JP3556989B2 - Rotary seal joint for main shaft etc. - Google Patents

Rotary seal joint for main shaft etc. Download PDF

Info

Publication number
JP3556989B2
JP3556989B2 JP04242595A JP4242595A JP3556989B2 JP 3556989 B2 JP3556989 B2 JP 3556989B2 JP 04242595 A JP04242595 A JP 04242595A JP 4242595 A JP4242595 A JP 4242595A JP 3556989 B2 JP3556989 B2 JP 3556989B2
Authority
JP
Japan
Prior art keywords
main shaft
cooling
rotary seal
seal joint
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04242595A
Other languages
Japanese (ja)
Other versions
JPH08210574A (en
Inventor
山下晴央
橋立昭武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodick Co Ltd
Enshu Co Ltd
Original Assignee
Sodick Co Ltd
Enshu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Co Ltd, Enshu Co Ltd filed Critical Sodick Co Ltd
Priority to JP04242595A priority Critical patent/JP3556989B2/en
Publication of JPH08210574A publication Critical patent/JPH08210574A/en
Application granted granted Critical
Publication of JP3556989B2 publication Critical patent/JP3556989B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L27/00Adjustable joints, Joints allowing movement
    • F16L27/08Adjustable joints, Joints allowing movement allowing adjustment or movement only about the axis of one pipe

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Joints Allowing Movement (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、工作機械の主軸等の回転シール継手の構成に関し、圧力流体の漏れを最少限に抑制するのみならず、シール接触面の圧力管理をも可能とした回転シール継手を、主軸の軸心冷却のために合理的に配置したことに係わる。
【0002】
【従来の技術】
従来、工作機械の主軸のドローバーの中心孔から切削用クーラントを供給し、主軸の軸心を通過させ、主軸端に嵌着させた工具から切削用クーラントを噴射するセンタースルー加工が行われている。
センタースルー加工を行うために必要な構成要素の一つとして回転シール継手があり、これは回転体であるドローバーの中心孔と、固定体である切削用クーラントの供給口を連結するためのシール機能を提供しており、これにより切削用クーラントを主軸後部から主軸端まで移送することが可能となる。
【0003】
上記のような用途で用いられる回転シール継手として、特開平4ー60281号に見るように、固定円管と回転円管とを非接触に半径方向隙間を有してその長手方向に嵌め込み、この嵌合する挿入面には環状溝を設け、この溝に連通した吸引路に吸引装置を設けた回転シール部材が提供されている。この回転シール部材によると、冷却液の往路と復路とを合せても1方にのみ環状の溝と吸引路とを設ければ良く、シール構造としてシンプルである利点をもつ。また、特開平6−241366号では、ロータリジョイントの回転軸と移動軸との対向面に設けた一対のシール部材を非接触状態に付勢するダイヤフラムがハウジングと移動軸との間に張設されている。そして、流体流路へ気体を流通させる場合は、ポートに気体を導入し、一対のシール部材を非接触状態のままにし、流体を流通させる場合は、ポートに液体を導入し、その圧力でダイヤフラムを押圧して、一対のシール部材を接触状態にするものである。
【0004】
【発明が解決しようとする課題】
しかしながら、上記特開平4ー60281号の回転シール部材によると、吸引装置のトラブルで吸引力が低下して固定円管と回転円管との嵌合する挿入面の環状溝からの油漏れを発生する。また、固定円管と回転円管との嵌合隙間は、回転円管のアンバランスや回転振動により変動するから、潤滑の吸引回収効率が低下する。更に、特開平6ー241366号のロータリジョイントでは、ポートに気体を導入時には一対のシール部材を非接触状態のままにし、流体を流通させる場合はその圧力でダイヤフラムを押圧し、一対のシール部材を接触状態にするものであるから、シール部材の動作機構が煩雑である上に、圧力変動等で動作が不安定となって流体の吸引効率を低下させたり、又、多くの故障の原因を発生させる要因を包含している。
【0005】
結局の所、一対のシール部材または、固定円管と回転円管との嵌合隙間からの油漏れの発生を免れることが出来ないほか、油漏れの吸引回収装置が必要不可欠なものとなっている。従って、結果的にシール部材の動作機構を煩雑とし、この周辺機器を大掛かりなものにしてしまうという問題がある。
そして、上記に述べたような従来の回転シール継手の構造的な問題が存在する中、工作機械の主軸冷却において、より精密な温度管理を可能とするための、主軸のハイブリッド冷却の実用化の試みがされてきた。主軸のハイブリッド冷却は、主軸の軸心と主軸の外筒に対し、別経路で冷却液を循環させるものである。ハイブリッド冷却のうち、軸心部への冷却液供給に関しては、ドローバー中心孔から行うのが最も効率的であるが、このような回転体であっても冷却液を効率良く循環させ、熱交換した後、確実に回収しなければならない。
【0006】
しかしながら、従来のセンタースルー加工を成立させている技術は、ドローバー後端の中心孔から主軸先端の切削工具に向けて一方向で切削用クーラントを供給すればよく、主軸内での回収を考慮する必要がない。このため、切削用クーラントのために用いられてきた回転シール継手の構造及び構成を、そのまま主軸の軸心冷却に転用することができなかった。
【0007】
本発明は、上記従来の回転シール部材が持つ問題に鑑み、スプリング力を利用した定圧機構により回転シール部材の回転側部材に固定側部材を定常圧に接触付与することで、油漏れなく且つ高速回転に対応できる回転シール継手を、主軸の軸心冷却において、冷却液の入口と出口にそれぞれ別個に配置することにより、個々のサイズを小さく設定し、構造の複雑化を伴うことなく、狭い主軸後部に合理的に収納するための方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は上記目的を達成すべく、請求項1において、
工作機械の主軸冷却において、主軸頭部のドローバーに設けられた中心孔から冷却液を供給し、主軸の軸心部を及びその周辺を循環させ、主軸内部を直接冷却する主軸の軸心冷却方法に関して、冷却液入口のシールのために、ドローイングバーや主軸等の回転体の端部に嵌着させた回転部材と、この回転部材の端面にバネ材等で加圧力を付与されて接触する加圧部材を固定体等に装備させてなる第1回転シール継手を配し、
循環後の冷却液の出口にも、上記と同等の構成からなる第2回転シール継手を配し、
上記第1回転シール継手と第2回転シール継手を、主軸の回転軸と同軸に配置したことを特徴とする、主軸の軸心冷却のための冷却液のシール方法である。
【0009】
【作用】
本発明の請求項1において用いられる回転継手は、回転部材とこれに所定の加圧力を付与する加圧部材の接触輪片とにより、この両者間の接触圧が一定に制御されるからドローイングバーや主軸等の回転体の回転及び停止や外部変動の要因に係わりなく、冷却潤滑液を漏らすことも無く回転シール継手の機能を果たし、特に、主軸等の高速回転時には、これと一体回転する回転部材に求心作用が働き、液漏れの防止機能が長期間にわたり発揮できる。
【0010】
ハイブリッド主軸冷却の軸心冷却において、上記の回転シール継手のうち第1回転シール継手をドローバー後端に配し、高速回転するドローバーの中心孔に対して冷却液を供給する。そして、主軸中心部を循環して還ってきた冷却液は、第2回転シール継手により回収する。また、回転シール継手のシール部分にある僅かな隙間に関しては、冷却液自身がシール材となることにより埋められ高い密閉性が維持されるが、シール材となった冷却液は僅かながらもシール部分から漏洩することは避けられない。
【0011】
圧力と流量が共に大きく冷却液が漏れやすい第1回転継手の入口部分では、仮に冷却液が若干量漏れたとしても、第2回転シール継手を通過して回収されるルートに合流するため問題はない。また、第2回転シール継手の漏れに関しては、冷却液自体が主軸内でベアリング潤滑等のために分岐し、流量、圧力とも入口部より小さくなることから、漏れ量そのものが少なくなっており、仮にここで漏れたとしても、ドレンに合流するため問題はない。
【0012】
上記、第1回転シール継手と第2回転シール継手は、主軸の後部の限られた空間において、主軸の回転軸と同軸の関係を持ちながら、合理的な位置関係で配置される。
もし、第1回転シール継手と第2回転シール継手を1個の回転シール継手に集約した場合、装置そのものが複雑化し大型化することとなるため、局所的に大きな収納スペースが必要となる。もしそうなれば、制約の多い主軸内に収納することが容易でなくなる。
また、大型化もしくは複雑化すれば高速回転への追従性も悪化するし、長期使用における信頼性の低下を招いてしまう。
回転シール継手を2個にしたことにより、それぞれの回転シール継手の構造はシンプルとなり、サイズもコンパクトになるため、主軸内に収納しやすくなる上、高速回転に追従でき、しいては長期使用時の信頼性を高めることが可能となる。
【0013】
【実施例】
以下、図面に示す実施例につき説明する。図1は本発明に係る主軸等の回転シール継手を備えた主軸装置の全体断面図であり、図2は本発明に係る主軸等の回転シール継手を備えた主軸装置の部分拡大断面図である。
【0014】
図1において、主軸装置100の主軸1は、その先端側を2つの軸受2,3によって支持され、また後端側を1つの軸受4によって支持されている。上記主軸1には、その中腹部1AにビルトインモータBMのローター5を嵌着しており、軸心位置に明けた内周孔1Bには多層の皿バネ6とドローイングバー7を内装し、主軸先端のテーパー穴1Cに挿入した工具Tを強力に引き込み嵌着する。そして、上記ドローイングバー7の後端7Aには、アンクランプ装置10のピストン11がシリンダ12内に装嵌し、図示の後退したクランプと、ドローイングバー7側へ前進するときドローイングバー7を強力に押出してアンクランプ動作する。しかして、通常は図1,2に示すように、ピストン11が後退したアンクランプ状態にある。
【0015】
上記アンクランプ装置10のピストン11の尾端孔部11Aには、主軸1の軸芯冷却と3つの軸受2,3,4のアンダーレース潤滑を行うための冷却潤滑液Cが供給されている。ピストン11の尾端孔部11Aに供給された冷却潤滑液Cは、接触式の第一回転シール継手K1を介してピストン11の通孔11Bからドローイングバー7の中心孔7B内に送り込まれ、ドローイングバー7の先端に開口した通孔7Cからドローイングバー7の外周に面した主軸1の内周孔1Bに流入する。主軸1の内周孔1Bに流入した冷却潤滑液Cの大部分は、主軸1の全長にわたって冷却すると共に、主軸中腹部1Aで多量に発生するローター5からの熱を冷却し、主軸尾端孔部1Eと機枠B間に介在させた接触式の第二回転シール継手K2の内周隙間Xを通って機枠Bの通孔B1から外部へ軸芯冷却済液として放出する。これら冷却潤滑液Cは、図示しない冷却装置により、冷却後に再び接触式の第一回転シール継手K1を介してピストン11の通孔11Bからドローイングバー7の中心孔7B内に送り込まれる。
【0016】
他方、主軸1の内周孔1Bに流入した冷却潤滑液Cの一部分は、3つの軸受2,3,4のアンダーレース潤滑を行うべく、内周孔1Bから半径方向に明けた通孔1F,1G,1Hが各軸受2,3,4の内輪2A,3A,4Aに連絡している。これにより、冷却潤滑液Cの一部分は、内周孔1Dから通孔1F,1G,1Hを通って各軸受2,3,4の内輪2A,3A,4Aへ供給され、アンダーレース潤滑を実施する。主軸1の先端側軸受2,3を潤滑後の冷却潤滑液Cは、主軸固定機枠12側のドレン通路12Aから放出路12Bに集められ、又、主軸1の後端側軸受4を潤滑後の冷却潤滑液Cは、主軸固定機枠B側のドレン通路12Cから放出路12Dに集められ、各々潤滑済液として放出する。
【0017】
尚、ビルトインモータBMの巻線コイル13を備えた固定子側の冷却ジャケット13Aには、外筒冷却液C1が主軸固定機枠12側の通路12Eから送り込まれ、冷却済の外筒冷却液C1が通路12Fから外部へ放出される。この外筒冷却液C1は、図示しない冷却装置により、冷却後に再び通路12Eから送り込まれる。
【0018】
上記第一回転シール継手K1,第二回転シール継手K2の概要構成を図2に示す。先ず、ピストン11の中心通孔11Bからドローイングバー7の後端中心孔7A内に冷却潤滑液Cを送り込むための第一回転シール継手K1は、ドローイングバー7の後端7Cに嵌着した回転部材20と、この後端面にバネ材30で加圧力P1を付与して接触する加圧部材40がピストン11の中心通孔11B内の拡径部11Cに装備している。又、主軸尾端孔部1Eと機枠B間に介在させた接触式の第二回転シール継手K2は、主軸尾端孔部1Eの環体50に係合させた回転部材60と、この後端面にバネ材70で加圧力P2を付与して接触する加圧部材80が機枠Bに固定した支持環体90内に装備している。
【0019】
次に、第一回転シール継手K1の詳細構成を、図3により説明する。ドローイングバー7の後端7Cに嵌着したコ字型断面の環体ホルダ21内に、環状の回転部材20が嵌入し、ピン22で軸方向のみ移動自在に一体的に支持されている。他方、環状の加圧部材40は、ピストン11の拡径部11Cにピン43で軸方向のみ移動自在に一体的に備える倒Y字断面の環体ホルダ41における凹部42の円周上に複数のにバネ材30を介して移動可能に嵌合している。上記バネ材30は、加圧力P1を加圧部材40に対してその円周上で均等に付与し、この加圧力P1を加圧部材40の接触輪片40Aを介して接触する回転部材20の端面に、求心機構の機能のもと付与している。
【0020】
尚、上記回転部材20の材質は、軽量であって耐摩耗性や耐薬品性及び耐熱性,低摩擦係数等に優れたセラミックス材が採用されている。また、加圧部材40の材質は、耐摩耗性及び耐熱性,低摩擦係数等に優れたカーボン材が採用されている。これら材質の採用により、回転部材20とこれに所定の加圧力P1を付与する加圧部材40の接触輪片40Aとは、冷却潤滑液Cを漏らすこと無く回転シール継手K1の機能を果たす事が出来、高速回転でも10年以上の長寿命を保証する。
【0021】
続いて、第二回転シール継手K2の詳細構成を、図4により説明する。主軸尾端孔部1Eには、コ字型断面のホルダ部51を持つ環体50がボルト52により締結されている。上記ホルダ部51には、環状の回転部材60が嵌入してピン53で軸方向のみ移動自在に一体的に備えられている。他方、環状の加圧部材80は、機枠Bに固定した支持環体90のコ字型断面のホルダ部91の内周壁に嵌着したスプライン筒92の内周面に軸方向のみ移動自在に一体的に備えている。支持環体90の凹部93の円周上に複数備えたバネ材30は、加圧力P2を加圧部材80に対してその円周上で均等に付与し、この加圧力P2を加圧部材80の接触輪片80Aを介して接触する回転部材60の端面に、求心機構の機能のもと付与している。上記環体50や支持環体90の内周面と、ドローイングバー7の外周面との間には隙間Xを設け、この隙間Xから主軸冷却した冷却潤滑液Cを機枠Bの通孔B1へと導き、第二回転シール継手K2にて冷却潤滑液Cの漏れを防止する機能を果たしている。
【0022】
尚、上記回転部材60の材質も、軽量であって耐摩耗性や耐薬品性及び耐熱性,低摩擦係数等に優れたセラミックス材が採用されている。そして、加圧部材80の材質も、耐摩耗性及び耐熱性,低摩擦係数等に優れたカーボン材が採用されている。これら材質の採用により、回転部材60とこれに所定の加圧力P2を付与する加圧部材80の接触輪片80Aとは、冷却潤滑液Cを漏らすこと無く回転シール継手K2の機能を果たす事が出来、高速回転でも10年以上の長寿命を保証する。
【0023】
本発明の各回転シール継手K1,K2は上記のように構成されており、以下のように作用する。アンクランプ装置10のピストン11の尾端孔部11Aには、主軸1の軸芯冷却と3つの軸受2,3,4のアンダーレース潤滑を行うための冷却潤滑液Cが供給される。上記尾端孔部11Aに供給された冷却潤滑液Cは、第一回転シール継手K1を介してピストン11の通孔11Bからドローイングバー7の中心孔7B内に送り込まれ、ドローイングバー7の先端に開口した通孔7Cからドローイングバー7の外周に面した主軸1の内周孔1Bに流入する。上記第一回転シール継手K1は、アンクランプ装置10のクランプ,アンクランプ動作状態や主軸1の回転及び停止に係わりなく常に安定したシール作用を発揮する。
【0024】
即ち、回転部材20とこれに所定の加圧力P1を付与する加圧部材40の接触輪片40Aとにより、この両者20,40間の接触圧が一定に制御されるから主軸1の回転及び停止や外部変動の要因に係わりなく、冷却潤滑液Cを漏らすことも無く回転シール継手K1の機能を果たす。又、主軸1の高速回転時でも、これと一体回転する回転部材20の求心機能により両接触面が均等に密着し、液漏れの防止機能が10年以上の長寿命を発揮する効果がある。
【0025】
次に、主軸1の内周孔1Bに流入した冷却潤滑液Cの大部分は、主軸1の全長にわたって冷却すると共に、主軸中腹部1Aで多量に発生するローター5からの熱を冷却し、主軸尾端孔部1Eと機枠B間に介在させた接触式の第二回転シール継手K2の内周隙間Xを通って機枠Bの通孔B1から外部へ軸芯冷却済液として放出する。上記第二回転シール継手K2は、主軸1の回転及び停止に係わりなく常に安定したシール作用を発揮する。
【0026】
即ち、回転部材60とこれに所定の加圧力P2を付与する加圧部材80の接触輪片80Aとにより、この両者60,80間の接触圧が一定に制御されるから主軸1の回転及び停止や外部変動の要因に係わりなく、冷却潤滑液Cを漏らすことも無く回転シール継手K2の機能を果たす。又、主軸1の高速回転時でも、これと一体回転する回転部材60の求心機能により両接触面が均等に密着し、液漏れの防止機能が10年以上の長寿命を発揮する効果がある。
【0027】
上記冷却潤滑液Cは、図示しない冷却装置により、冷却後に再び接触式の第一回転シール継手K1を介してピストン11の通孔11Bからドローイングバー7の中心孔7B内に送り込まれる。他方、主軸1の内周孔1Bに流入した冷却潤滑液Cの一部分は、3つの軸受2,3,4のアンダーレース潤滑を内周孔1Bから半径方向に明けた通孔1F,1G,1Hから各軸受2,3,4の内輪2A,3A,4Aに流れ込み、アンダーレース潤滑をする。主軸1の先端側軸受2,3を潤滑後の冷却潤滑液Cは、主軸固定機枠12側のドレン通路12Aから放出路12Bに集められ、又、主軸1の後端側軸受4を潤滑後の冷却潤滑液Cは、主軸固定機枠B側のドレン通路12Cから放出路12Dに集められ、各々潤滑済液として放出する。
【0028】
本発明は、上記実施例に限定されることなく発明の要旨内での細部の設計変更が可能である。例えば、2個の回転シール継手K1,K2は上記構成に限定されず、詳細な部分構成を自由に設計変更できる。
【0029】
【効果】
本発明の請求項1によると、使用する回転シール継手は、回転部材とこれに所定の加圧力を付与する加圧部材の接触輪片とにより、この両者間の接触圧が簡潔な構成手段で一定に制御されるから、ドローイングバーや主軸等の回転体の回転及び停止や外部変動の要因に係わりなく、冷却潤滑液を漏らすことも無く回転シール継手の機能を果たす。又、主軸等の高速回転時でも、これと一体回転する回転部材に求心機能が働き、液漏れの防止機能が長期間にわたり発揮する効果がある。
上記の回転シール継手を、主軸の軸心冷却の入口と出口においてそれぞれ配置することにより、個々の回転シール継手のサイズを小さくでき、高速追従性と信頼性は高められ、シール部分から冷却液の若干の漏洩があっても問題なく回収される。
また、小型化された回転シール継手は狭い主軸内にあっても合理的に配置しやすく、主軸設計において部品レイアウトの自由度を損なうことがない。
【図面の簡単な説明】
【図1】本発明に係る主軸等の回転シール継手を備えた主軸装置の全体断面図である。
【図2】本発明に係る主軸等の回転シール継手の拡大断面図である。
【図3】本発明の第一回転シール継手の詳細構成を示す拡大断面図である。
【図4】本発明の第二回シール転継手の詳細構成を示す拡大断面図である。
【符号の説明】
1 主軸
1E 主軸尾端孔部
2,3,4 軸受
2A,3A,4A 内輪
7 ドローイングバー
7C 通孔
10 アンクランプ装置
11 ピストン
20,60 回転部材
21 環体ホルダ
30,70 バネ材
40,80 加圧部材
40A,80A 接触輪片
41 環体ホルダ
50 環体
90 支持環体
B 機枠
C 冷却潤滑液
C1 外筒冷却液
K1 第一回転シール継手
K2 第二回シール転継手
【目的】
主軸の軸心冷却と主軸の外筒冷却を合わせて行う主軸のハイブリッド冷却の、軸心冷却で使用される冷却液のシール方法に関して、
スプリング力を利用した定圧機構により回転シール部材の回転側部材に固定側部材を定常圧に接触付与することで、油漏れなく且つ高速回転に対応できる回転シール継手を、冷却液の入口と出口に別個に配置することにより、それぞれの回転シール継手を小型化し、狭い主軸後部に合理的に配置でき、高速回転時の追従性と信頼性も向上させることを目的とする。
【構成】
ドローイングバー7の中心孔7Bへの冷却潤滑液Cの供給や主軸尾端孔1Eからの冷却潤滑液Cの排出若しくは主軸尾端孔1Eへの供給を支配する回転シール継手にして、ドローイングバー7や主軸1等の回転体の端部に嵌着させた回転部材20,60と、この回転部材の端面にバネ材30,70等で加圧力P1,P2を付与されて接触する加圧部材40,80を固定体等に装備させた回転シール継手K1,K2である。
[0001]
[Industrial applications]
The present invention relates to a configuration of a rotary seal joint such as a main shaft of a machine tool, and a rotary seal joint that not only minimizes leakage of pressurized fluid but also enables pressure management of a seal contact surface. It is related to the rational arrangement for cooling the core.
[0002]
[Prior art]
Conventionally, center-through processing is performed in which a coolant for cutting is supplied from a center hole of a draw bar of a main shaft of a machine tool, passes through an axis of the main shaft, and is injected from a tool fitted to an end of the main shaft. .
One of the necessary components for performing center-through processing is a rotary seal joint, which is a seal function that connects the center hole of the draw bar, which is the rotating body, and the supply port of the coolant for cutting, which is the fixed body. This makes it possible to transfer the coolant for cutting from the rear part of the spindle to the end of the spindle.
[0003]
As a rotary seal joint used in the above-mentioned applications, as shown in JP-A-4-60281, a fixed circular pipe and a rotary circular pipe are fitted in a longitudinal direction thereof in a non-contact manner with a radial gap therebetween. A rotary seal member is provided in which an annular groove is provided in an insertion surface to be fitted, and a suction device is provided in a suction path communicating with the groove. According to this rotary seal member, it is sufficient to provide the annular groove and the suction path only on one side even when the forward path and the return path of the coolant are combined, and there is an advantage that the seal structure is simple. In Japanese Patent Application Laid-Open No. 6-241366, a diaphragm for urging a pair of seal members provided on a surface of a rotary joint facing a rotating shaft and a moving shaft in a non-contact state is provided between the housing and the moving shaft. ing. Then, when flowing gas through the fluid flow path, the gas is introduced into the port, and the pair of seal members are kept in a non-contact state. When flowing the fluid, the liquid is introduced into the port, and the diaphragm is pressed at the pressure. Is pressed to bring the pair of seal members into contact.
[0004]
[Problems to be solved by the invention]
However, according to the rotating seal member disclosed in JP-A-4-60281, the suction force is reduced due to the trouble of the suction device, and oil leaks from the annular groove of the insertion surface where the fixed circular tube and the rotating circular tube are fitted. I do. In addition, the fitting gap between the fixed circular pipe and the rotary circular pipe fluctuates due to the unbalance or the rotational vibration of the rotary circular pipe, so that the lubrication suction / recovery efficiency decreases. Further, in the rotary joint disclosed in JP-A-6-241366, the pair of seal members are kept in a non-contact state when gas is introduced into the port, and when a fluid is allowed to flow, the diaphragm is pressed by the pressure, and the pair of seal members are pressed. Because it is in a contact state, the operation mechanism of the seal member is complicated, and the operation becomes unstable due to pressure fluctuation etc., which lowers the fluid suction efficiency and causes many failures Factors that cause it to be included.
[0005]
After all, the occurrence of oil leakage from a pair of sealing members or the fitting gap between the fixed circular tube and the rotating circular tube cannot be avoided, and a suction and recovery device for oil leakage becomes indispensable. I have. As a result, there is a problem in that the operation mechanism of the seal member becomes complicated, and the peripheral equipment becomes large.
And, despite the structural problems of the conventional rotary seal joint as described above, in the spindle cooling of the machine tool, the practical use of hybrid cooling of the spindle to enable more precise temperature control. Attempts have been made. The hybrid cooling of the main spindle is to circulate the coolant through a separate path between the axis of the main spindle and the outer cylinder of the main spindle. Of the hybrid cooling, the supply of the coolant to the shaft center is most efficiently performed from the drawbar center hole, but even with such a rotating body, the coolant is efficiently circulated and heat exchanged. Later, it must be recovered.
[0006]
However, the technology that achieves the conventional center-through processing requires that the coolant for cutting be supplied in one direction from the center hole at the rear end of the drawbar to the cutting tool at the tip of the spindle, and consideration is given to recovery within the spindle. No need. For this reason, the structure and configuration of the rotary seal joint that has been used for the coolant for cutting cannot be directly diverted to the cooling of the shaft center of the main shaft.
[0007]
The present invention has been made in consideration of the above-described problems of the conventional rotary seal member, and has a constant pressure mechanism using a spring force to apply the fixed side member to the rotary side member of the rotary seal member at a steady pressure, thereby preventing oil leakage and high speed. Rotary seal joints that can cope with rotation are arranged separately at the inlet and outlet of the coolant in cooling the shaft center of the main shaft, so that individual sizes can be set small and the narrow main shaft can be used without complicating the structure. The purpose is to provide a method for reasonably storing in the rear.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention relates to claim 1,
In cooling a spindle of a machine tool, a cooling liquid is supplied from a center hole provided in a draw bar of a spindle head, a spindle core is circulated around and around the spindle, and a spindle core cooling method for directly cooling the inside of the spindle is provided. With respect to the above, a rotary member fitted to an end of a rotary body such as a drawing bar or a main shaft for sealing a coolant inlet, and a pressing force applied to the end surface of the rotary member by a spring material or the like to contact the rotary member. A first rotary seal joint having a pressure member mounted on a fixed body or the like,
A second rotary seal joint having the same configuration as above is also provided at the outlet of the coolant after circulation.
A cooling liquid sealing method for cooling a shaft center of a main shaft, wherein the first rotary seal joint and the second rotary seal joint are arranged coaxially with a rotary shaft of a main shaft.
[0009]
[Action]
In the rotary joint used in claim 1 of the present invention, the contact pressure between the rotating member and the contact wheel piece of the pressing member for applying a predetermined pressing force to the rotating member is controlled to a constant value. It functions as a rotary seal joint without leakage of cooling lubricating fluid, regardless of the cause of rotation and stoppage of the rotating body such as the main shaft and external fluctuations, especially when the main shaft etc. rotates at high speed. A centripetal action acts on the member, and the function of preventing liquid leakage can be exerted for a long period of time.
[0010]
In the shaft center cooling of the hybrid spindle cooling, the first rotary seal joint among the above-mentioned rotary seal joints is arranged at the rear end of the drawbar, and the coolant is supplied to the center hole of the drawbar that rotates at high speed. Then, the cooling liquid circulated through the center of the main shaft and returned is collected by the second rotary seal joint. In addition, a small gap in the seal portion of the rotary seal joint is filled by the coolant itself as a seal material to maintain a high hermeticity, but the coolant as the seal material is slightly sealed. Inevitably leak from
[0011]
At the inlet of the first rotary joint, where both the pressure and the flow rate are large and the coolant is likely to leak, even if a small amount of the coolant leaks, it merges with the route that is collected through the second rotary seal joint. Absent. Also, regarding the leakage of the second rotary seal joint, the coolant itself branches off in the main shaft for bearing lubrication and the like, and both the flow rate and the pressure become smaller than at the inlet, so that the leakage amount itself is reduced. Even if it leaks here, there is no problem because it joins the drain.
[0012]
The first rotary seal joint and the second rotary seal joint are arranged in a limited space at the rear part of the main shaft and in a reasonable positional relationship while having a coaxial relationship with the rotary shaft of the main shaft.
If the first rotary seal joint and the second rotary seal joint are integrated into one rotary seal joint, the apparatus itself becomes complicated and large, and a large storage space is locally required. If this happens, it will not be easy to store it in the spindle with many restrictions.
In addition, if the size or size of the device is increased, the ability to follow a high-speed rotation is deteriorated, and the reliability in long-term use is reduced.
The use of two rotary seal joints simplifies the structure of each rotary seal joint and makes it compact in size, making it easier to store in the main shaft and being able to follow high-speed rotation, and in long-term use Reliability can be improved.
[0013]
【Example】
Hereinafter, embodiments shown in the drawings will be described. FIG. 1 is an overall sectional view of a spindle device provided with a rotary seal joint such as a spindle according to the present invention, and FIG. 2 is a partially enlarged sectional view of a spindle device provided with a rotary seal joint such as a spindle according to the present invention. .
[0014]
In FIG. 1, a main shaft 1 of a main shaft device 100 is supported by two bearings 2 and 3 on a front end side, and is supported by a single bearing 4 on a rear end side. The main shaft 1 has a rotor 5 of a built-in motor BM fitted to its mid-abdominal portion 1A, and a multi-layered disc spring 6 and a drawing bar 7 are installed in an inner peripheral hole 1B opened at the shaft center position. The tool T inserted into the tapered hole 1C at the tip is strongly pulled in and fitted. The piston 11 of the unclamping device 10 is fitted in the cylinder 12 at the rear end 7A of the drawing bar 7, and the retracted clamp shown in the drawing and the drawing bar 7 are strongly pushed when the drawing bar 7 is advanced. Extrusion and unclamping operation. Thus, normally, as shown in FIGS. 1 and 2, the piston 11 is in an unclamped state in which the piston 11 is retracted.
[0015]
A cooling lubricating liquid C is supplied to the tail end hole portion 11A of the piston 11 of the unclamping device 10 for cooling the shaft center of the main shaft 1 and under-race lubrication of the three bearings 2, 3, and 4. The cooling lubricating liquid C supplied to the tail end hole portion 11A of the piston 11 is sent from the through hole 11B of the piston 11 into the center hole 7B of the drawing bar 7 through the contact type first rotary seal joint K1, and is drawn. It flows into the inner peripheral hole 1B of the main shaft 1 facing the outer periphery of the drawing bar 7 from the through hole 7C opened at the tip of the bar 7. Most of the cooling lubricating liquid C flowing into the inner peripheral hole 1B of the main shaft 1 cools over the entire length of the main shaft 1 and also cools a large amount of heat generated from the rotor 5 at the main shaft middle portion 1A. The liquid is discharged from the through hole B1 of the machine frame B to the outside through the inner circumferential gap X of the contact type second rotary seal joint K2 interposed between the portion 1E and the machine frame B as the shaft core cooled liquid. After cooling, the cooling lubricating liquid C is again sent into the center hole 7B of the drawing bar 7 from the through hole 11B of the piston 11 via the contact-type first rotary seal joint K1 after cooling.
[0016]
On the other hand, a part of the cooling lubricating liquid C flowing into the inner peripheral hole 1B of the main shaft 1 has through holes 1F, 1D radially opened from the inner peripheral hole 1B in order to perform under-race lubrication of the three bearings 2, 3, and 4. 1G and 1H communicate with the inner rings 2A, 3A and 4A of the bearings 2, 3 and 4, respectively. As a result, a part of the cooling lubricating liquid C is supplied from the inner peripheral hole 1D to the inner rings 2A, 3A, 4A of the bearings 2, 3, 4 through the through holes 1F, 1G, 1H to perform under-race lubrication. . The cooling lubricating liquid C after lubricating the front-end bearings 2 and 3 of the main shaft 1 is collected from the drain passage 12A on the main-shaft fixing machine frame 12 side into the discharge passage 12B, and after lubricating the rear-end bearing 4 of the main shaft 1. The cooling lubricating liquid C is collected from the drain path 12C on the spindle fixing machine frame B side into the discharge path 12D, and is discharged as a lubricated liquid.
[0017]
In addition, the outer cylinder cooling liquid C1 is fed into the cooling jacket 13A on the stator side provided with the winding coil 13 of the built-in motor BM from the passage 12E on the main shaft fixing machine frame 12 side, and the cooled outer cylinder cooling liquid C1 is cooled. Is discharged from the passage 12F to the outside. The outer cylinder cooling liquid C1 is sent again from the passage 12E after cooling by a cooling device (not shown).
[0018]
FIG. 2 shows a schematic configuration of the first rotary seal joint K1 and the second rotary seal joint K2. First, a first rotary seal joint K1 for feeding the cooling lubricating liquid C from the center through hole 11B of the piston 11 into the rear end center hole 7A of the drawing bar 7 is a rotating member fitted to the rear end 7C of the drawing bar 7. 20 and a pressurizing member 40 that applies a pressing force P1 to the rear end surface of the piston 11 by a spring material 30 and comes into contact therewith is provided in the enlarged diameter portion 11C in the central through hole 11B of the piston 11. The contact-type second rotary seal joint K2 interposed between the spindle tail end hole 1E and the machine frame B includes a rotary member 60 engaged with the ring body 50 of the spindle tail end hole 1E, and A pressurizing member 80 that applies a pressure P2 to the end surface by a spring member 70 and comes into contact with the end surface is provided in a support ring 90 fixed to the machine frame B.
[0019]
Next, the detailed configuration of the first rotary seal joint K1 will be described with reference to FIG. An annular rotating member 20 is fitted into an annular holder 21 having a U-shaped cross section fitted to the rear end 7C of the drawing bar 7, and is integrally supported by pins 22 so as to be movable only in the axial direction. On the other hand, a plurality of annular pressing members 40 are provided on the circumference of the concave portion 42 of the inverted Y-shaped cross-section ring holder 41 integrally provided on the enlarged diameter portion 11C of the piston 11 with a pin 43 so as to be movable only in the axial direction. Are movably fitted through a spring member 30. The spring member 30 uniformly applies the pressing force P1 to the pressing member 40 on the circumference thereof, and applies the pressing force P1 to the pressing member 40 via the contact ring piece 40A of the rotating member 20. The end face is provided with the function of a centripetal mechanism.
[0020]
The rotating member 20 is made of a ceramic material which is lightweight and has excellent wear resistance, chemical resistance, heat resistance, low coefficient of friction and the like. The material of the pressing member 40 is a carbon material having excellent wear resistance, heat resistance, low coefficient of friction, and the like. By using these materials, the rotating member 20 and the contact wheel piece 40A of the pressing member 40 for applying a predetermined pressure P1 to the rotating member 20 can fulfill the function of the rotating seal joint K1 without leaking the cooling lubricant C. It guarantees a long life of more than 10 years even at high speed rotation.
[0021]
Subsequently, a detailed configuration of the second rotary seal joint K2 will be described with reference to FIG. An annular body 50 having a holder section 51 having a U-shaped cross section is fastened to the main shaft tail end hole 1E by a bolt 52. An annular rotating member 60 is fitted into the holder portion 51 and is integrally provided so as to be movable only in the axial direction by a pin 53. On the other hand, the annular pressing member 80 is movable only in the axial direction on the inner peripheral surface of the spline cylinder 92 fitted to the inner peripheral wall of the holder 91 having the U-shaped cross section of the support ring 90 fixed to the machine frame B. It is provided integrally. The plurality of spring members 30 provided on the circumference of the concave portion 93 of the support ring 90 uniformly apply the pressing force P2 to the pressing member 80 on the circumference thereof, and apply the pressing force P2 to the pressing member 80. The function of a centripetal mechanism is given to the end face of the rotating member 60 which comes into contact via the contact wheel piece 80A. A gap X is provided between the inner peripheral surface of the ring body 50 or the supporting ring body 90 and the outer peripheral surface of the drawing bar 7, and the cooling lubricating liquid C whose main shaft has been cooled through the gap X is passed through the through hole B 1 of the machine frame B. And the second rotary seal joint K2 serves to prevent the cooling lubricant C from leaking.
[0022]
The rotating member 60 is also made of a ceramic material that is lightweight and has excellent wear resistance, chemical resistance, heat resistance, low coefficient of friction, and the like. As the material of the pressing member 80, a carbon material having excellent wear resistance, heat resistance, low coefficient of friction, and the like is employed. By using these materials, the rotating member 60 and the contact wheel piece 80A of the pressing member 80 for applying a predetermined pressure P2 to the rotating member 60 can perform the function of the rotating seal joint K2 without leaking the cooling lubricant C. It guarantees a long life of more than 10 years even at high speed rotation.
[0023]
The rotary seal joints K1 and K2 of the present invention are configured as described above, and operate as follows. A cooling lubricating liquid C is supplied to the tail end hole 11A of the piston 11 of the unclamping device 10 for cooling the shaft center of the main shaft 1 and for under-race lubrication of the three bearings 2, 3, and 4. The cooling lubricating liquid C supplied to the tail end hole portion 11A is sent from the through hole 11B of the piston 11 into the center hole 7B of the drawing bar 7 through the first rotary seal joint K1, and the tip end of the drawing bar 7 It flows into the inner peripheral hole 1B of the main shaft 1 facing the outer periphery of the drawing bar 7 from the opened through hole 7C. The first rotary seal joint K1 always exerts a stable sealing action regardless of the clamping and unclamping operation states of the unclamping device 10 and the rotation and stop of the main shaft 1.
[0024]
That is, the contact pressure between the rotating member 20 and the contact wheel piece 40A of the pressing member 40 for applying a predetermined pressing force P1 to the rotating member 20 is controlled to be constant. The function of the rotary seal joint K1 is achieved without leaking the cooling lubricating liquid C regardless of the factor of the external fluctuation. Even when the main shaft 1 rotates at a high speed, the contact surfaces of the rotating member 20 that rotates integrally with the main shaft 1 are evenly brought into close contact with each other, so that the function of preventing liquid leakage has a long service life of 10 years or more.
[0025]
Next, most of the cooling lubricating liquid C flowing into the inner peripheral hole 1B of the main shaft 1 cools down the entire length of the main shaft 1 and also cools a large amount of heat generated from the rotor 5 in the main shaft mid-abdominal portion 1A. The liquid is discharged as a cooled shaft core from the through hole B1 of the machine frame B to the outside through the inner circumferential gap X of the contact type second rotary seal joint K2 interposed between the tail end hole portion 1E and the machine frame B. The second rotary seal joint K2 always exerts a stable sealing action regardless of rotation and stop of the main shaft 1.
[0026]
That is, the contact pressure between the rotating member 60 and the contact wheel piece 80A of the pressing member 80 for applying a predetermined pressing force P2 to the rotating member 60 is controlled to be constant. The function of the rotary seal joint K2 is achieved without leaking the cooling lubricating liquid C, regardless of factors of external fluctuations. In addition, even when the main shaft 1 rotates at high speed, the contact surface of the rotating member 60 that rotates integrally with the main shaft 1 makes the two contact surfaces evenly adhere to each other, so that the function of preventing liquid leakage has a long service life of 10 years or more.
[0027]
After being cooled, the cooling lubricating liquid C is again sent into the center hole 7B of the drawing bar 7 from the through hole 11B of the piston 11 via the contact type first rotary seal joint K1 after cooling. On the other hand, a part of the cooling lubricating liquid C that has flowed into the inner peripheral hole 1B of the main shaft 1 has through-holes 1F, 1G, and 1H in which the underrace lubrication of the three bearings 2, 3, and 4 is radially opened from the inner peripheral hole 1B. Flows into the inner rings 2A, 3A and 4A of the bearings 2, 3 and 4 to lubricate under-race. The cooling lubricating liquid C after lubricating the front-end bearings 2 and 3 of the main shaft 1 is collected from the drain passage 12A on the main-shaft fixing machine frame 12 side into the discharge passage 12B, and after lubricating the rear-end bearing 4 of the main shaft 1. The cooling lubricating liquid C is collected from the drain path 12C on the spindle fixing machine frame B side into the discharge path 12D, and is discharged as a lubricated liquid.
[0028]
The present invention is not limited to the above-described embodiment, and can be modified in detail within the scope of the invention. For example, the two rotary seal joints K1 and K2 are not limited to the above configuration, and the detailed partial configuration can be freely changed in design.
[0029]
【effect】
According to the first aspect of the present invention, the rotary seal joint to be used is a simple configuration means in which the contact pressure between the rotary member and the contact ring of the pressing member for applying a predetermined pressing force to the rotary member is simple. Since it is controlled to be constant, it functions as a rotary seal joint without leaking the cooling lubricating liquid regardless of factors such as rotation and stop of the rotating body such as the drawing bar and the main shaft and external fluctuations. Further, even when the main shaft or the like rotates at a high speed, the centering function works on the rotating member that rotates integrally therewith, and there is an effect that the function of preventing liquid leakage is exhibited for a long period of time.
By arranging the above-mentioned rotary seal joints at the inlet and the outlet of the shaft center cooling of the main shaft, the size of each rotary seal joint can be reduced, high-speed followability and reliability are improved, and the cooling liquid from the seal portion is cooled. Even if there is a slight leak, it is collected without any problem.
Further, the downsized rotary seal joint can be easily arranged rationally even in a narrow main shaft, and does not impair the degree of freedom of component layout in the main shaft design.
[Brief description of the drawings]
FIG. 1 is an overall sectional view of a spindle device provided with a rotary seal joint such as a spindle according to the present invention.
FIG. 2 is an enlarged sectional view of a rotary seal joint such as a main shaft according to the present invention.
FIG. 3 is an enlarged sectional view showing a detailed configuration of a first rotary seal joint of the present invention.
FIG. 4 is an enlarged cross-sectional view showing a detailed configuration of a second seal joint according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Main shaft 1E Main shaft tail end holes 2, 3, 4 Bearings 2A, 3A, 4A Inner ring 7 Drawing bar 7C Through hole 10 Unclamp device 11 Piston 20, 60 Rotating member 21 Ring holder 30, 70 Spring material 40, 80 Pressure members 40A, 80A Contact wheel piece 41 Ring holder 50 Ring 90 Support ring B Machine frame C Cooling lubricating liquid C1 Outer cylinder cooling liquid K1 First rotary seal coupling K2 Second seal coupling coupling
Regarding the cooling method of the coolant used in the shaft center cooling of the hybrid cooling of the main shaft that performs the cooling of the shaft center of the main shaft and the outer cylinder of the main shaft together,
By applying the fixed side member to the rotating side member of the rotating seal member in contact with the steady pressure by the constant pressure mechanism using the spring force, a rotating seal joint capable of coping with high speed rotation without oil leakage is provided at the inlet and outlet of the coolant. By separately arranging, each rotary seal joint can be miniaturized, can be rationally arranged at a narrow rear portion of the main shaft, and improve the followability and reliability during high-speed rotation.
【Constitution】
A rotary seal joint that controls the supply of the cooling lubricating liquid C to the center hole 7B of the drawing bar 7, the discharge of the cooling lubricating liquid C from the tail end hole 1E of the spindle, or the supply to the tail end hole 1E of the drawing bar. 20 and 60 fitted to the ends of a rotating body such as the shaft 1 and the main shaft 1 and a pressing member 40 which is brought into contact with the end faces of the rotating members by applying pressures P1 and P2 to the end faces of the rotating members 30 and 70 or the like. , 80 on a stationary body or the like.

Claims (1)

工作機械の主軸冷却において、主軸後部のドローバーに設けられた中心孔から冷却液を供給し、主軸の軸心部を及びその周辺を循環させ、主軸内部を直接冷却する主軸の軸心冷却方法に関して、
冷却液入口のシールのために、ドローイングバーや主軸等の回転体の端部に嵌着させた回転部材と、この回転部材の端面にバネ材等で加圧力を付与されて接触する加圧部材を固定体等に装備させてなる第1回転シール継手を配し、
循環後の冷却液の出口にも、上記と同等の構成からなる第2回転シール継手を配し、
上記第1回転シール継手と第2回転シール継手を、主軸内において、主軸の回転軸と同軸に配置したことを特徴とする、主軸の軸心冷却のための冷却液のシール方法。
In the cooling of a spindle of a machine tool, a cooling liquid is supplied from a center hole provided in a draw bar at a rear portion of a spindle, a spindle core is circulated around and around the spindle, and a spindle core cooling method of directly cooling the inside of the spindle is provided. ,
A rotary member fitted to an end of a rotary body such as a drawing bar or a main shaft for sealing a coolant inlet, and a pressurizing member that comes into contact with an end face of the rotary member by applying a pressing force with a spring material or the like. A first rotary seal joint equipped with a
At the outlet of the coolant after circulation, a second rotary seal joint having the same configuration as above is also provided,
A method of sealing a coolant for cooling a shaft center of a main shaft, wherein the first rotary seal joint and the second rotary seal joint are arranged coaxially with a rotary shaft of the main shaft in the main shaft.
JP04242595A 1995-02-07 1995-02-07 Rotary seal joint for main shaft etc. Expired - Fee Related JP3556989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04242595A JP3556989B2 (en) 1995-02-07 1995-02-07 Rotary seal joint for main shaft etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04242595A JP3556989B2 (en) 1995-02-07 1995-02-07 Rotary seal joint for main shaft etc.

Publications (2)

Publication Number Publication Date
JPH08210574A JPH08210574A (en) 1996-08-20
JP3556989B2 true JP3556989B2 (en) 2004-08-25

Family

ID=12635715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04242595A Expired - Fee Related JP3556989B2 (en) 1995-02-07 1995-02-07 Rotary seal joint for main shaft etc.

Country Status (1)

Country Link
JP (1) JP3556989B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7357449B2 (en) * 2019-02-19 2023-10-06 株式会社北川鉄工所 rotating cylinder

Also Published As

Publication number Publication date
JPH08210574A (en) 1996-08-20

Similar Documents

Publication Publication Date Title
US8684643B2 (en) Shaft cooler for a tool motor spindle
EP0458499B1 (en) Apparatus for cooling a spindle bearing of a machine
US6674189B2 (en) Spindle apparatus
US5199748A (en) Rotary coupling for two different fluids
JP4722340B2 (en) Dynamic pressure sealing device and rotary joint device using the same
US5782586A (en) Spindle unit for machine tools
JP5485784B2 (en) Machine tool spindle cooling structure
JP6626146B2 (en) Rotary table device
JP3616499B2 (en) Machine tool spindle equipment
JP2510621B2 (en) Motor built-in spindle device with cooling means
JP3556989B2 (en) Rotary seal joint for main shaft etc.
JP2000288870A (en) Rotating spindle device
JP3452947B2 (en) Bearing lubrication mechanism of main shaft device
JPH07106534B2 (en) Spindle device with cooling liquid flowing through the spindle
JP3448732B2 (en) Lead screw cooling system
JPH08210573A (en) Rotary sealing joint
JPH09196265A (en) Rotary joint
JP2002066874A (en) Main spindle device for machine tool
JPH1119848A (en) Head stock for machine tool
JP3801676B2 (en) Rotary joint
JP3612923B2 (en) Spindle head device in machine tools
WO2023073796A1 (en) Spindle device
JP2001219302A (en) Air feed structure for work holding and operation in rotating spindle
JP2005177964A (en) Main spindle device
JPH07109269B2 (en) Rotary joint for drawbar

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040514

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees