JP3557560B2 - Snow melting sheet - Google Patents

Snow melting sheet Download PDF

Info

Publication number
JP3557560B2
JP3557560B2 JP33926594A JP33926594A JP3557560B2 JP 3557560 B2 JP3557560 B2 JP 3557560B2 JP 33926594 A JP33926594 A JP 33926594A JP 33926594 A JP33926594 A JP 33926594A JP 3557560 B2 JP3557560 B2 JP 3557560B2
Authority
JP
Japan
Prior art keywords
snow
liquid
main flow
absorbing material
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33926594A
Other languages
Japanese (ja)
Other versions
JPH08184216A (en
Inventor
敬 高橋
Original Assignee
敬 高橋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 敬 高橋 filed Critical 敬 高橋
Priority to JP33926594A priority Critical patent/JP3557560B2/en
Priority to US08/580,168 priority patent/US5724479A/en
Publication of JPH08184216A publication Critical patent/JPH08184216A/en
Application granted granted Critical
Publication of JP3557560B2 publication Critical patent/JP3557560B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D13/00Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
    • E04D13/10Snow traps ; Removing snow from roofs; Snow melters
    • E04D13/103De-icing devices or snow melters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Woven Fabrics (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、融雪シート、特に積雪面の除雪に用いる融雪シートに係る。ここで言う「積雪面」とは、瓦屋根、瓦棒屋根、板敷き屋根、その他形式の屋根、柔軟性のあるテント屋根、大型膜体構造のドーム状屋根、コンクリート構築物壁面、路面を含む概念である。
本発明を説明するにあたり、便宜上、屋根の融雪技術に関連して解説することにする。
【0002】
【従来の技術】
本件出願人は、流下規正テープを使用して屋根、その他の除雪について様々な検討を加えてきた。本件出願人の居住する岡山県を例にとると、鳥取県境近くに中国山脈が横たわり、この山岳地帯南側斜面には毎年相当量の降雪がある。北陸、東北地方においては、日本側より山を越えた内陸部に雪が多く、多量の降雪による雪害を長年被ってきた地帯である。
【0003】
融雪方法には様々な方法がある。例えば、熱交換器を積雪面に設置したり、屋根に直接水を流して融雪する方法が行われている。本発明の技術問題解決の対象は、流水による融雪技術の欠点に対してのものである。屋根の流水融雪技術は、東北地方各都市に見られる多量の地下水を利用した道路の流水除雪に似通った技術である。
【0004】
【本発明が解決しようとする課題】
流水除雪は、降雪量を予想し必要とする融雪熱量を求め、これに見合う供給水の温度と流量を特定する方法によるため、どの事例においても水の総量は甚だしく多い。水は収束したり分岐したりする傾向を見せるため、中途半端な少量の水で融雪が効果的に行えることについての認識はなく、少量の水しか入手できない事情があればこうした流水融雪は実際に行い得ないとされてきた。地下水を利用する場合、充分な水量を確保できないのが通例であり、屋根の流水融雪は意外に利用されていないのが現状である。
【0005】
積雪面に沿って流下する水が不充分であれば、積雪層の下部にトンネルが形成され、最終的にはアーチ状の雪ブリッジができあがる。雪ブリッジを形成する雪は比較的粘着性があるため、この雪ブリッジが崩れないまま残ることがあり、上部に雪が堆積して融雪効果が失われる。
本発明の目的は、高額の設備投資を必要とせず、簡単な作業により既存の屋根および新設屋根、各種構築物の積雪面に確実な除雪機能を持たせ、効果的な除雪を行える具体的な融雪シートを提供することにある。
【0006】
【課題を解決するための手段】
こうした従来技術の欠点を解決するため、本発明の融雪シートは吸液素材からなり、液体含有保有量が少なく、流下する熱媒体の一部を吸収し残りの部分が表面を滑る露出した熱媒体の流れを形成する任意の幅の主要流下経路と、この主要流下経路の側部に位置し、主要流下経路に比べて液体含浸保有量の大きな副流下経路とを有し、これら主要流下経路と副流下経路に沿った熱媒体の流れを形成する一方で、流速の違いにより主要流下経路の流れを拘束するようにしている。
【0007】
【作用】
吸液素材は任意の幅の流下経路を形成している。この任意の幅の流下経路に沿って熱媒体は流下していく。吸液素材は液体含浸保有量の少ない主要流下経路と、この主要流下経路の側部に位置し液体含浸保有量の大きな副流下経路からなり、主要流下経路を流下する熱媒体の主流の側部に副流が配置され、吸液素材の全幅にわたり密集したままの状態で熱媒体は流れていく。
主要流下経路は液体含浸保有量が少ないため、吸液素材の流下方向に沿って経路表面を滑る露出した主流を形成し、また液体含浸保有量が大きい(または流下抵抗の大きな液体吸収性に富む)副流下経路により、主流の側部に主流よりも比較的流量の少ない流速の遅い副流が形成される。
主要流下経路の方が副流下経路に比べて流下速度が速いため吸液素材外側へのチャネリングが発生しにくい。従って、吸液素材からそれた流れが出現しこれが凍結する可能性は非常に少ない。吸液素材に付着した熱媒体は平面的に均等に広がり、吸液素材の境界域内に所望の熱量を保有する平面放熱体が形成される。
吸液素材の表面に落下する降雪粒子は流下する熱媒体の一部を吸収し、雪はシャーベット状になる。この雪のシャーベットは主に主要流下経路を流下する熱媒体と共に流下経路に沿って流下し易くなる。主要流下経路に沿って流下する主流は経路の上部に経路に捕捉されていない露出した厚みのある主流を形成しており、雪シャーベットはこの主流により押し流されていく。
熱の供給を受けて雪から解け出した水も吸液素材が保持し、この融雪水の持つ熱も雪の融雪に利用されるため、熱媒体と雪との間に効率のよい熱交換が行われる。
吸液素材はその全面に主流と副流が存在するため比較的幅の広い吸液素材を使用でき、同じ幅の吸液素材に比べて有効融雪面を広げることができる。
【0008】
【実施例】
以下、添付図面に沿って本発明の実施例につき詳細に説明する。
図1および図3は、本発明に係る融雪シートの実施事例を具体的に示す斜視説明図である。
積雪に先立ち、積雪面1は連続する細長い平面状の吸液素材2で覆われる。この吸液素材2は間隔を置いて配置され、吸液素材に沿って熱媒体が流される。この熱媒体は融雪の呼び水となる性質を備えた液体、例えば、地下水等の温水である。吸液素材に沿って流下する熱媒体は降雪粒子が吸収する。降雪粒子に吸液素材から流下する熱媒体の一部を吸収させれば雪の白色は消え、透明なシャーベットが形成される。シャーベットの比重は1よりも小さいため、熱媒体に浮揚するシャーベットがあれば、この浮遊状態のシャーベットは熱媒体の流速により流下経路に沿って流下し易くなる。
吸液素材の配列間隔、幅および厚み、熱媒体の流量は選択事項である。
【0009】
熱媒体の熱により生じた融雪水は吸液素材2が保持し、流下熱媒体と融雪水を含浸する平面蓄熱体が形成される。融雪水は低温ではあるが所定の熱量を所有しており、この熱も有効利用される。こうして、吸液素材の流下経路は平面放熱体を形成し、この流下経路の上方に位置する雪を他の部分の雪に先行して融雪させることができる。
【0010】
図2および図4は、流下経路の上方に雪が積もっていない状態、すなわち、降雪粒子を熱媒体が速やかに融雪して流下経路上に積雪のない状態か、または降雪が止んだ後も継続して熱媒体を流下させることで流下経路を中心として融雪が進行した状態を示している。尚、図中にて参照番号Sは残雪を示している。
【0011】
降雪量が多く、吸液素材2の流下経路を流れる熱媒体の保有熱量が即時の融雪に必要な熱量よりも少なければ雪は堆積していく。この堆積した雪は、流下経路が平面蓄熱放熱体として機能するため、この流下経路の上方に位置する雪を他の部分の雪に先行して融雪させることにより積雪表面に顕著な凹凸面を形成し、この凹凸面の出現により積雪表層の露出表面積を拡大して外気温または直達日射により、また吸液素材から積雪面に伝達される熱により融雪を促進することができる。
【0012】
前記熱媒体は連続的または間欠的に供給される。間欠的に供給する場合、流下経路に沿って流下する熱媒体にパルス波動を生じさせるように供給圧を変動させることも可能である。こうした間欠的供給によれば、シャーベットの運搬能率が高まることがある。
【0013】
図5は、図1に使用した吸液素材の具体例を示す斜視説明図である。図示の吸液素材2は、液体含浸保有量の少ない主要流下経路4と、この主要流下経路4の両側に位置する液体含浸保有量の大きな副流下経路5とを備えている。両方の経路部分の間には図示の様な段差を設けておくとより高い規正効果が得られる。
図示の例では、主要流下経路4は厚みが薄く、含浸保有しきれない多くの熱媒体が経路表面上を露出した状態で滑りながら流下する主流を形成する。主流の両側に配置された液体含浸保有量の大きな副流下経路は主要流下経路よりも多くの熱媒体を含有し、この副流下経路に沿って比較的流量の少ない流速の遅い副流が形成され、これら熱媒体の主流と副流は互いに隣接して位置し、吸液素材の全面に沿って流下していく。
【0014】
図6は、図3に使用した吸液素材の具体例を示す斜視説明図である。図示の吸液素材2は、液体含浸保有量の少ない主要流下経路4と、この主要流下経路4の側部に位置する液体含浸保有量の大きな副流下経路5とを備えている。従って、主要流下経路4は吸液素材の流下方向に沿って熱媒体の主流を形成し、主流の片側に主流よりも比較的流量の少ない緩慢な流速の副流が形成される。これら熱媒体の主流と副流は互いに隣接して位置し、吸液素材の全面に沿って規正された状態で流下していく。
前述の流下経路には、補助加熱手段として、電気発熱体あるいは熱媒体の循環する閉路配管を予め包み込んでおくことも可能である。
【0015】
前記吸液素材の流下経路の少なくとも一部は、熱媒体の移動方向に沿って疎水素材3で覆い保温することができる。疎水素材で覆われた部分には、中空な配管通路部分を設け、吸液素材が凍結してもこの配管通路部に流す熱媒体により解氷することができる。
前記吸液素材は、吸液表面層と基材層から構成することができる。吸液素材はこの基材層の表面に塗布される接着剤により積雪面に貼り付けることができる。また、この基材層は、透磁率の大きな磁性材料からなる被接着面に対して磁力作用により貼り付くように、少なくとも一部分を、例えば、多量の鉄粉を含む熱伝導性に優れたプラスチック製またはゴム製の磁石から構成することができる。なお、吸水素材は任意の固定手段を用いて積雪面に対しずれないように固定してもよい。
【0016】
流下経路は、図1に示すような間隔を置いて配列された各々が独立するテープストリップに構成することができ、また互いに隣接するもの同士は任意の素材により接続することができる。
【0017】
前記吸液素材には、主要流下経路を親液性繊維、例えば、ビニロンのような吸水繊維またはビニロンとポリエステルからなる複合繊維を用いて構成し、また副流下経路をポリエステルのような疎液性繊維を用いて構成した織布、不織布または編布を使用することができる。また、主要流下経路は平織りとし、副流下経路は繊維使用量の多い綾織りとする等、任意の織り方を採用できる。液体吸収性に劣る流下経路とは、必ずしも疎液性繊維を使用した部分であるというわけではなく、親液性繊維を使用した液体吸収性に劣る流下経路も含まれる。親液性繊維を使用していたとしても、疎液性繊維の部分に比べてスポット吸収性に劣るならば液体吸収性に劣る流下経路であると言える。液体吸収性については、繊維の張力を変えることである程度調節することが可能である。
【0018】
前記織布は疎液性の縦糸と横糸を使用して織られた織布生地からなり、この織布生地の縦糸に加えて親液性の縦糸の密集した部分をすじ状に織り込み、疎液性の織布生地の部分に隣接して親液性の縦糸の密集した主要流下経路となる部分を設けて構成することができる。
【0019】
また、前記不織布は、主要流下経路となる親液性繊維の密集した部分の側部に副流下経路となる疎液性繊維の密集した部分を隣接して設けることができる。
【0020】
また前記織布は、親液性の縦糸と横糸を使用して織られた織布生地から構成し、この織布生地の縦糸に加えて側部に副流下経路となる疎液性の縦糸の密集した部分を織り込み、親液性の織布生地の部分と疎液性の縦糸の密集した部分を隣接して設けてもよい。
【0021】
あるいは、前記織布を親液性の縦糸を使用して織られた織布生地から構成し、織布生地の縦糸に加えてこの生地縦糸よりもさらに液体吸収性に富む保液性の縦糸の密集した部分をすじ状に織り込み、副流下経路となる前記親液性の織布生地の部分と主要流下経路となる前記保液性の縦糸の密集した部分を隣接して設けることもできる。
【0022】
さらに、前記織布は親液性の縦糸を使用して織られた織布生地から構成し、織布生地の縦糸に加えてこの生地縦糸よりも太い径の親液性の縦糸の密集した部分をすじ状に織り込み、副流下経路となる前記親液性の織布生地の部分と主要流下経路となる前記太い径の親液性の縦糸の密集した部分を隣接して設けるようにもできる。
【0023】
前記織布は疎液性の縦糸を使用して織られた織布生地から構成し、織布生地の縦糸に加えてこの生地縦糸よりも太い径の疎液性の縦糸の密集した部分をすじ状に織り込み、副流下経路となる前記疎液性の織布生地の部分に隣接して前記太い径の疎液性の縦糸の密集した主要流下経路を形成することも可能である。
【0024】
前述の構造とは異なり、前記吸液素材は、基材層とこの基材層に接着した液体吸収性に富むその他の任意の材料、例えば、粉体塗装層の主要流下経路と、この主要流下経路の側部に配置された液体吸収性に劣る粉体塗装層から構成することができる。
【0025】
また、前記吸液素材は、屋根表面に接着した溶射粉体塗装層から構成することができる。
【0026】
この方法とは別に、吸液素材は、液体吸収性に劣る基材層とこの基材層表面を加工して形成された液体吸収性に富む荒い細かい凹凸表面の部分から構成し、液体吸収性に劣る基材層表面の部分が副流下経路を形成し、液体吸収性に富む凹凸表面の部分が主要流下経路を形成するようにもできる。
【0027】
あるいは、前記吸液素材は親液性繊維と疎液性繊維の両方の繊維を混合したものからなり、主要流下経路に相当する部分がこれに隣接する副流下経路に相当する部分よりも親液性繊維の比率が高くなるようにして構成することもできる。
【0028】
図7は、織布を用いて構成した融雪シートの一例を示している。図中にて、参照番号6は主要流下経路4を構成する縦糸である。この縦糸は、例えば、十番手(綿糸換算)相当のポリエステル(芯材)/ビニロン(周囲螺旋巻付け)の複合糸を3本撚り合わせたものを2本引き揃えて構成されている。また側部の副流下経路5は、太いポリエステル撚り糸を縦糸7に用いた綾織り部分であり、前記主要流下経路4と副流下経路5を構成する横糸8は、十八番手のポリエステル糸4本の撚り糸から構成されている。
【0029】
図示の織布構造によれば、ポリエステル/ビニロン複合縦糸のうちビニロンの部分が優れた吸液性を示す。このビニロンの繊維部分は収縮傾向を示すがポリエステルに沿って動き、織布そのものに影響はない。また、この複合縦糸は2本づつ引き揃えて配置したため、熱媒体はこの縦糸に沿って移動しようとする傾向を示す。
【図面の簡単な説明】
【図1】本発明の融雪シートを実施した場合の状況を示す斜視説明図。
【図2】図1の屋根の除雪状態を示す斜視説明図。
【図3】本発明の融雪シートを実施した場合の他の状況を示す斜視説明図。
【図4】図3の屋根の除雪状態を示す斜視説明図。
【図5】流下経路の一例を示す斜視説明図。
【図6】流下経路の他の例を示す斜視説明図。
【図7】織布から構成した融雪シートの一例を示す模式説明図。
【符号の説明】
1 積雪面
2 吸液素材
3 疎水素材
4 主要流下経路
5 副流下経路
6 主要流下経路の縦糸
7 副流下経路の縦糸
8 織布の横糸
[0001]
[Industrial applications]
The present invention relates to a snowmelt sheet, particularly to a snowmelt sheet used for removing snow on a snow-covered surface. The term `` snow surface '' is a concept that includes tiled roofs, tiled roofs, shingle roofs, other types of roofs, flexible tent roofs, dome-shaped roofs with large membrane structures, concrete structure walls, and road surfaces. is there.
In describing the present invention, it will for convenience be described in connection with a roof snow melting technique.
[0002]
[Prior art]
The applicant has made various studies on roofs and other snow removal using flow-down regulation tapes. For example, in Okayama Prefecture where the applicant resides, the Chugoku Mountains lies near the border of Tottori Prefecture, and there is a considerable amount of snowfall every year on the southern slope of this mountainous area. In the Hokuriku and Tohoku regions, there is more snow inland than the Japanese side, and it has been suffered from snow damage due to heavy snowfall for many years.
[0003]
There are various snow melting methods. For example, a method of installing a heat exchanger on a snow-covered surface or flowing water directly to a roof to melt snow has been performed. The technical solution of the present invention is directed to the shortcomings of running water snowmelt technology. Roof snowmelt technology is similar to snow removal on roads that uses large amounts of groundwater and is found in cities in the Tohoku region.
[0004]
[Problems to be solved by the present invention]
In running snow removal, the total amount of water is extremely large in any case because the amount of heat of snowmelt required is estimated by predicting the amount of snowfall and the temperature and flow rate of the supply water are specified accordingly. Since water tends to converge and branch, there is no recognition that snow melting can be effectively performed with a half-way small amount of water. It has not been possible. In the case of using groundwater, it is customary that a sufficient amount of water cannot be secured, and at present the snowmelt on the roof is not used unexpectedly.
[0005]
If there is not enough water flowing down the snow surface, a tunnel will form at the bottom of the snow layer, eventually forming an arched snow bridge. Because the snow that forms the snow bridge is relatively sticky, the snow bridge may remain unbroken, causing snow to accumulate on top and lose the snow melting effect.
An object of the present invention is to provide a concrete snow melting method that does not require a large amount of capital investment, provides a reliable snow removing function to the snow surface of an existing roof, a new roof, and various structures by a simple operation, and effectively removes snow. To provide a seat.
[0006]
[Means for Solving the Problems]
In order to solve the drawbacks of the prior art, the snow-melting sheet of the present invention is made of a liquid-absorbing material, has a low liquid content, absorbs a part of the flowing heat medium, and the remaining heat medium slides on the surface. A main flow path of an arbitrary width that forms the flow of the main flow path, and a sub flow path that is located on the side of the main flow path and has a larger liquid impregnation amount than the main flow path. While the flow of the heat medium is formed along the sub flow path, the flow in the main flow path is restricted by the difference in flow velocity.
[0007]
[Action]
The liquid-absorbing material forms a flow-down path having an arbitrary width. The heat medium flows down along the flow path of this arbitrary width. The liquid-absorbing material consists of a main flow path with a small liquid impregnation capacity and a sub-flow path located on the side of this main flow path with a large liquid impregnation capacity, and the side of the main flow of the heat medium flowing down the main flow path The heating medium flows in a state where the sub-flow is densely arranged over the entire width of the liquid absorbing material.
The main flow path has a small amount of liquid impregnation, so it forms an exposed main flow that slides on the path surface along the flow direction of the liquid-absorbing material, and has a large liquid impregnation capacity (or rich liquid absorption with a large flow resistance) ) By the subflow path, a subflow having a relatively small flow rate and a low flow velocity is formed on the side of the main flow.
Since the flow speed of the main flow path is higher than that of the sub flow path, channeling to the outside of the liquid absorbing material is less likely to occur. Therefore, there is very little possibility that a flow deviating from the liquid absorbing material appears and freezes. The heat medium attached to the liquid-absorbing material spreads out evenly in a plane, and a planar radiator having a desired amount of heat is formed in the boundary region of the liquid-absorbing material.
The snowfall particles falling on the surface of the liquid absorbing material absorb a part of the heat medium flowing down, and the snow becomes sherbet-like. The snow sherbet easily flows down along the downflow path mainly with the heat medium flowing down the main downflow path. The main flow flowing down along the main flow path forms an exposed thick main flow which is not caught by the path at the upper part of the path, and the snow sherbet is swept away by this main flow.
The water that has melted out of the snow due to the supply of heat is also retained by the liquid-absorbing material, and the heat of this snow-melting water is also used for melting the snow, so efficient heat exchange between the heat medium and the snow is achieved. Done.
Since the main stream and the substream exist on the entire surface of the liquid-absorbing material, a relatively wide liquid-absorbing material can be used, and the effective snow-melting surface can be expanded as compared with the liquid-absorbing material having the same width.
[0008]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIGS. 1 and 3 are perspective explanatory views specifically showing an embodiment of the snow melting sheet according to the present invention.
Prior to snow cover, the snow cover surface 1 is covered with a continuous elongated flat liquid absorbing material 2. The liquid absorbing material 2 is arranged at intervals, and the heat medium flows along the liquid absorbing material. The heat medium is a liquid having the property of priming snowmelt, for example, warm water such as groundwater. The heat medium flowing down along the liquid absorbing material is absorbed by the snowfall particles. If the snowfall particles absorb a part of the heat medium flowing down from the liquid absorbing material, the white color of the snow disappears and a transparent sherbet is formed. Since the specific gravity of the sherbet is smaller than 1, if there is a sherbet floating on the heat medium, the sherbet in the floating state can easily flow down the flow path by the flow velocity of the heat medium.
The arrangement interval, width and thickness of the liquid-absorbing material, and the flow rate of the heat medium are options.
[0009]
The snow-melting water generated by the heat of the heat medium is retained by the liquid-absorbing material 2, and a planar heat storage element that impregnates the falling heat medium and the snow-melting water is formed. Although the snowmelt water has a low temperature, it has a predetermined amount of heat, and this heat is also effectively used. Thus, the flow-down path of the liquid-absorbing material forms a flat radiator, and the snow located above the flow-down path can be melted prior to the other parts of the snow.
[0010]
FIGS. 2 and 4 show a state in which snow does not accumulate above the downflow path, that is, a state in which the heat medium quickly melts the snowfall particles and there is no snow on the downflow path, or continues even after the snowfall stops. This shows a state in which the melting of the snow has progressed around the flow path by causing the heat medium to flow down. In the figure, reference numeral S indicates remaining snow.
[0011]
If the amount of snowfall is large and the amount of heat held by the heat medium flowing through the flow path of the liquid-absorbing material 2 is smaller than the amount of heat required for immediate snow melting, snow will accumulate. This accumulated snow forms a remarkable uneven surface on the surface of the snow by melting the snow located above the flowing path ahead of the other parts of the snow, because the flowing path functions as a planar heat storage radiator. However, the appearance of the uneven surface enlarges the exposed surface area of the snow layer, and can promote the melting of snow by external temperature or direct solar radiation, and by the heat transferred from the liquid absorbing material to the snow surface.
[0012]
The heating medium is supplied continuously or intermittently. In the case of intermittent supply, the supply pressure can be varied so as to generate a pulse wave in the heat medium flowing down the flow path. Such intermittent supply may increase the efficiency of sherbet transport.
[0013]
FIG. 5 is a perspective explanatory view showing a specific example of the liquid absorbing material used in FIG. The illustrated liquid absorbing material 2 includes a main flow path 4 having a small liquid impregnation amount, and a sub flow path 5 having a large liquid impregnation amount located on both sides of the main flow path 4. If a step as shown is provided between the two path portions, a higher setting effect can be obtained.
In the illustrated example, the main flow path 4 has a small thickness and forms a main flow in which a large amount of heat medium that cannot be impregnated and held slides down while exposing on the path surface. The sub-flow passages with a large liquid impregnation capacity disposed on both sides of the main flow contain more heat medium than the main flow-down passage, and along this sub-flow passage, a relatively low-flow, slow-flow sub-flow is formed. The main flow and the sub flow of the heat medium are located adjacent to each other and flow down along the entire surface of the liquid absorbing material.
[0014]
FIG. 6 is a perspective explanatory view showing a specific example of the liquid absorbing material used in FIG. The illustrated liquid absorbing material 2 includes a main flow path 4 having a small liquid impregnation amount and a sub flow path 5 having a large liquid impregnation amount located at a side of the main flow path 4. Therefore, the main flow path 4 forms the main flow of the heat medium along the flow direction of the liquid-absorbing material, and on one side of the main flow, a sub-flow having a slower flow rate with a relatively smaller flow rate than the main flow is formed. The main flow and the sub flow of the heat medium are located adjacent to each other and flow down in a regulated state along the entire surface of the liquid absorbing material.
It is also possible to pre-enclose a closed circuit pipe through which an electric heating element or a heat medium circulates as an auxiliary heating means in the above-mentioned flow-down path.
[0015]
At least a part of the flow path of the liquid absorbing material can be covered with the hydrophobic material 3 along the moving direction of the heat medium to keep the temperature. A hollow pipe passage portion is provided in the portion covered with the hydrophobic material, so that even if the liquid absorbing material freezes, the ice can be thawed by the heat medium flowing through the pipe passage portion.
The liquid absorbing material may be composed of a liquid absorbing surface layer and a base material layer. The liquid absorbing material can be attached to the snow-covered surface by an adhesive applied to the surface of the base material layer. Further, this base material layer is made of a plastic material having excellent thermal conductivity including, for example, a large amount of iron powder, so that the base material layer is attached to a surface to be bonded made of a magnetic material having high magnetic permeability by a magnetic force. Alternatively, it can be composed of a rubber magnet. Note that the water-absorbing material may be fixed using any fixing means so as not to shift with respect to the snow-covered surface.
[0016]
The flow-down path can be constituted by independent tape strips arranged at intervals as shown in FIG. 1, and those adjacent to each other can be connected by an arbitrary material.
[0017]
In the liquid-absorbing material, the main flow path is constituted by lyophilic fiber, for example, a water-absorbing fiber such as vinylon or a composite fiber composed of vinylon and polyester, and the sub-flow path is lyophobic such as polyester. A woven fabric, nonwoven fabric or knitted fabric composed of fibers can be used. Also, an arbitrary weaving method such as a plain weave for the main flow path and a twill weave with a large amount of fiber used for the sub flow path can be adopted. The flow-down path with poor liquid absorbency is not necessarily a part using lyophobic fibers, but also includes a flow-down path with poor liquid absorbency using lyophilic fibers. Even if lyophilic fibers are used, if the spot absorbency is inferior to that of the lyophobic fibers, it can be said that the flow path is inferior in liquid absorbency. The liquid absorbency can be adjusted to some extent by changing the fiber tension.
[0018]
The woven fabric is made of a woven fabric woven using lyophobic warp and weft, and in addition to the warp of the woven fabric, a dense portion of lyophilic warp is woven in a streak shape, Adjacent to the portion of the woven woven fabric, a portion serving as a main flow path in which lyophilic warp yarns are densely arranged can be provided.
[0019]
In the nonwoven fabric, a dense portion of lyophobic fibers serving as a sub-flow passage may be provided adjacent to a side portion of a dense portion of lyophilic fibers serving as a main flow-down route.
[0020]
Further, the woven fabric is made of a woven fabric woven using lyophilic warp yarns and weft yarns, and in addition to the warp yarns of the woven fabric fabric, a lyophobic warp yarn serving as a subflow path on the side. A dense portion may be interwoven, and a lyophilic woven fabric portion and a lyophobic warp dense portion may be provided adjacent to each other.
[0021]
Alternatively, the woven fabric is composed of a woven fabric woven using a lyophilic warp, and in addition to the warp of the woven fabric, a liquid-retaining warp that is more liquid-absorbent than the fabric warp. A dense portion may be woven in a streak shape, and a portion of the lyophilic woven fabric serving as a sub-flow passage and a dense portion of the liquid retaining warp serving as a main flow route may be provided adjacent to each other.
[0022]
Further, the woven fabric is made of a woven fabric woven using a lyophilic warp, and in addition to the warp of the woven fabric, a dense portion of a lyophilic warp having a diameter larger than that of the fabric warp. And a portion of the lyophilic woven fabric serving as a sub-flow passage and a dense portion of the thick lyophilic warp yarn serving as a main flow passage may be provided adjacent to each other.
[0023]
The woven fabric is composed of a woven fabric woven using a lyophobic warp, and in addition to the warp of the woven fabric, a dense portion of the lyophobic warp having a diameter larger than that of the fabric warp is streaked. It is also possible to form a main flow path in which the thick lyophobic warp yarns having a large diameter are densely arranged adjacent to the part of the lyophobic woven fabric which becomes the sub flow path.
[0024]
Unlike the above-described structure, the liquid-absorbing material is composed of a base layer and any other liquid-absorbing material bonded to the base layer, such as a main flow path of a powder coating layer and a main flow path of the powder coating layer. It can be composed of a powder coating layer having poor liquid absorbability disposed on the side of the passage.
[0025]
Further, the liquid absorbing material can be constituted by a sprayed powder coating layer adhered to a roof surface.
[0026]
Separately from this method, the liquid-absorbing material is composed of a base layer having poor liquid absorbency and a portion of a rough fine uneven surface rich in liquid absorbability formed by processing the surface of the base layer. The portion of the base material layer surface which is inferior to the base layer forms a sub-flow passage, and the portion of the uneven surface having a high liquid absorbability forms a main flow passage.
[0027]
Alternatively, the liquid-absorbing material is composed of a mixture of both lyophilic fibers and lyophobic fibers, and the portion corresponding to the main flow-down path is more lyophilic than the portion corresponding to the adjacent sub-flow path. It can also be configured so that the ratio of the conductive fibers is high.
[0028]
FIG. 7 shows an example of a snow melting sheet formed using a woven fabric. In the figure, reference numeral 6 denotes a warp constituting the main flow path 4. The warp is formed by, for example, twisting three polyester (core) / vinylon (surrounding spirally wound) composite yarns equivalent to tenth count (equivalent to cotton yarn) and twisting two of them. The side downflow path 5 at the side is a twill weave using a thick polyester twist yarn as the warp yarn 7, and the weft 8 constituting the main downflow path 4 and the subflow path 5 is made of fourteenth eighteen polyester yarns It is composed of twisted yarn.
[0029]
According to the illustrated woven fabric structure, the vinylon portion of the polyester / vinylon composite warp exhibits excellent liquid absorbency. Although the fiber portion of this vinylon shows a tendency to shrink, it moves along the polyester and does not affect the woven fabric itself. Further, since the composite warp yarns are arranged two by two, the heat medium tends to move along the warp yarns.
[Brief description of the drawings]
FIG. 1 is a perspective explanatory view showing a situation when a snow melting sheet of the present invention is implemented.
FIG. 2 is an explanatory perspective view showing a snow removal state of the roof of FIG. 1;
FIG. 3 is a perspective explanatory view showing another situation when the snow melting sheet of the present invention is implemented.
FIG. 4 is an explanatory perspective view showing a snow removal state of the roof in FIG. 3;
FIG. 5 is a perspective explanatory view showing an example of a flow-down route.
FIG. 6 is an explanatory perspective view showing another example of the flow-down route.
FIG. 7 is a schematic explanatory view showing an example of a snowmelt sheet made of a woven fabric.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Snow surface 2 Absorbent material 3 Hydrophobic material 4 Main flow path 5 Sub flow path 6 Warp yarn of main flow path 7 Warp yarn of sub flow path 8 Weft of woven fabric

Claims (2)

液体含有保有量が少なく、流下する熱媒体の一部を吸収し残りの部分が表面を滑る露出した速い流れの熱媒体の主流を形成する任意の幅の主要流下経路と、この主要流下経路の側部に位置し、前記主流よりも流速の遅い副流を形成する、主要流下経路に比べて液体含浸保有量の大きな副流下経路とを有する吸液素材から構成した融雪シート。A main flow path of any width that has a small liquid content and absorbs a part of the heat medium flowing down and forms a main flow of an exposed fast flowing heat medium whose remaining part slides on the surface; A snow-melting sheet comprising a liquid-absorbing material having a subflow path located on a side portion and having a subflow having a larger liquid impregnation amount than a main flow path, forming a subflow having a lower flow velocity than the main flow. 請求項1に記載された融雪シートにおいて、前記吸液素材の流下経路の少なくとも一部を熱媒体の移動方向に沿って疎水素材で覆ってなる融雪シート。2. The snow-melting sheet according to claim 1, wherein at least a part of the flow path of the liquid-absorbing material is covered with a hydrophobic material along a moving direction of the heat medium.
JP33926594A 1994-12-28 1994-12-28 Snow melting sheet Expired - Lifetime JP3557560B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP33926594A JP3557560B2 (en) 1994-12-28 1994-12-28 Snow melting sheet
US08/580,168 US5724479A (en) 1994-12-28 1995-12-28 Fluid flow controlling member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33926594A JP3557560B2 (en) 1994-12-28 1994-12-28 Snow melting sheet

Publications (2)

Publication Number Publication Date
JPH08184216A JPH08184216A (en) 1996-07-16
JP3557560B2 true JP3557560B2 (en) 2004-08-25

Family

ID=18325821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33926594A Expired - Lifetime JP3557560B2 (en) 1994-12-28 1994-12-28 Snow melting sheet

Country Status (1)

Country Link
JP (1) JP3557560B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5954129A (en) * 1996-02-14 1999-09-21 Takahashi; Kei Flow control unit
JP3665975B2 (en) * 1996-02-16 2005-06-29 敬 高橋 Fluid regulation conveying means
JP4529040B2 (en) * 2004-02-01 2010-08-25 敬 高橋 Bottom plate surface structure of tiled bar thatched roof
JP4665236B2 (en) * 2004-08-15 2011-04-06 敬 高橋 Sprinkling heat exchange method for gently-splitting folded roof
JP2006083693A (en) * 2004-08-15 2006-03-30 Takashi Takahashi Sprinkling heat exchange method for gentle pitched folded plate roof
JP4742353B2 (en) * 2004-12-12 2011-08-10 敬 高橋 Sprinkling snow melting method
JP5798583B2 (en) * 2013-02-25 2015-10-21 大成ロテック株式会社 Snow removal system and snow removal method

Also Published As

Publication number Publication date
JPH08184216A (en) 1996-07-16

Similar Documents

Publication Publication Date Title
JP3557560B2 (en) Snow melting sheet
WO2003025288A1 (en) Artificial surface with integrated thermal regulation
JP3765085B2 (en) Liquid flow regulation member
JP3588780B2 (en) How to melt snow on the snow surface
JP3569903B2 (en) Roof melting method
JP3443751B2 (en) Roof snow removal method
JP3704591B2 (en) Snow melting / snow removal method on snowy surface
US5724479A (en) Fluid flow controlling member
JP3620030B2 (en) Liquid flow regulation method
JP3458219B2 (en) How to melt snow on the snow surface
JP3665975B2 (en) Fluid regulation conveying means
JP3817641B2 (en) Liquid flow guide member
JP3516176B2 (en) Snow removal equipment
JP3840568B2 (en) Snow melting floor
JP3600921B2 (en) Snow removal method
JP3747380B2 (en) Heat exchange adhesive sheet for snow removal / heat collection or heating / cooling with flow regulation function
JP5374792B2 (en) Surface structure of drainage pavement
JP4984223B2 (en) Sprinkling heat exchange method for folding roof
JP4035624B2 (en) Heat exchanger
JP5057207B2 (en) Sprinkling heat exchange method for folding roof
JP4442804B2 (en) Sheet-like heat transfer promoting material used for heat storage device and heat storage tank
JPH07324890A (en) Heat exchanging adhering sheet for removing snow/ collecting heat or heating/cooling having function to restrict flow-down
JP2008148676A (en) Water-feeding tube
JP4853640B2 (en) Sprinkling heat exchange method for gently-splitting folded roof
JP3711463B2 (en) Fluid regulation conveying means

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term