JP3558458B2 - Method for producing aryl phosphate - Google Patents

Method for producing aryl phosphate Download PDF

Info

Publication number
JP3558458B2
JP3558458B2 JP18086196A JP18086196A JP3558458B2 JP 3558458 B2 JP3558458 B2 JP 3558458B2 JP 18086196 A JP18086196 A JP 18086196A JP 18086196 A JP18086196 A JP 18086196A JP 3558458 B2 JP3558458 B2 JP 3558458B2
Authority
JP
Japan
Prior art keywords
phenol
reaction
monohydric phenol
phosphorus oxychloride
unreacted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18086196A
Other languages
Japanese (ja)
Other versions
JPH1025298A (en
Inventor
一博 松原
義之 恒松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP18086196A priority Critical patent/JP3558458B2/en
Publication of JPH1025298A publication Critical patent/JPH1025298A/en
Application granted granted Critical
Publication of JP3558458B2 publication Critical patent/JP3558458B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐熱性に優れ、難燃剤、可塑剤など樹脂用の添加剤として有用な、オリゴマータイプのアリール燐酸エステルの製造方法に関する。
【0002】
【従来の技術】
燐酸エステルは、樹脂に混合して難燃効果、可塑効果、酸化防止効果などの優れた性能を発現することから、樹脂用の添加剤として広く使用されている。
中でも、下記一般式[1]で表されるオリゴマータイプのアリール燐酸エステルは、耐熱性に優れ、成形加工時の揮散や樹脂表面へのしみ出し(ブリード)、金型汚染等の問題を起こし難いうえ、物性のバランスのとれた樹脂組成物が得られる事から、熱可塑性樹脂、特にポリスチレン系樹脂やポリカーボネート系樹脂、ポリフェニレンエーテル系樹脂、ポリエステル系樹脂などの難燃剤として注目されている。
【0003】
【化1】

Figure 0003558458
【0004】
(式中、nは0〜10の整数で、Ar1,Ar2,Ar3,Ar4は、各々同一または異なる1価の芳香族基であり、Rは2価の芳香族基である。)
例えば特公昭51−19858号公報及び特公昭51−39271号公報などには、これらの添加剤を含むポリエステル系の難燃性樹脂組成物、特開昭55−118957号及び特開平4−279660号の各公報などにはポリフェニレンエーテル系の樹脂組成物、特公平2−18336号公報や米国特許第5061745号明細書などにはポリカーボネート系の樹脂組成物が記載されている。
【0005】
一般式[1]のアリール燐酸エステルは通常、米国特許第2520090号明細書や特公昭62−25706号公報、特開昭63−227632号公報、欧州特許第0613902A1号明細書などに記載の、ルイス酸触媒の存在下、オキシ塩化燐と、2価フェノール及び1価フェノールを反応させる方法により合成される。ルイス酸触媒としては、無水塩化マグネシウム、塩化アルミニウム、塩化チタン、塩化鉄などの金属塩化物が好適に用いられる。
【0006】
しかしながら、これらの金属分は、高温下ではエステル交換や加水分解の触媒として作用する為、燐酸エステル中に残留すると、樹脂との押し出し成形時などに、燐酸エステルのみならず樹脂自体のゲル化や分解を引き起こして、樹脂組成物の物性を著しく低下させたり、金型を汚染して生産性を低下させたり、さらには金型腐食の原因となることが知られている。従って、合成した燐酸エステルから触媒金属分を除去する必要がある。
【0007】
該アリール燐酸エステルは、沸点が高く蒸留精製を行うことが出来ない為、熱水や酸性水、アルカリ水により金属分を水相に抽出する洗浄精製法がもっぱら行われている。
一方、反応に用いるフェノール類がオキシ塩化燐に対して不足したり、反応温度や時間が不足して反応が完結しない場合、未反応塩素の残る燐酸エステルが副生する。これらの化合物は、洗浄精製時に加水分解されて、燐酸基を持つ親水性燐酸エステルとなる。親水性燐酸エステルは、洗浄精製時に界面活性剤として作用し、エマルジョン化を引き起こしたり、高温下で燐酸エステルや樹脂の分解を促進するなど好ましくない性質を持つ。
【0008】
該アリール燐酸エステルは、トリアリールホスフェートに比べて分子構造的に複雑であり、当量のフェノール類で反応を完結させることは極めて困難である。このため多くの場合、最終反応工程で1価フェノールをやや過剰に加え、十分な温度と時間をかけ、必要に応じて若干の減圧条件下で反応を完結させる方法が採られる。
【0009】
この結果、この方法で得られるアリール燐酸エステルは、通常1〜10重量%の未反応の1価フェノールを含有している。1価フェノールは、アリール燐酸エステルとの親和性が高いため、蒸留により除去するためには、150℃以上の高温と50mmHg以下の減圧が必要である。しかし、本発明者らの研究によると、触媒と1価フェノールを含むアリール燐酸エステルオリゴマーは、このような条件下では容易に不均化反応を起こす為、例えば反応終了時に2重量%以上残留する1価フェノールを、概ね0.5重量%以下まで留去する事は極めて困難であった。
【0010】
また、1価フェノールは水への溶解性が高いので、洗浄精製工程にて排水に溶解して排出され、環境を汚染する問題があり、これを防ぐために、アリール燐酸エステルオリゴマーの製造設備には、大規模な排水処理設備が必要であった。
【0011】
【発明が解決しようとする課題】
本発明は、反応工程に於いて、1価フェノールの混入の少ないアリール燐酸エステルオリゴマーを合成する方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明者らは、上記課題を達成すべく、鋭意検討を行った結果、未反応の1価フェノールに対し、ほぼ当量のオキシ塩化燐を反応させてトリアリールホスフェートに変換することにより、洗浄精製での排水の処理負荷が大幅に削減できることを見出し、本発明を完成するに至った。
【0013】
すなわち、本発明は以下の通りである。
1.金属塩化物触媒存在下に、オキシ塩化燐と2価フェノール及び1価フェノールを反応させてアリール燐酸エステルオリゴマーを合成するに当たり、1価フェノールをオキシ塩化燐に対して過剰量使用して反応を完結させた後、未反応の1価フェノールに対して0.2〜0.6倍モルのオキシ塩化燐を加えてさらに反応を行い、未反応の1価フェノールをトリアリールホスフェートに変換することを特徴とするアリール燐酸エステルの製造方法。
2.1価フェノールが、フェノール、クレゾール、キシレノールから選ばれる1種または複数の化合物である上記1のアリール燐酸エステルの製造方法。
【0014】
本発明に用いる金属塩化物触媒としては、例えば無水塩化マグネシウム、塩化アルミニウム、塩化チタン、塩化錫、塩化亜鉛、塩化鉄などが挙げられ、これらを単独、又は組み合わせて用いることが出来る。特に無水塩化マグネシウム及び塩化アルミニウムの単独又は組み合わせが好適に用いられる。
本発明に用いる2価フェノールとしては、例えばヒドロキノン、レゾルシノール、カテコール、ビフェニル−3,3′ジオール、ビフェニル−4,4′ジオール、ビスフェノールA、ビスフェノールS、ビスフェノールF等を、単独又は組み合わせて用いることが出来る。中でも、反応性と製品の性能の面から、ヒドロキノン、レゾルシノール、ビスフェノールAのいずれか単独が好適に用いられる。中でも、ビスフェノールAを用いて得られる燐酸エステルは、耐加水分解性に優れており、特に好ましい。
【0015】
本発明に用いる1価フェノールとしては、例えば、フェノールや、クレゾール、キシレノール、トリメチルフェノール、イソプロピルフェノール、ジ−t−ブチルフェノール、ノニルフェノールなどのアルキルフェノール類、フェニルフェノール、ベンジルフェノール、クミルフェノール、ナフトール等を単独、又は組み合わせて用いることが出来る。中でも、フェノール、クレゾール、キシレノールを単独、または組み合わせて用いたものは、未反応物が水相に移行しやすく、又未反応物のトリアリールホスフェートへの変換が容易なので、本発明の効果が顕著である。
【0016】
本発明のアリール燐酸エステルの合成条件は特に規定しないが、例えば触媒存在下にオキシ塩化燐と2価フェノール及び当量以下の1価フェノールを一緒に仕込んで反応を行った後、最終的に過剰となるようさらに1価フェノールを添加して反応を完結させる方法や、触媒存在下にオキシ塩化燐と2価フェノールを反応させ、必要に応じて未反応のオキシ塩化燐を蒸留で除いた後、過剰量の1価フェノールを仕込み反応を完結させる方法が挙げられる。反応温度は通常50〜200℃の範囲で、徐々に昇温して反応を進行させる。反応を完結させる条件としては、例えば150〜200℃の温度で2〜6時間反応する。150〜200℃の温度で、100〜500mmHgの減圧条件下に反応を完結させる方法も好適に用いられる。
【0017】
1価フェノールの仕込量は当量以上であれば特に規定しないが、反応完結時に製品中に1〜10重量%の未反応1価フェノールが含まれる量を目安とする。未反応1価フェノールの割合が増えると、最終的に生じるトリアリールホスフェートの量が増加し、その割合がおおむね20重量%を越えると製品の耐熱性が低下するため、大過剰とならないことが好ましい。
【0018】
未反応1価フェノールに対するオキシ塩化燐の添加量は、0.2〜0.6倍モルの範囲が適当で、0.3〜0.5倍モルの範囲が好ましい。0.2倍モル未満では1価フェノールを十分に削減できず、十分な効果が得られない。一方、添加量が0.6倍モルを越えると、ジアリール燐酸とモノアリール燐酸が副生する。このうち前者は水に可溶であり、後者は加水分解して1価フェノールと燐酸となり、何れも排水処理の負荷を上げる。
【0019】
トリアリールホスフェート変換の反応条件は特に規定しないが、常圧条件下、120〜200℃の範囲が好適に用いられる。また、オキシ塩化燐の沸点は約107℃で、前述の反応条件下では沸騰するため、エステル中に注入することが好ましい。反応時間は1〜4時間の範囲が好適に用いられる。
オキシ塩化燐の添加量、すなわち未反応1価フェノールの残存量を特定する方法は特に規定しないが、例えば反応終了後のエステルを分析、定量する方法や、特定の反応条件に於ける残存量を予め測定しておく方法等が挙げられる。また、前述のように1価フェノールはエステルとの親和性が高く、これを留去する場合、蒸留条件により到達できる平衡濃度が決まるので、反応終了後に一定条件で蒸留を行い、1価フェノール量を調整する方法も好ましい。
【0020】
本発明の方法により1価フェノールをトリアリールホスフェートに変換した燐酸エステルは、洗浄精製工程での排水への有機物の混入が少ないので、排水処理が容易となる。さらに、未反応1価フェノールの留去の工程が省略できる利点がある。
【0021】
【発明の実施の形態】
以下、実施例により本発明を具体的に説明する。
まず、本発明で用いた分析方法を以下に示す。
Figure 0003558458
【0022】
【比較例1】
ビスフェノールA456.4g(2.0モル)、オキシ塩化燐768.1g(5.0モル)、及び無水塩化マグネシウム2.8g(0.015モル)を、かくはん機・還流管・シリンジ注入口付きの2000ml四つ口フラスコに仕込み、窒素気流下70〜120℃にて5時間反応させた。反応終了後、反応温度を維持しつつ、フラスコを真空ポンプにて50mmHgに減圧し、未反応のオキシ塩化燐をトラップにて回収した。ついでフラスコを室温まで冷却し、フェノール711.5g(7.6モル)を加え、100〜170℃に加熱して5時間反応させた。そのままの温度で200mmHgまで減圧し、2時間保持して反応を完結させ、下記構造式で表される燐酸エステル1333gを得た。組成分析結果を表1に示す。
【0023】
【化2】
Figure 0003558458
【0024】
【実施例1】
比較例1と同様の装置、及び合成条件にて、燐酸エステル1334gを得た。組成分析の結果、未反応フェノールを2.6重量%(34.6g、0.37モル)含有していた。ついでフラスコを150℃に保ち、オキシ塩化燐23.0g(0.15モル)をシリンジにて注入し、2時間反応した。そのままの温度で200mmHgまで減圧してさらに2時間保持して反応を完結させた。得られた燐酸エステルの組成を表1に示す。
【0025】
【比較例2】
比較例1と同様の装置、及び合成条件にて、燐酸エステル1332gを得た。組成分析の結果、未反応フェノールを2.4重量%(32.0g、0.34モル)含有していた。ついでフラスコを150℃に保ち、オキシ塩化燐52.2g(0.34モル)をシリンジにて注入し、2時間反応した。そのままの温度で200mmHgまで減圧してさらに2時間保持して反応を完結させた。得られた燐酸エステルの組成を表1に示す。
【0026】
【比較例3】
比較例1と同様の装置、及び合成条件にて、燐酸エステル1335gを得た。組成分析の結果、未反応フェノールを2.6重量%(34.9g、0.37モル)含有していた。ついでフラスコを150℃に保ち、オキシ塩化燐7.7g(0.05モル)をシリンジにて注入し、2時間反応した。そのままの温度で200mmHgまで減圧してさらに2時間保持して反応を完結させた。得られた燐酸エステルの組成を表1に示す。
【0027】
【実施例2】
ビスフェノールA456.4g(2.0モル)の代わりにヒドロキノン220.5g(2.0モル)、フェノール711.5g(7.6モル)の代わりにクレゾール843.2g(7.8モル)を用いる以外は、比較例1と同様の装置、及び合成条件にて、下記構造式で表される燐酸エステル1230gを得た。組成分析の結果、未反応クレゾールを5.1重量%(62.7g、0.58モル)含有していた。ついでフラスコを150℃に保ち、オキシ塩化燐30.7g(0.20モル)をシリンジにて注入し、2時間反応した。そのままの温度で200mmHgまで減圧してさらに2時間保持して反応を完結させた。得られた燐酸エステルの組成を表1に示す。
【0028】
【化3】
Figure 0003558458
【0029】
【実施例3】
バッフル付きのパイレックス製300mlセパラブルフラスコに、実施例1にて合成した燐酸エステル100gおよび0.1規定塩酸100gを仕込み、湯浴にて70℃に加温しながら、翼長30mmのテフロン製スクリュウ翼を用い、200rpmの速度で30分間混合攪拌した後、攪拌を止め30分間静置分離後、水相を回収して溶解するフェノール分及びジアリール燐酸の定量を行った。結果を表2に示す。
【0030】
【比較例4〜6】
実施例1にて合成した燐酸エステルの代わりに比較例1〜3で合成した燐酸エステルを用いる以外は、実施例3と同様の操作を行った。結果を表2に示す。
【0031】
【表1】
Figure 0003558458
【0032】
【表2】
Figure 0003558458
【0033】
【発明の効果】
本発明の方法によれば1価フェノールの残留が少なく、これらの留去が不要なアリール燐酸エステルを合成することが出来、触媒を洗浄除去する工程で生じる排水への、1価フェノール及びジアリール燐酸の混入量が少なく、排水処理が容易となる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an oligomer type aryl phosphate ester which has excellent heat resistance and is useful as an additive for resins such as a flame retardant and a plasticizer.
[0002]
[Prior art]
Phosphate esters are widely used as additives for resins because they exhibit excellent properties such as a flame retardant effect, a plasticizing effect and an antioxidant effect when mixed with a resin.
Among them, the oligomer type aryl phosphate represented by the following general formula [1] is excellent in heat resistance and hardly causes problems such as volatilization during molding, bleeding to the resin surface (bleeding), and mold contamination. Further, since a resin composition having a well-balanced physical property can be obtained, it has attracted attention as a flame retardant such as a thermoplastic resin, particularly a polystyrene resin, a polycarbonate resin, a polyphenylene ether resin, and a polyester resin.
[0003]
Embedded image
Figure 0003558458
[0004]
(In the formula, n is an integer of 0 to 10, Ar1, Ar2, Ar3, and Ar4 are the same or different monovalent aromatic groups, and R is a divalent aromatic group.)
For example, JP-B-51-19858 and JP-B-51-39271 disclose a polyester-based flame-retardant resin composition containing these additives, and JP-A-55-118957 and JP-A-4-279660. And the like, describe polyphenylene ether-based resin compositions, and Japanese Patent Publication No. 2-18336 and U.S. Pat. No. 5,061,745 describe polycarbonate-based resin compositions.
[0005]
The aryl phosphates represented by the general formula [1] are generally described in Lewis, U.S. Pat. No. 252,090, JP-B-62-25706, JP-A-63-227632, and EP-A-0613992A1. It is synthesized by a method of reacting phosphorus oxychloride with dihydric phenol and monohydric phenol in the presence of an acid catalyst. As the Lewis acid catalyst, metal chlorides such as anhydrous magnesium chloride, aluminum chloride, titanium chloride, and iron chloride are preferably used.
[0006]
However, since these metal components act as a catalyst for transesterification and hydrolysis at high temperatures, if they remain in the phosphoric ester, not only the phosphoric ester but also the resin itself may gel or extrude during extrusion molding with the resin. It is known that they cause decomposition to significantly reduce the physical properties of the resin composition, reduce the productivity by contaminating the mold, and cause mold corrosion. Therefore, it is necessary to remove the catalytic metal component from the synthesized phosphate ester.
[0007]
Since the aryl phosphate ester has a high boiling point and cannot be distilled and purified, a washing and purifying method of extracting a metal component into an aqueous phase with hot water, acidic water, or alkaline water is mainly performed.
On the other hand, when the phenol used in the reaction is insufficient for phosphorus oxychloride or the reaction is not completed due to insufficient reaction temperature or time, a phosphate ester containing unreacted chlorine remains as a by-product. These compounds are hydrolyzed at the time of washing and purification to form a hydrophilic phosphate having a phosphate group. The hydrophilic phosphate ester acts as a surfactant during washing and purification and has undesirable properties such as causing emulsification and accelerating the decomposition of the phosphate ester and resin at high temperatures.
[0008]
The aryl phosphate is more complicated in molecular structure than triaryl phosphate, and it is extremely difficult to complete the reaction with an equivalent amount of phenols. For this reason, in many cases, a method is employed in which a monohydric phenol is added in a slightly excessive amount in the final reaction step, a sufficient temperature and time are applied, and if necessary, the reaction is completed under a slightly reduced pressure condition.
[0009]
As a result, the aryl phosphate obtained by this method usually contains 1 to 10% by weight of unreacted monohydric phenol. Since the monohydric phenol has a high affinity for the aryl phosphate, a high temperature of 150 ° C. or more and a reduced pressure of 50 mmHg or less are required for removal by distillation. However, according to the study of the present inventors, an aryl phosphate ester oligomer containing a catalyst and a monohydric phenol easily causes a disproportionation reaction under such conditions, and thus, for example, 2% by weight or more remains at the end of the reaction. It was extremely difficult to distill the monohydric phenol to about 0.5% by weight or less.
[0010]
In addition, since monohydric phenol has high solubility in water, there is a problem that it is dissolved and discharged in wastewater in the washing and refining process, and there is a problem of polluting the environment. , Large-scale wastewater treatment equipment was required.
[0011]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for synthesizing an aryl phosphate ester oligomer containing less monovalent phenol in a reaction step.
[0012]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, unreacted monohydric phenol was reacted with almost equivalent amount of phosphorus oxychloride to convert it into triaryl phosphate, thereby washing and purifying. It has been found that the treatment load of wastewater can be greatly reduced, and the present invention has been completed.
[0013]
That is, the present invention is as follows.
1. When reacting phosphorus oxychloride with dihydric phenol and monohydric phenol in the presence of a metal chloride catalyst to synthesize an aryl phosphate oligomer, the reaction is completed by using an excess amount of monohydric phenol relative to phosphorus oxychloride. After the reaction, the unreacted monohydric phenol is added with 0.2 to 0.6 times mol of phosphorus oxychloride to further react to convert the unreacted monohydric phenol to triaryl phosphate. For producing an aryl phosphate.
2. The method for producing an aryl phosphate according to 1 above, wherein the divalent phenol is one or more compounds selected from phenol, cresol, and xylenol.
[0014]
Examples of the metal chloride catalyst used in the present invention include anhydrous magnesium chloride, aluminum chloride, titanium chloride, tin chloride, zinc chloride, iron chloride and the like, and these can be used alone or in combination. In particular, anhydrous magnesium chloride and aluminum chloride alone or in combination are preferably used.
As the dihydric phenol used in the present invention, for example, hydroquinone, resorcinol, catechol, biphenyl-3,3 ′ diol, biphenyl-4,4 ′ diol, bisphenol A, bisphenol S, bisphenol F, or the like may be used alone or in combination. Can be done. Among them, any one of hydroquinone, resorcinol and bisphenol A alone is suitably used from the viewpoint of reactivity and product performance. Among them, a phosphoric ester obtained by using bisphenol A is excellent in hydrolysis resistance and is particularly preferable.
[0015]
Examples of the monohydric phenol used in the present invention include phenol, alkyl phenols such as cresol, xylenol, trimethylphenol, isopropylphenol, di-t-butylphenol, and nonylphenol, phenylphenol, benzylphenol, cumylphenol, and naphthol. They can be used alone or in combination. Among them, those using phenol, cresol, or xylenol alone or in combination, the effect of the present invention is remarkable because the unreacted material is easily transferred to the aqueous phase, and the unreacted material is easily converted to triaryl phosphate. It is.
[0016]
The conditions for synthesizing the aryl phosphate of the present invention are not particularly limited. For example, phosphorus oxychloride, a dihydric phenol and a monohydric phenol having an equivalent weight or less are charged together in the presence of a catalyst, and the reaction is carried out. A method of completing the reaction by further adding a monohydric phenol, or reacting phosphorus oxychloride with a dihydric phenol in the presence of a catalyst, removing unreacted phosphorus oxychloride by distillation if necessary, A method in which an amount of monohydric phenol is charged to complete the reaction. The reaction temperature is usually in the range of 50 to 200 ° C, and the temperature is gradually raised to advance the reaction. As a condition for completing the reaction, for example, the reaction is performed at a temperature of 150 to 200 ° C. for 2 to 6 hours. A method of completing the reaction at a temperature of 150 to 200 ° C. under reduced pressure of 100 to 500 mmHg is also suitably used.
[0017]
The amount of monohydric phenol to be charged is not particularly limited as long as it is equal to or more than the equivalent, but the amount of unreacted monohydric phenol of 1 to 10% by weight in the product at the completion of the reaction is used as a standard. When the proportion of the unreacted monohydric phenol increases, the amount of the finally formed triaryl phosphate increases, and when the proportion exceeds about 20% by weight, the heat resistance of the product decreases. .
[0018]
The amount of phosphorus oxychloride to be added to the unreacted monohydric phenol is suitably in the range of 0.2 to 0.6 moles, and preferably in the range of 0.3 to 0.5 moles. If the molar ratio is less than 0.2 times, the amount of monohydric phenol cannot be sufficiently reduced, and a sufficient effect cannot be obtained. On the other hand, when the added amount exceeds 0.6 times the molar amount, diaryl phosphoric acid and monoaryl phosphoric acid are by-produced. The former is soluble in water and the latter is hydrolyzed to monohydric phenol and phosphoric acid, all of which increase the load of wastewater treatment.
[0019]
The reaction conditions for the conversion of the triaryl phosphate are not particularly limited, but a range of 120 to 200 ° C. under normal pressure is suitably used. Phosphorus oxychloride has a boiling point of about 107 ° C. and boils under the above-mentioned reaction conditions. The reaction time is preferably in the range of 1 to 4 hours.
The method for specifying the amount of phosphorus oxychloride added, that is, the residual amount of unreacted monohydric phenol is not particularly limited. For example, a method for analyzing and quantifying the ester after the completion of the reaction, or a method for determining the residual amount under specific reaction conditions, A method of measuring in advance may be used. In addition, as described above, monohydric phenol has a high affinity for esters, and when it is distilled off, the equilibrium concentration that can be reached is determined by the distillation conditions. Is also preferable.
[0020]
The phosphoric acid ester obtained by converting a monohydric phenol to a triaryl phosphate by the method of the present invention has a small amount of organic substances mixed into the wastewater in the washing and purifying step, so that the wastewater treatment becomes easy. Further, there is an advantage that the step of distilling off unreacted monohydric phenol can be omitted.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be specifically described with reference to examples.
First, the analysis method used in the present invention will be described below.
Figure 0003558458
[0022]
[Comparative Example 1]
456.4 g (2.0 mol) of bisphenol A, 768.1 g (5.0 mol) of phosphorus oxychloride, and 2.8 g (0.015 mol) of anhydrous magnesium chloride were added to a stirrer, a reflux tube and a syringe inlet. The mixture was charged in a 2000 ml four-necked flask and reacted at 70 to 120 ° C. for 5 hours under a nitrogen stream. After completion of the reaction, the flask was evacuated to 50 mmHg with a vacuum pump while maintaining the reaction temperature, and unreacted phosphorus oxychloride was collected with a trap. Then, the flask was cooled to room temperature, 711.5 g (7.6 mol) of phenol was added, and the mixture was heated to 100 to 170 ° C and reacted for 5 hours. The pressure was reduced to 200 mmHg at the same temperature, and the reaction was completed by holding for 2 hours to obtain 1333 g of a phosphoric ester represented by the following structural formula. Table 1 shows the results of the composition analysis.
[0023]
Embedded image
Figure 0003558458
[0024]
Embodiment 1
1334 g of a phosphoric ester was obtained using the same apparatus and the same synthesis conditions as in Comparative Example 1. As a result of composition analysis, it was found to contain 2.6% by weight (34.6 g, 0.37 mol) of unreacted phenol. Then, the flask was kept at 150 ° C., and 23.0 g (0.15 mol) of phosphorus oxychloride was injected with a syringe, followed by a reaction for 2 hours. The reaction was completed by reducing the pressure to 200 mmHg at the same temperature and keeping the pressure for 2 hours. Table 1 shows the composition of the obtained phosphate ester.
[0025]
[Comparative Example 2]
With the same apparatus and the same synthesis conditions as in Comparative Example 1, 1332 g of a phosphoric ester was obtained. As a result of composition analysis, it was found to contain 2.4% by weight (32.0 g, 0.34 mol) of unreacted phenol. Then, the flask was kept at 150 ° C., and 52.2 g (0.34 mol) of phosphorus oxychloride was injected with a syringe, followed by a reaction for 2 hours. The reaction was completed by reducing the pressure to 200 mmHg at the same temperature and keeping the pressure for 2 hours. Table 1 shows the composition of the obtained phosphate ester.
[0026]
[Comparative Example 3]
1335 g of a phosphoric ester was obtained using the same apparatus and the same synthesis conditions as in Comparative Example 1. As a result of composition analysis, it was found to contain 2.6% by weight (34.9 g, 0.37 mol) of unreacted phenol. Then, the flask was kept at 150 ° C., and 7.7 g (0.05 mol) of phosphorus oxychloride was injected with a syringe, and the mixture was reacted for 2 hours. The reaction was completed by reducing the pressure to 200 mmHg at the same temperature and keeping the pressure for 2 hours. Table 1 shows the composition of the obtained phosphate ester.
[0027]
Embodiment 2
Except that 220.5 g (2.0 mol) of hydroquinone is used instead of 456.4 g (2.0 mol) of bisphenol A and 843.2 g (7.8 mol) of cresol is used instead of 711.5 g (7.6 mol) of phenol In the same apparatus and synthesis conditions as in Comparative Example 1, 1230 g of a phosphoric ester represented by the following structural formula was obtained. As a result of composition analysis, it was found to contain 5.1% by weight (62.7 g, 0.58 mol) of unreacted cresol. Then, the flask was maintained at 150 ° C., and 30.7 g (0.20 mol) of phosphorus oxychloride was injected with a syringe, followed by a reaction for 2 hours. The reaction was completed by reducing the pressure to 200 mmHg at the same temperature and keeping the pressure for 2 hours. Table 1 shows the composition of the obtained phosphate ester.
[0028]
Embedded image
Figure 0003558458
[0029]
Embodiment 3
In a 300 ml separable flask made of Pyrex equipped with baffles, 100 g of the phosphate ester synthesized in Example 1 and 100 g of 0.1 N hydrochloric acid were charged, and while heating to 70 ° C. in a hot water bath, a Teflon screw having a blade length of 30 mm was used. After mixing and stirring at a speed of 200 rpm for 30 minutes using a blade, the stirring was stopped, and the mixture was allowed to stand for 30 minutes to separate. After that, the aqueous phase was recovered and the phenol content and the diarylphosphoric acid dissolved were quantified. Table 2 shows the results.
[0030]
[Comparative Examples 4 to 6]
The same operation as in Example 3 was performed except that the phosphate synthesized in Comparative Examples 1 to 3 was used instead of the phosphate synthesized in Example 1. Table 2 shows the results.
[0031]
[Table 1]
Figure 0003558458
[0032]
[Table 2]
Figure 0003558458
[0033]
【The invention's effect】
According to the method of the present invention, it is possible to synthesize an aryl phosphate ester in which monohydric phenol is less remaining and the distillation of these is unnecessary, and monohydric phenol and diarylphosphoric acid are contained in wastewater generated in the step of washing and removing the catalyst. And the wastewater treatment becomes easy.

Claims (2)

金属塩化物触媒存在下に、オキシ塩化燐と2価フェノール及び1価フェノールを反応させてアリール燐酸エステルオリゴマーを合成するに当たり、1価フェノールをオキシ塩化燐に対して過剰量使用して反応を完結させた後、未反応の1価フェノールに対して0.2〜0.6倍モルのオキシ塩化燐を加えてさらに反応を行い、未反応の1価フェノールをトリアリールホスフェートに変換することを特徴とするアリール燐酸エステルの製造方法。When reacting phosphorus oxychloride with dihydric phenol and monohydric phenol in the presence of a metal chloride catalyst to synthesize an aryl phosphate oligomer, the reaction is completed by using an excess amount of monohydric phenol relative to phosphorus oxychloride. After that, 0.2 to 0.6 times mol of phosphorus oxychloride is added to the unreacted monohydric phenol to further react to convert the unreacted monohydric phenol to triaryl phosphate. A method for producing an aryl phosphate ester described below. 1価フェノールが、フェノール、クレゾール、キシレノールから選ばれる1種または複数の化合物である請求項1記載のアリール燐酸エステルの製造方法。The method for producing an aryl phosphate according to claim 1, wherein the monohydric phenol is one or more compounds selected from phenol, cresol, and xylenol.
JP18086196A 1996-07-10 1996-07-10 Method for producing aryl phosphate Expired - Lifetime JP3558458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18086196A JP3558458B2 (en) 1996-07-10 1996-07-10 Method for producing aryl phosphate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18086196A JP3558458B2 (en) 1996-07-10 1996-07-10 Method for producing aryl phosphate

Publications (2)

Publication Number Publication Date
JPH1025298A JPH1025298A (en) 1998-01-27
JP3558458B2 true JP3558458B2 (en) 2004-08-25

Family

ID=16090644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18086196A Expired - Lifetime JP3558458B2 (en) 1996-07-10 1996-07-10 Method for producing aryl phosphate

Country Status (1)

Country Link
JP (1) JP3558458B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319432B1 (en) 1999-06-11 2001-11-20 Albemarle Corporation Bisphenol-A bis(diphenyl phosphate)-based flame retardant
US6399685B1 (en) 2000-12-11 2002-06-04 Albemarle Corporation Purification of arylene polyphosphate esters

Also Published As

Publication number Publication date
JPH1025298A (en) 1998-01-27

Similar Documents

Publication Publication Date Title
EP1327635B1 (en) Preparation of phenylphosphate esters of 4,4'-biphenol
EP0690063A1 (en) Purification method of phosphoric esters
JP3558458B2 (en) Method for producing aryl phosphate
JP3305165B2 (en) Method for purifying phosphates
JP3558454B2 (en) Method for producing phosphate ester
JP2001512510A (en) Methods for producing and using bisaryldiphosphates
WO2001000636A1 (en) Process for the preparation of condensed phosphoric esters
JPH1045774A (en) Production of aromatic bisphosphate
JP2004511563A (en) Manufacturing method of phosphate ester
US6031035A (en) Process for making and using bisaryl diphosphates
JP4546011B2 (en) Method for producing condensed phosphate ester
JP3558450B2 (en) Catalyst removal method
JP4536185B2 (en) Method for producing condensed phosphate ester
JP4187353B2 (en) Method for producing low acid value phosphate ester
JP3558457B2 (en) Method for producing phosphate ester oligomer
JP4097384B2 (en) Method for producing diaryl phosphorohalidate
JP3012174B2 (en) Method for producing condensed phosphate ester
JP4010804B2 (en) Method for producing condensed phosphate compound
JP2001247583A (en) Method of producing aromatic mono-substituted dichlorophosphates
JP3655012B2 (en) Method for cleaning phosphate ester
JP3285091B2 (en) Organophosphorus composition and polyester composition
JP2000327688A (en) Production of phosphate
JPH0812686A (en) Production of arylphosphoric ester
JPH0812685A (en) Production polyphosphoric ester
JP2000198792A (en) Production of high-quality aromatic phosphate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

EXPY Cancellation because of completion of term