分に太繊度の糸を編み込んだ場合の比較は、下記の通りとなる。
(1)生産性は、従来技術の3枚オサと比較して、本発明の2枚オサは約1.5倍、生産性が高く、その分コストダウンが可能となる。
(2)従来技術の3枚オサは、3種類の糸を使用するために在庫管理や糸の管理が繁雑となるが、本発明の2枚オサは繁雑性は軽減される。
(3)3枚オサの経編機は特殊であるが、2枚オサの経編機は汎用であり、設備的に有利である。
(4)本発明の2枚オサにすることにより、流路を確保しつつ流路材の厚みを薄くできるので、コンパクトな流路材が形成できる。
【0033】
【発明の効果】
以上説明したとおり、本発明の液体分離膜モジュールは、流路抵抗を上げることなく透過液生産性を損なわずに流路材の構造及び剛直性を長時間維持し、かつ溶出のない薄い流路材を組み込んだ液体分離膜モジュールをコスト安く提供できる。
【図面の簡単な説明】
【図1】本発明の一実施例で用いる2枚オサのトリコット編地の平面編み立て図。
【図2】図1のA部の部分拡大編み立て図。
【図3】本発明の一実施例で用いる2枚オサのトリコット編地の組織図。
【図4】本発明の一実施例のスパイラル型の液体分離膜モジュールの断面図。
【図5】図4のI−I線断面図。
【符号の説明】
11 流体分離素子
12 円筒容器
13 V字形のシール材
14 透過液排出管
15 原液供給管
16 原液排出管
17 小孔
18 封止部
19 逆浸透透膜
20 透過液流路材
21 原液流路材
22 透過液排出管
X 地組織部分で形成される透過液の流路
Y 鎖部で形成される凸部分
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a heat-resistant liquid separation membrane module which incorporates a flow path material for supporting a back surface side of a semipermeable membrane for receiving a stock solution and is capable of treating hot water or high-temperature raw water.
[0002]
[Prior art]
In a liquid separation membrane module using a semipermeable membrane, the semipermeable membrane is formed in a long envelope (bag-like shape), and the pressure of the stock solution applied from the semipermeable membrane side to the envelope is supported and the permeated liquid is guided. A typical example is a spiral type in which a flow path material serving as a flow path is inserted, and the open end side of the envelope in which the flow path material is inserted is fixed to a hollow shaft and is wound in a high-density form. In any of such liquid separation membrane modules, a stock solution having a high pressure equal to or higher than the reverse osmosis pressure of the membrane passes through the outside of the envelope, and the permeate passing through the membrane is taken out through the inside of the envelope. Since the envelope itself is pressurized from the outside with a high pressure, the flow path material inserted as a flow path for the permeated liquid is crushed and the flow of the liquid is deteriorated, so that the outside of the envelope is generally pressurized inside the envelope. Even so, the flow path material itself is made rigid so that the flow path material forming the flow path of the permeated liquid is not crushed, so that it can withstand deformation. Such a liquid separation membrane module is widely used for pretreatment of boiler water, reuse of wastewater, desalination of seawater, ultrapure water, etc., and the water temperature used is 40 ° C. or lower.
[0003]
Heretofore, porous materials such as woven fabrics and knitted fabrics having fine grooves extending into the inside thereof have been used as the material of the flow passage, and those having a structure having grooves on the surface have been used. These fabrics have been impregnated with an epoxy resin or a melamine resin so as to be rigid so that they are not easily deformed by the pressure applied to the stock solution via the membrane. To satisfy this requirement, it is necessary to process the resin so that the resin adheres to almost half of the weight of the cloth. However, in applications that require high-purity permeated water or applications that treat high-temperature liquids, problems have arisen due to elution of the impregnated resin. In particular, when the stock solution to be processed by the membrane module is a liquid for food or a liquid for medicine, it is required to be sterile. Therefore, sterilization with hot water is performed before or after the end of the membrane separation treatment to prevent contamination by various bacteria. Alternatively, the stock solution itself to be treated may be treated at a high temperature exceeding 40 ° C. in order to prevent contamination, adjust the viscosity, or prevent crystallization.
[0004]
In order to solve the above-mentioned problem, a tricot knitting machine using a three-piece knitting machine uses a fiber having a fineness in which a convex portion of the ground knitted fabric is thicker than a fiber of the ground texture, and knits a fusion fiber to knit the knitted fabric. A channel material having a rigid structure as a whole has been proposed (Japanese Patent Publication No. 3-66008). However, this passage material has a problem in that the productivity is low and the cost is high because a three-piece yarn is used and a yarn having a large fineness (denier) and a yarn having a fine fineness (denier) are used. In particular, when a conjugate yarn composed of a low melting point component and a high melting point component is used, the increase in cost has been a problem that cannot be ignored. Further, there is a problem that the thickness of the flow path material cannot be reduced.
[0005]
The present invention solves the above-mentioned conventional problems by maintaining the structure and rigidity of the flow path material for a long time without increasing the flow path resistance and without impairing the permeate productivity, and having a thin thickness without elution. It is an object of the present invention to provide a liquid separation membrane module incorporating a flow channel material at a low cost.
[0006]
[Problems to be solved by the invention]
To achieve the above object, the heat-resistant liquid separation membrane module flow path material of the present invention is a liquid separation membrane module formed by arranging a flow path material that supports a back side of a semipermeable membrane that receives an undiluted solution,
The flow path material is a tricot knitted fabric knitted by a tricot knitting machine having two pieces, and has a ground structure portion and a convex portion,
The tricot knitted fabric has a back (reverse) half structure, and a sinker loop portion of a stitch formed by one mosa is the ground structure portion, and a chain portion formed by a needle loop portion and the other mosa is formed. The convex portion,
The fiber constituting the tricot knitted fabric is a thermoplastic synthetic fiber filament yarn composed of a core-sheath conjugate fiber in which a high melting point component is disposed in a core and a low melting point component is disposed in a sheath,
The thermoplastic synthetic fiber filament yarn constituting the ground structure portion and the convex portion has substantially the same fineness,
The constituent yarns of the tricot knitted fabric are adhered to each other by the fusion of the low melting point component, the entire knitted fabric is stiffened , the permeated water flows through the ground texture portion, and the convex portion fills the space of the ground texture portion. It is characterized in that the channel material is formed while being held .
[0007]
In the liquid separation membrane module, it is preferable that the fineness of the thermoplastic synthetic fiber filament yarn constituting the ground structure portion and the convex portion is in the range of 45 to 55 denier.
[0009]
Next, the method for producing a liquid separation membrane module of the present invention is a method for producing a liquid separation membrane module using a flow path material that supports the back side of a semipermeable membrane that receives a stock solution.
Using a thermoplastic synthetic fiber filament yarn composed of a core-sheath type conjugate fiber in which a high melting point component is disposed in a core and a low melting point component is disposed in a sheath,
With a tricot knitting machine having two mats, knit a ground structure part and a convex part,
The tricot knitted fabric has a back (reverse) half structure, and a sinker loop portion of a stitch formed by one mosa is the ground structure portion, and a chain portion formed by a needle loop portion and the other mosa is formed. The convex portion,
At that time, the thermoplastic synthetic fiber filament yarn constituting the ground structure portion and the convex portion has substantially the same fineness,
After knitting the knitted fabric, the conjugate fiber is subjected to a heat treatment at a temperature equal to or higher than the melting point of the low melting point component and lower than the softening point of the high melting point component, and the constituent yarns in the tricot knitted fabric are mutually fused and solidified to form a knitted fabric. By making the whole rigid , permeated water flows into the ground tissue portion, and the convex portion forms a flow path material while holding the space of the ground tissue portion ,
A liquid separation membrane module is formed by arranging the channel material on the back side of the semipermeable membrane.
[0010]
In the above method, the fineness of the thermoplastic synthetic fiber filament yarn constituting the ground structure portion and the convex portion is preferably in the range of 45 to 55 denier.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The tricot knitted fabric used as the material of the channel material of the present invention is knitted by a tricot knitting machine of two pieces. FIGS. 1 and 2 (enlarged views of the portion A in FIG. 1) and FIGS. 3A and 3B show a two-piece knitted fabric as an example of the knitted fabric. The two-piece knitted fabric shown in FIGS. 1 and 2 has a configuration in which a thread B of a convex portion having the same thickness as the thread F of the ground structure is knitted. The yarn F is supplied to a front cuff and knitted into [1-0 / 1-2] as shown in FIG. The yarn B is supplied to the back cover and knitted into [2-3 / 1-O] as shown in FIG. This knitting structure is called a back (reverse) half structure. With such knitting, the sinker loop portion (Denby or 1/1 tricot) of the stitch formed by the front ossa becomes the ground structure portion, and the chain portion formed by the needle loop portion and the back ossa is a cord. It becomes a knit and becomes a convex part. That is, the portion X in FIG. 1 is a ground tissue portion, and the permeated water flows therethrough, and the portion Y in FIG. The arrow L in FIG. 1 is the knitting direction.
[0013]
As described above, the tricot knitted fabric of the channel material according to the present invention can be knitted using a two-sheet tricot knitting machine using a thermoplastic synthetic fiber filament yarn of the same fineness. The knitting of the ground structure portion by knitting, the knitting of the other thread into the needle loop portion formed by this yarn forms a convex portion, and thereby the tricot knit having the ground structure portion and the convex portion. The earth is formed.
[0014]
In the tricot knitted fabric knitted as described above, it is necessary to further bond the yarns to each other so as to be rigid, so that the tricot knitted fabric is not easily crushed by a high-pressure stock solution.
[0015]
The thermoplastic synthetic fiber filament comprising the low melting point component and the high melting point component may be in the form of a conjugate yarn (composite yarn). In the case of a composite yarn, a core-sheath type composite yarn in which a low melting point component is disposed on the sheath side and a high melting point component is disposed on the core side is preferable because of excellent adhesiveness.
[0016]
The ratio of the two different components is preferably such that the low-melting-point component serving as an adhesive does not exceed 50%, but this is not a limitation as long as the high-melting-point component serving as a skeleton after melting functions sufficiently in strength. The difference between the melting points of the two components is at least 10 ° C, preferably at least 20 ° C.
[0017]
Typical combinations of high-melting point component and low-melting point component include high-melting polyester and low-melting polyester, high-melting polyamide and low-melting polyamide, high-melting polyolefin and low-melting polyolefin, among which, after fusion processing, A combination of a high-melting polyester and a low-melting polyester is preferred from the viewpoint of rigidity and the like. In general, the low melting point component can be easily obtained by using a high molecular weight copolymer, and the difference in melting point can be changed by changing the copolymerization ratio, adding the copolymerization component, changing the copolymerization component, stereoregularity or polymerization. It can be changed by changing the degree. Alternatively, a combination with a different polymer having a different melting point may be used. In the case of polyester, the melting point is lowered by 2 ° C. by generally copolymerizing 1 mol%. The monomer component to be copolymerized with the polyester is generally an acid component such as isophthalic acid and adipic acid. When polyethylene terephthalate (melting point: about 260 ° C.) is used as the high melting point component, polybutylene terephthalate (melting point: about 225 ° C.) or a copolymer obtained by copolymerizing a predetermined amount of an arbitrary monomer with polybutylene terephthalate is used as the low melting point component. For example, the melting point of the polybutylene terephthalate (75 mol%)-isophthalate (25 mol%) copolymer is about 175 ° C.
[0018]
The thermoplastic synthetic fiber filament yarn composed of a combination of the two components described above must be used in the ground texture portion and the convex portion yarn, and the low melting point component used in both portions has the same melting point. Is desirable.
[0019]
4 and 5 illustrate a spiral-type liquid separation membrane module using the above-described flow path material.
[0020]
Reference numeral 11 denotes a fluid separation element, and reference numeral 12 denotes a cylindrical container housing the fluid separation element 11. One end of the fluid separation element 11 is sealed in the cylindrical container 12 by a V-shaped sealing material 13, and the permeate discharge pipe 14 at the other end protrudes outside the cylindrical container 12. The cylindrical container 12 is provided with a stock solution supply pipe 15 on the opened side wall of the V-shaped sealing material 13 and a stock solution discharge pipe 16 on the other side wall.
[0021]
As shown in FIG. 5, the liquid separation element 11 has a permeated liquid discharge pipe 22 formed of a hollow pipe having a small hole 17 at the center, and an envelope-shaped semipermeable membrane 19 is spirally wound around the outside thereof. I have. The envelope-shaped semi-permeable membrane 19 has a permeate flow channel material 20 according to the present invention inserted therein, and has an open end facing the small hole 17 and communicates with the inside of the permeate discharge pipe 22. An undiluted liquid channel material 21 is interposed between the outer surfaces of the envelope-shaped semipermeable membrane 19 wound in a spiral shape. 18 is a sealing part.
[0022]
Embodiment 1
A high-melting polyester (polyethylene terephthalate: melting point of about 260 ° C.) is disposed on a core component (70% by weight), and a low-melting polyester (polybutylene terephthalate (75 mol%)-isophthalate (25 mol%) copolymer (melting point: about 175 ° C.)) was placed in the sheath component (30% by weight), and a filament yarn having a total fineness of 50 denier and 12 filaments was prepared.
[0023]
Using the filament yarn, a tricot knitted fabric of 28 gauge 2 pieces was formed with a knitting structure (back (reverse) half structure) shown in FIGS. Thereafter, the tricot knitted fabric is scoured, dried, and heat-fused at 180 ° C. for 1 minute by determining tenter conditions so that the well and the course density after the heat treatment are 38 lines / inch and 45 lines / inch, respectively. Was performed to prepare a flow path material P corresponding to the present invention.
[0024]
On the other hand, an aromatic polyamide-based composite membrane (a membrane obtained by interfacial polycondensation of trimesic acid chloride and m-phenylenediamine, manufactured by Nitto Denko Corporation) was prepared, and the flow path material P was arranged on the separation membrane surface. As shown in FIG. 5, a heat-resistant spiral-type separation membrane module (with a membrane area of 6.5 m 2 ) was manufactured and incorporated into the cylindrical container 12 shown in FIG.
[0025]
A reverse osmosis test was performed on the heat-resistant spiral-type separation membrane module under the conditions of a pressure of 15 kgf / cm 2 and a temperature of 23 ° C. using a 1500 ppm NaCl aqueous solution (adjusted to PH = 6.5) as raw water.
[0026]
Next, operation was carried out for sterilization for one hour without pressurization with hot water at a temperature of 90 ° C. After the operation, the above-mentioned reverse osmosis test was performed. As a result, before the heat sterilization treatment, the amount of permeated water (m 3 / day) was 7.1, and after the treatment, it was 6.9.
[0027]
[Comparative Example 1]
Instead of the thermoplastic synthetic fiber filament yarn of Example 1, regular polyester filament (polyethylene terephthalate) yarn of the same fineness was used to refine the tricot knitted fabric in the same manner as in the above example, and then the epoxy resin (impregnation amount: 18 wt. %), The operation was carried out for sterilization for 1 hour without pressurization with hot water at a temperature of 90 ° C. in the same manner as in Example 1 except that the channel material Q stiffened at%) was used. The reverse osmosis test was performed in the same manner as in Example 1 to evaluate the performance of the spiral separation membrane module.
[0028]
In the case of Comparative Example 1, the amount of permeated water (m 3 / day) was significantly reduced from 7.1 to 4.3 before and after the operation for sterilization at 90 ° C. for 1 hour. However, when the heat-resistant spiral-type separation membrane module of the present invention of Example 1 is used, the amount of permeated water (m 3 / day) before and after the operation for sterilization at 90 ° C. for 1 hour is 7.1 to 6.9. We were able to keep down to until. That is, by using the separation membrane module of the present invention, the amount of permeated water after the hot water treatment can be at least 1.5 times that in the case of using the conventional separation membrane module. In the case of Comparative Example 1, it was confirmed using an ultraviolet / visible spectrophotometer that an organic component was mixed in the permeated water immediately after the operation for sterilization at 90 ° C. for 1 hour. In the case of the above, the same analysis was performed, and as a result, it was confirmed that the organic components were not mixed in the permeated water.
[0029]
Embodiment 2
Using the heat-resistant spiral-type separation membrane module manufactured in Example 1, using a 1500 ppm NaCl aqueous solution (adjusted to pH = 6.5) as raw water, at a pressure of 15 kgf / cm 2 and a temperature of 60 ° C. for 200 hours. Was subjected to a continuous reverse osmosis test. As a result, the permeated water amount (m 3 / day) around 200 hours hardly decreased from 7.1 to 6.8.
[0030]
[Comparative Example 2]
The same test as in Example 2 was performed except that the spiral-type separation membrane module of Comparative Example 1 was used.
[0031]
In the case of Comparative Example 2, the permeated water amount (m 3 / day) around 200 hours continuously decreased from 7.1 to 3.3. In contrast, when the heat-resistant spiral-type separation membrane module of the present invention of Example 2 was used, the permeated water amount (m 3 / day) after about 200 hours was hardly reduced from 7.1 to 6.8. In addition, the degree of reduction in Comparative Example 2 was larger than that in Comparative Example 1 due to continuous operation. This is because the epoxy resin for stiffening was eluted during continuous operation at 60 ° C. × 200 hours, and the flow path material Q was reduced. The operation pressure increased the resistance on the permeation side, leading to a decrease in the amount of permeated water. In the case of Example 2, since no epoxy resin was impregnated, rigidity was maintained, and a decrease in the amount of permeated water could be prevented.
[0032]
The superiority of the present invention was confirmed from the above Examples and Comparative Examples. The comparison between the present invention and a case where a yarn with a high fineness is knitted in the convex portion using the three-piece mat of Japanese Patent Publication No. 3-66008 is as follows.
(1) Compared with the conventional three-sheet mat, the productivity of the two-sheet mat according to the present invention is about 1.5 times higher, and the cost can be reduced accordingly.
(2) In the conventional three-piece thread, three types of yarns are used, so that inventory management and thread management are complicated, but the two-piece thread in the present invention is less complicated.
(3) A three-sheet warp knitting machine is special, but a two-sheet warp knitting machine is general-purpose and is advantageous in terms of equipment.
(4) By using two sheets of the present invention, the thickness of the flow path material can be reduced while securing the flow path, so that a compact flow path material can be formed.
[0033]
【The invention's effect】
As described above, the liquid separation membrane module of the present invention, a long period of time maintaining the structure and rigidity of the passage material without I a loss of permeate productivity without increasing the flow resistance, and thin without elution A liquid separation membrane module incorporating a flow path material can be provided at low cost.
[Brief description of the drawings]
FIG. 1 is a plane knitting diagram of a two-piece tricot knitted fabric used in one embodiment of the present invention.
FIG. 2 is a partially enlarged knitting diagram of a portion A in FIG. 1;
FIG. 3 is a structural diagram of a two-piece tricot knitted fabric used in one embodiment of the present invention.
FIG. 4 is a sectional view of a spiral liquid separation membrane module according to one embodiment of the present invention.
FIG. 5 is a sectional view taken along line II of FIG. 4;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Fluid separation element 12 Cylindrical container 13 V-shaped sealing material 14 Permeate discharge pipe 15 Raw liquid supply pipe 16 Raw liquid discharge pipe 17 Small hole 18 Sealing part 19 Reverse osmosis permeable membrane 20 Permeate liquid flow path material 21 Raw liquid flow path material 22 Permeate discharge pipe X Permeate flow path Y formed in the ground tissue portion Convex portion formed in chain

Claims (4)

原液を受圧する半透膜の裏面側を支持する流路材を配置して形成した液体分離膜モジュールにおいて、
前記流路材は、2枚オサを有するトリコット編機により編成されたトリコット編地で、かつ地組織部分と凸部分とを有し、
前記トリコット編地はバック(逆)ハーフ組織であり、かつ一方のオサで形成された編目のシンカ・ループ部を前記地組織部分とし、ニードル・ループ部及び他方のオサで形成された鎖部分を前記凸部分とし、
前記トリコット編地を構成する繊維は、高融点成分が芯に配置され、低融点成分が鞘に配置された芯鞘型コンジュゲート繊維からなる熱可塑性合成繊維フィラメント糸条であり、
前記地組織部分と凸部分とを構成する熱可塑性合成繊維フィラメント糸条は、実質的に同一繊度であり、
前記トリコット編地の構成糸条は前記低融点成分の融着により、互いに接着され編地全体が剛直化され、前記地組織部分に透過水が流れ、前記凸部分が前記地組織部分の空間を保持して流路材が形成されていることを特徴とする液体分離膜モジュール。
In a liquid separation membrane module formed by arranging a flow path material that supports the back side of a semipermeable membrane that receives a stock solution,
The flow path material is a tricot knitted fabric knitted by a tricot knitting machine having two pieces, and has a ground structure portion and a convex portion,
The tricot knitted fabric has a back (reverse) half structure, and a sinker loop portion of a stitch formed by one mosa is the ground structure portion, and a chain portion formed by a needle loop portion and the other mosa is formed. The convex portion,
The fiber constituting the tricot knitted fabric is a thermoplastic synthetic fiber filament yarn composed of a core-sheath conjugate fiber in which a high melting point component is disposed in a core and a low melting point component is disposed in a sheath,
The thermoplastic synthetic fiber filament yarn constituting the ground structure portion and the convex portion has substantially the same fineness,
The constituent yarns of the tricot knitted fabric are adhered to each other by the fusion of the low melting point component, the entire knitted fabric is stiffened , the permeated water flows through the ground texture portion, and the convex portion fills the space of the ground texture portion. A liquid separation membrane module, wherein a channel material is formed while being held .
地組織部分と凸部分とを構成する熱可塑性合成繊維フィラメント糸条の繊度は、45〜55デニールの範囲である請求項1に記載の液体分離膜モジュール。The liquid separation membrane module according to claim 1, wherein the fineness of the thermoplastic synthetic fiber filament yarn constituting the ground structure portion and the convex portion is in a range of 45 to 55 denier. 原液を受圧する半透膜の裏面側を支持する流路材を用いた液体分離膜モジュールの製造方法において、
高融点成分が芯に配置され、低融点成分が鞘に配置された芯鞘型コンジュゲート繊維からなる熱可塑性合成繊維フィラメント糸条を使用し、
2枚オサを有するトリコット編機により、地組織部分と凸部分とを編成し、
前記トリコット編地はバック(逆)ハーフ組織であり、かつ一方のオサで形成された編目のシンカ・ループ部を前記地組織部分とし、ニードル・ループ部及び他方のオサで形成された鎖部分を前記凸部分とし、
その際に、前記地組織部分と凸部分とを構成する熱可塑性合成繊維フィラメント糸条は、実質的に同一繊度とし、
編地を編成した後に、コンジュゲート繊維の低融点成分の融点以上、高融点成分の軟化点未満の加熱処理をし、前記トリコット編地中の構成糸条を相互に融着固化して編地全体を剛直化させることにより、前記地組織部分に透過水が流れ、前記凸部分が前記地組織部分の空間を保持して流路材を形成し、
前記流路材を半透膜の裏面側に配置して液体分離膜モジュールを形成したことを特徴とする液体分離膜モジュールの製造方法。
In a method for manufacturing a liquid separation membrane module using a flow path material that supports the back side of a semipermeable membrane that receives an undiluted solution,
Using a thermoplastic synthetic fiber filament yarn composed of a core-sheath type conjugate fiber in which a high melting point component is disposed in a core and a low melting point component is disposed in a sheath,
With a tricot knitting machine having two mats, knit a ground structure part and a convex part,
The tricot knitted fabric has a back (reverse) half structure, and a sinker loop portion of a stitch formed by one mosa is the ground structure portion, and a chain portion formed by a needle loop portion and the other mosa is formed. The convex portion,
At that time, the thermoplastic synthetic fiber filament yarn constituting the ground structure portion and the convex portion has substantially the same fineness,
After knitting the knitted fabric, the conjugate fiber is subjected to a heat treatment at a temperature equal to or higher than the melting point of the low melting point component and lower than the softening point of the high melting point component, and the constituent yarns in the tricot knitted fabric are mutually fused and solidified to form a knitted fabric. By making the whole rigid , permeated water flows into the ground tissue portion, and the convex portion forms a flow path material while holding the space of the ground tissue portion ,
A method for manufacturing a liquid separation membrane module, wherein the flow path material is arranged on the back side of a semipermeable membrane to form a liquid separation membrane module.
地組織部分と凸部分とを構成する熱可塑性合成繊維フィラメント糸条の繊度は、45〜55デニールの範囲である請求項に記載の液体分離膜モジュールの製造方法。The method for producing a liquid separation membrane module according to claim 3 , wherein the fineness of the thermoplastic synthetic fiber filament yarn constituting the ground structure portion and the convex portion is in a range of 45 to 55 denier.
JP16861099A 1999-06-08 1999-06-15 Liquid separation membrane module Expired - Fee Related JP3559475B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP16861099A JP3559475B2 (en) 1999-06-15 1999-06-15 Liquid separation membrane module
AT99126091T ATE306312T1 (en) 1999-06-08 1999-12-28 MEMBRANE MODULE FOR SEPARATING LIQUIDS AND METHOD FOR PRODUCING IT
DE69927674T DE69927674D1 (en) 1999-06-08 1999-12-28 Membrane module for separation of liquids and process for its preparation
ES99126091T ES2249867T3 (en) 1999-06-08 1999-12-28 MEMBRANE MODULE FOR THE SEPARATION OF LIQUIDS AND METHOD TO MANUFACTURE THE SAME.
EP99126091A EP1059114B1 (en) 1999-06-08 1999-12-28 Liquid separation membrane module and method of producing the same
US09/484,338 US6454942B1 (en) 1999-06-08 2000-01-18 Liquid separation membrane module
CNB001089838A CN1136950C (en) 1999-06-08 2000-05-25 Liquid separating membrane module and its mfg. method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16861099A JP3559475B2 (en) 1999-06-15 1999-06-15 Liquid separation membrane module

Publications (2)

Publication Number Publication Date
JP2000354743A JP2000354743A (en) 2000-12-26
JP3559475B2 true JP3559475B2 (en) 2004-09-02

Family

ID=15871257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16861099A Expired - Fee Related JP3559475B2 (en) 1999-06-08 1999-06-15 Liquid separation membrane module

Country Status (1)

Country Link
JP (1) JP3559475B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342653A (en) * 2004-06-04 2005-12-15 Kurita Water Ind Ltd Membrane separation device
KR100704383B1 (en) 2005-11-08 2007-04-06 주식회사 새 한 Tricot permeate channel for reverse osmosis membrane filter
JP4488431B2 (en) * 2005-12-22 2010-06-23 日東電工株式会社 Spiral type separation membrane element
EP2002880A4 (en) 2006-03-31 2011-06-22 Toray Industries Liquid separation device, flow channel material and process for producing the same
JP5394325B2 (en) * 2010-05-28 2014-01-22 福井経編興業株式会社 Tricot knitted fabric for channel material used in liquid separator and method for producing the same
US10350529B2 (en) 2012-06-21 2019-07-16 Entegris, Inc. Filtration article with fluoropolymer knit
KR101984884B1 (en) * 2012-07-23 2019-06-03 더블유.엘. 고어 앤드 어소시에이트스, 인코포레이티드 Filtration article with fluoropolymer knit
JP5943797B2 (en) * 2012-09-27 2016-07-05 ユニチカトレーディング株式会社 Warp knitted fabric
JP2015085233A (en) * 2013-10-29 2015-05-07 日東電工株式会社 Channel member and forward osmosis membrane element
JP6521422B2 (en) 2014-02-07 2019-05-29 日東電工株式会社 Spiral type separation membrane element
JP6575154B2 (en) * 2015-06-09 2019-09-18 東レ株式会社 Tricot channel material
JP6747926B2 (en) 2015-09-30 2020-08-26 日東電工株式会社 Method for manufacturing spiral type separation membrane element
US20180361318A1 (en) * 2016-01-29 2018-12-20 Toray Industries, Inc. Channel material
JP6610778B2 (en) * 2017-02-09 2019-11-27 東レ株式会社 Heat-adhesive core-sheath composite fiber and tricot knitted fabric
KR102347498B1 (en) * 2020-04-17 2022-01-05 도레이첨단소재 주식회사 Spiral membrane module with low elution of heavy metal and preparing method of the same
JP2023143687A (en) 2022-03-24 2023-10-06 日東電工株式会社 Composite semipermeable membrane and spiral membrane element

Also Published As

Publication number Publication date
JP2000354743A (en) 2000-12-26

Similar Documents

Publication Publication Date Title
US6454942B1 (en) Liquid separation membrane module
JP3559475B2 (en) Liquid separation membrane module
JP3430783B2 (en) Liquid separation element, apparatus and processing method
KR101483475B1 (en) Support for separation membrane, and method for production thereof
US8388848B2 (en) Liquid separation device, flow channel material and process for producing the same
JP5005662B2 (en) Liquid separation channel forming material and method for producing the same
JP4488431B2 (en) Spiral type separation membrane element
JP3956262B2 (en) Liquid separation membrane module
CN108602019B (en) Flow path member
KR100704383B1 (en) Tricot permeate channel for reverse osmosis membrane filter
JPS6019001A (en) Flowline material for liquid separation apparatus and preparation thereof
JPS6136964B2 (en)
JP7469058B2 (en) Flow path material for liquid separators
JP7358914B2 (en) Channel material
EP0862491A1 (en) A filter member
KR100586733B1 (en) Producing method of spiral wound module
JP2018094549A (en) Permeation liquid channel material for spiral type separation element
JP2002095935A (en) Spiral separation membrane element
WO2023281719A1 (en) Flow path material for liquid separation devices
JP2023033010A (en) Passage material for liquid separation device
JP2000288541A (en) Spiral type reverse osmosis membrane and separation method
JP2000051668A (en) Liquid separation element and water making method
JP4557520B2 (en) Filter cloth for filter press
KR101942297B1 (en) Tricot permeate channel for reverse osmosis membrane
JP2020110759A (en) Permeation liquid channel material for spiral type separation element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040521

R150 Certificate of patent or registration of utility model

Ref document number: 3559475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160528

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees