JP3556250B2 - Thread path - Google Patents

Thread path Download PDF

Info

Publication number
JP3556250B2
JP3556250B2 JP27239893A JP27239893A JP3556250B2 JP 3556250 B2 JP3556250 B2 JP 3556250B2 JP 27239893 A JP27239893 A JP 27239893A JP 27239893 A JP27239893 A JP 27239893A JP 3556250 B2 JP3556250 B2 JP 3556250B2
Authority
JP
Japan
Prior art keywords
fiber
yarn
yarn path
free carbon
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27239893A
Other languages
Japanese (ja)
Other versions
JPH07125923A (en
Inventor
順 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP27239893A priority Critical patent/JP3556250B2/en
Publication of JPH07125923A publication Critical patent/JPH07125923A/en
Application granted granted Critical
Publication of JP3556250B2 publication Critical patent/JP3556250B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は天然繊維や合成繊維等を案内するための糸道に関するものである。
【0002】
【従来の技術】
繊維の製造工程や加工工程に於ては、糸を案内するための糸道が多数使用されている。これらの糸道には、従来アルミナ等のセラミックスや金属に硬質Crメッキを施した糸道が一般的に用いられている(特公62−8527号、特公3−6106号公報等参照)。
【0003】
また近年、繊維は細くなり、その製造・加工工程における送り速度は速くなる傾向にある。そのため、糸道の特性としては、繊維との摩擦係数が低く、かつ繊維にダメージを与えにくい事が求められている。
【0004】
【発明が解決しようとする課題】
従来の糸道のうち、硬質Crメッキを施した糸道では、その表面を微細な丸みを持った梨地状に仕上げることによって、特にフィラメント繊維に対する摩擦抵抗を低減させる効果がある。しかし、その硬度はビッカース硬度(Hv)が9GPa前後と低く、現在の高速加工機に於いては、糸道の摩耗が速いという問題を有していた。
【0005】
一方、アルミナ等のセラミックス製糸道では、例えばアルミナの硬度はビッカース硬度(Hv)16GPa以上と、非常に硬いために、硬質Crメッキ品の様な摩耗の問題は生じない。しかし、セラミックス製糸道では表面の面粗さの調整が非常に困難であり、面粗さが粗い場合には、繊維に毛羽立ちを発生したり、繊維に付着している油剤や繊維の剥離粉により繊維の品質低下の問題を生じていた。一方、セラミックス糸道の表面仕上げ状態を上げ、鏡面にすると、繊維と糸道表面との接触面積が増大し、摩擦抵抗が増加するという問題があった。この摩擦抵抗の増加は走行する繊維の張力を増し、糸切れを生じ、製造工程の高速化の大きな障害となっていた。
【0006】
つまり、セラミックス製糸道は、表面を粗くすれば糸品質に悪影響を及ぼし、表面を滑らかにすれば、摩擦抵抗の増大から糸切れを引き起こし、製造工程の高速化の障害となっていた。
【0007】
本発明は上記の状況に鑑み、糸品質の向上と、摩擦抵抗の低減を同時に満足させ、繊維製造工程の高速化に効果的な糸道を提供することを目的とするものである。
【0008】
【課題を解決するための手段】本発明によれば、糸道の材質として自己潤滑性を有する遊離炭素を含む炭化珪素‐窒化珪素の複合セラミックスを用いる事により、繊維との摩擦抵抗を下げ、さらに糸案内部とポリエステル繊維との摩擦係数を0.25以下に仕上げることにより、ポリエステル繊維にダメージを与えにくくし、品質を向上させるようにしたものである。
【0009】
【実施例】
以下、本発明の実施例を示す。
【0010】
図1に示すように、糸道1はピン形状であり、全体が遊離炭素を含む複合セラミックスから形成され、糸を案内する表面1aは中心線平均粗さ(Ra)0.4μm以下の滑らかな面となっている。そして、この表面1aで繊維2を案内すれば、表面1aが滑らかな面であることから、繊維に毛羽立ちなどの悪影響を及ぼすことはない。また糸道1自体が自己潤滑作用を持った遊離炭素を含むため、繊維2との摩擦抵抗が低く、糸送り速度の高速化に対応することができる。
【0011】
なお、図1では糸道1の全体を複合セラミックスで形成したものを示したが、糸道1の繊維案内部分のみを複合セラミックスで形成した構造でも良い。また、糸道1の形状はピン形状に限らず、従来より周知のさまざまな形状とすることができる。
【0012】
ここで、上記遊離炭素を含む複合セラミックスとは、アルミナ(Al)、ジルコニア(ZrO)、炭化珪素(SiC)、窒化珪素(Si)、炭化チタン(TiC)、窒化チタン(TiN)、ホウ化チタン(TiB)等の金属酸化物、金属炭化物、金属窒化物、金属ホウ化物等を主成分とするセラミックスからなり、少なくともその表面部分に遊離炭素が存在するもので有ればよい。例えば、上記セラミックスの原料中に炭素粉末を混入して焼成したり、あるいは表面に炭素を含浸させて焼成することによって、遊離炭素を含む複合セラミックスを得ることが出来る。
【0013】
また、炭素(C)成形体の一部を珪化させて、炭化珪素(SiC)と遊離炭素(C)との複合セラミックスを製作することが出来る。あるいは、炭化珪素(SiC)質成形体を窒素雰囲気中で焼成させて、窒化珪素(Si)と炭素(C)を生成し、炭化珪素(SiC)、窒化珪素(Si)、そして遊離炭素(C)よりなる複合セラミックスを製作することができる。
【0014】
なお、最終的な複合セラミックス焼結体中の遊離炭素の含有量は、2重量%より少ないと摩擦抵抗を減少させる効果に乏しく、一方20重量%より多いとセラミックスの硬度、強度等を低下させてしまうことから、2〜20重量%の範囲内とすることが望ましい。
【0015】
上記のようにして得られた遊離炭素を含む複合セラミックスに対し、一般的にはタンブリング(バレル研磨)等の流体研磨手法でその表面を平滑なものにすることができ、この方法で繊維を案内する表面の中心線平均粗さ(Ra)を0.4μm以下の平滑な表面とする。ここで、中心線平均粗さ(Ra)を0.4μm以下としたのは、0.4μmよりも粗い面にすると繊維にダメージを与えて、毛羽立ち等の悪影響を生じやすいためであり、好ましくは0.3μm以下とする。
【0016】
この様に、糸道の繊維に接触する部分を遊離炭素を含む複合セラミックスで形成することにより、炭素の持つ自己潤滑性とセラミックスの持つ耐摩耗性を充分に発揮することができる。また、遊離炭素により複合セラミックスが黒色化されるため、白色の繊維を案内する際の視認性が良いという効果もある。
【0017】
さらに、本発明の糸道は、繊維の製造・加工工程だけでなく、釣糸用の糸道としても使用することができる。
【0018】
実施例
本発明の実施例として、以下に述べる複合セラミックスを用いて、図1に示す糸道1を作成した。寸法は外径5mm、長さ60mmのピン形状であり、その外周面を繊維の案内面として、中心線平均粗さ(Ra)0.4μm以下とした。
【0019】
まず、純度が99.7%、平均結晶粒径が0.4μmのSiC粉末に、成形用バインダーとして熱分解に依って炭素を生じ得るレゾール型フェノール樹脂溶液と溶媒としてのアセトンを適当量添加して、混練乾燥した後、金型プレスを用いて、成形圧1000kg/cmで所定形状に成形する。その成形体を窒素雰囲気中550℃で仮焼し、フェノール樹脂より炭素を生成させた後、1800℃、2000気圧で1時間焼成することによって、炭化珪素(SiC)、窒化珪素(Si)、遊離炭素(C)よりなる複合セラミックスを得た。さらに、表面に流体研磨を施して中心線平均粗さ(Ra)0.4μm以下とした。
【0020】
つまり、炭化珪素(SiC)を窒素雰囲気中で焼成することにより、
SiC+2N→Si+3C
の反応が起こり、一部に窒化珪素(Si)と遊離炭素(C)が生成し、これらの成分を含む複合セラミックスが形成されるのである。
【0021】
この複合セラミックスを炭化珪素質研削材の化学分析法(JISR6124参照)に基づき、全珪素量と全炭素量を測定すると、珪素量は50.7重量%、炭素量は19.4重量%であった。またLECO法により全窒素量を測定すると28.6重量%であった。したがって、上記反応式を基に計算すると、この複合セラミックスの最終組成は、炭化珪素(SiC)11.3重量%、窒化珪素(Si)72.4重量%、遊離炭素(C)16.3重量%となる。
【0022】
さらに、この複合セラミックスの特性を測定したところ、かさ比重は2.95、ビッカース硬度(Hv)は10GPaであった。
【0023】
実験例
ここで、上記本発明実施例の糸道を用いて繊維を案内する実験を行った。また、比較例として従来のセラミックスやCrメッキ製の糸道を用意し、同一条件で実験を行った。
【0024】
太さ75d(デニール)のポリエステル製繊維を用い、テンション20gf、接触角90°、糸速1200m/分で各糸道の外周面に走らせ、糸道と繊維との摩擦係数を測定した。また、それぞれ白粉発生の度合いを評価した。
【0025】
結果は表1に示す通りである。この結果より、アルミナ、炭化珪素、窒化珪素等のセラミックスからなる糸道(No.1〜7)では、表面の中心線平均粗さ(Ra)を0.4μm以上に大きくすると白粉が発生し、一方表面粗さを小さくすると摩擦係数が0.3以上と大きくなってしまうことから、両方を満足させることができなかった。また、Crメッキ品(No.8)では、白粉の発生が多かった。
【0026】
これらに対し、本発明の遊離炭素を含む複合セラミックスからなる糸道(No.9、10)は、白粉発生量が少なく摩擦係数も0.3以下と小さかった。特に表面の中心線平均粗さ(Ra)を0.1μmとしたもの(No.10)は、白粉の発生がほとんどなく、摩擦係数も0.25と低いことから、最も優れた結果を示した。
【0027】
【表1】

Figure 0003556250
【0028】
なお、上記実施例では、炭化珪素−窒化珪素−遊離炭素の複合セラミックスを示したが、この他に炭化珪素−遊離炭素の複合セラミックス、あるいはアルミナやジルコニアに炭素を含有させたセラミックス等を用いても、ほぼ上記と同様の結果が得られた。
【0029】
【発明の効果】
このように本発明によれば、遊離炭素を含む複合セラミックスにより糸道を形成し、その表面を中心線平均粗さ(Ra)0.4μm以下の平滑な面としたことによって、自己潤滑性を有する遊離炭素を含んでいるために繊維との摩擦係数が小さく、滑らかな表面であるため繊維にダメージを与えることがなく白粉の発生や毛羽立ちを防止できる。また、糸道の硬度が高いため耐摩耗性に優れ、さらに炭素により糸道が黒色化されるため、白色の繊維に対する視認性を高くできる。
【0030】
この為、本発明の糸道を繊維の製造工程や加工工程で用いれば、これらの工程が高速化することによって発生する繊維品質の低下や、繊維の走行張力増によって生じる糸切れの問題等を解決することができ、実用上非常に有用である。
【図面の簡単な説明】
【図1】本発明の糸道を示す斜視図である。
【符号の説明】
1:糸道
2:繊維[0001]
[Industrial applications]
The present invention relates to a yarn path for guiding natural fibers, synthetic fibers, and the like.
[0002]
[Prior art]
2. Description of the Related Art Many yarn paths for guiding yarn are used in a fiber manufacturing process and a processing process. Conventionally, yarn paths obtained by applying hard Cr plating to ceramics or metal such as alumina (see Japanese Patent Publication No. 62-8527, Japanese Patent Publication No. 3-6106, etc.) are conventionally used.
[0003]
In recent years, the fibers have become thinner, and the feed speed in the manufacturing and processing steps tends to be higher. Therefore, as the characteristics of the yarn path, it is required that the coefficient of friction with the fiber is low and that the fiber is not easily damaged.
[0004]
[Problems to be solved by the invention]
Among the conventional yarn paths, the yarn path subjected to hard Cr plating has an effect of reducing frictional resistance particularly to filament fibers by finishing the surface of the yarn path with a fine rounded satin finish. However, its hardness is as low as about 9 GPa Vickers hardness (Hv), and the current high-speed processing machine has a problem that the yarn path wears fast.
[0005]
On the other hand, in a ceramic yarn path of alumina or the like, since the hardness of alumina is very high, for example, Vickers hardness (Hv) of 16 GPa or more, there is no problem of abrasion unlike a hard Cr plated product. However, it is very difficult to adjust the surface roughness of the ceramic yarn path, and when the surface roughness is rough, the fibers may become fuzzy, or may be dissipated by oil or fiber peeling powder attached to the fibers. This has caused a problem of deterioration in fiber quality. On the other hand, when the surface finish state of the ceramic yarn path is increased and the surface is made mirror-finished, there is a problem that the contact area between the fiber and the yarn path surface increases, and the frictional resistance increases. This increase in frictional resistance increases the tension of the running fiber, causing yarn breakage, and has been a major obstacle to speeding up the manufacturing process.
[0006]
That is, in the case of the ceramic yarn path, if the surface is roughened, the quality of the yarn is adversely affected, and if the surface is smoothed, the yarn breaks due to an increase in frictional resistance, which is an obstacle to speeding up the manufacturing process.
[0007]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a yarn path that satisfies an improvement in yarn quality and a reduction in frictional resistance at the same time, and is effective for speeding up a fiber manufacturing process.
[0008]
According to the present invention, the friction resistance between fibers is reduced by using a silicon carbide-silicon nitride composite ceramic containing free carbon having self-lubricating properties as a material of the yarn path. Furthermore, by finishing the coefficient of friction between the yarn guide portion and the polyester fiber to 0.25 or less, the polyester fiber is hardly damaged, and the quality is improved.
[0009]
【Example】
Hereinafter, examples of the present invention will be described.
[0010]
As shown in FIG. 1, the yarn path 1 has a pin shape, is entirely formed of a composite ceramic containing free carbon, and a surface 1a for guiding the yarn has a smooth center line average roughness (Ra) of 0.4 μm or less. Surface. If the fiber 2 is guided on the surface 1a, the surface 1a is a smooth surface, so that there is no adverse effect such as fluffing on the fiber. Further, since the yarn path 1 itself contains free carbon having a self-lubricating action, the frictional resistance with the fiber 2 is low, and it is possible to cope with an increase in the yarn feeding speed.
[0011]
Although FIG. 1 shows the entire yarn path 1 formed of composite ceramics, a structure in which only the fiber guide portion of the yarn path 1 is formed of composite ceramics may be used. In addition, the shape of the yarn path 1 is not limited to the pin shape, and may be any of various shapes that have been conventionally known.
[0012]
Here, the composite ceramics containing free carbon include alumina (Al 2 O 3 ), zirconia (ZrO 2 ), silicon carbide (SiC), silicon nitride (Si 3 N 4 ), titanium carbide (TiC), and titanium nitride. (TiN), ceramics mainly composed of metal oxides such as titanium boride (TiB 2 ), metal carbides, metal nitrides, metal borides and the like, and free carbon is present at least on the surface thereof. Just do it. For example, a composite ceramic containing free carbon can be obtained by mixing and firing carbon powder in the raw material of the ceramics described above, or firing by impregnating the surface with carbon.
[0013]
Further, a composite ceramic of silicon carbide (SiC) and free carbon (C) can be manufactured by silicifying a part of the carbon (C) molded body. Alternatively, the silicon carbide (SiC) -based molded body is fired in a nitrogen atmosphere to generate silicon nitride (Si 3 N 4 ) and carbon (C), and form silicon carbide (SiC) and silicon nitride (Si 3 N 4 ). And a composite ceramic made of free carbon (C).
[0014]
If the content of free carbon in the final composite ceramic sintered body is less than 2% by weight, the effect of reducing frictional resistance is poor, while if it is more than 20% by weight, the hardness, strength, etc. of the ceramics are reduced. Therefore, it is desirable that the content be in the range of 2 to 20% by weight.
[0015]
In general, the surface of the composite ceramic containing free carbon obtained as described above can be made smooth by a fluid polishing method such as tumbling (barrel polishing), and the fiber is guided by this method. The surface has a center line average roughness (Ra) of 0.4 μm or less. The reason why the center line average roughness (Ra) is set to 0.4 μm or less is that if the surface is made rougher than 0.4 μm, the fiber is likely to be damaged and adverse effects such as fluffing are likely to occur. 0.3 μm or less.
[0016]
In this way, by forming the portion of the yarn path in contact with the fiber with the composite ceramics containing free carbon, the self-lubricating property of carbon and the wear resistance of ceramics can be sufficiently exhibited. Further, since the composite ceramics are blackened by the free carbon, there is an effect that visibility when guiding white fibers is good.
[0017]
Furthermore, the yarn path of the present invention can be used not only as a fiber manufacturing and processing step but also as a fishing line path.
[0018]
Example As an example of the present invention, a yarn path 1 shown in FIG. 1 was prepared using a composite ceramic described below. The dimensions were a pin shape with an outer diameter of 5 mm and a length of 60 mm, and the center line average roughness (Ra) was 0.4 μm or less, with the outer peripheral surface serving as a fiber guide surface.
[0019]
First, to a SiC powder having a purity of 99.7% and an average crystal grain size of 0.4 μm, a resol-type phenol resin solution capable of generating carbon by thermal decomposition as a molding binder and an appropriate amount of acetone as a solvent are added. After kneading and drying, the mixture is molded into a predetermined shape at a molding pressure of 1000 kg / cm 2 using a mold press. The molded body is calcined at 550 ° C. in a nitrogen atmosphere to generate carbon from a phenol resin, and then calcined at 1800 ° C. and 2,000 atm for 1 hour to obtain silicon carbide (SiC) and silicon nitride (Si 3 N 4). ) And a composite ceramic comprising free carbon (C) was obtained. Further, the surface was subjected to fluid polishing to reduce the center line average roughness (Ra) to 0.4 μm or less.
[0020]
That is, by firing silicon carbide (SiC) in a nitrogen atmosphere,
SiC + 2N 2 → Si 3 N 4 + 3C
Is caused, silicon nitride (Si 3 N 4 ) and free carbon (C) are partially generated, and a composite ceramic containing these components is formed.
[0021]
When the total amount of silicon and the total amount of carbon of this composite ceramic were measured based on a chemical analysis method for silicon carbide abrasives (see JISR 6124), the amount of silicon was 50.7% by weight and the amount of carbon was 19.4% by weight. Was. The total nitrogen content measured by the LECO method was 28.6% by weight. Therefore, when calculated based on the above reaction formula, the final composition of the composite ceramic is 11.3% by weight of silicon carbide (SiC), 72.4% by weight of silicon nitride (Si 3 N 4 ), and 16% of free carbon (C). 0.3% by weight.
[0022]
Further, when the characteristics of the composite ceramics were measured, the bulk specific gravity was 2.95 and the Vickers hardness (Hv) was 10 GPa.
[0023]
Experimental Example Here, an experiment was conducted in which fibers were guided by using the yarn path of the above-described embodiment of the present invention. As a comparative example, a yarn path made of conventional ceramics or Cr plating was prepared, and an experiment was performed under the same conditions.
[0024]
A polyester fiber having a thickness of 75 d (denier) was run on the outer peripheral surface of each yarn path at a tension of 20 gf, a contact angle of 90 ° and a yarn speed of 1200 m / min, and the friction coefficient between the yarn path and the fiber was measured. In addition, the degree of white powder generation was evaluated.
[0025]
The results are as shown in Table 1. From this result, in the yarn path (Nos. 1 to 7) made of ceramics such as alumina, silicon carbide and silicon nitride, white powder is generated when the center line average roughness (Ra) of the surface is increased to 0.4 μm or more, On the other hand, when the surface roughness is reduced, the coefficient of friction increases to 0.3 or more, so that both cannot be satisfied. In the case of the Cr-plated product (No. 8), much white powder was generated.
[0026]
On the other hand, the yarn paths (Nos. 9 and 10) made of the composite ceramics containing free carbon of the present invention had a small white powder generation amount and a small friction coefficient of 0.3 or less. In particular, when the center line average roughness (Ra) of the surface was 0.1 μm (No. 10), there was almost no generation of white powder, and the coefficient of friction was as low as 0.25. .
[0027]
[Table 1]
Figure 0003556250
[0028]
In the above embodiment, a composite ceramic of silicon carbide-silicon nitride-free carbon was shown. Also obtained substantially the same results as described above.
[0029]
【The invention's effect】
As described above, according to the present invention, the yarn path is formed by the composite ceramics containing free carbon, and the surface thereof is made a smooth surface having a center line average roughness (Ra) of 0.4 μm or less, whereby the self-lubricating property is improved. Since it contains free carbon, the coefficient of friction with the fiber is small, and since the surface is smooth, the generation of white powder and fluffing can be prevented without damaging the fiber. Further, since the yarn path is high in hardness, the abrasion resistance is excellent, and furthermore, since the yarn path is blackened by carbon, visibility of white fibers can be increased.
[0030]
For this reason, if the yarn path of the present invention is used in a fiber manufacturing process or a processing process, a decrease in fiber quality caused by the speeding up of these processes, a problem of yarn breakage caused by an increase in running tension of the fiber, and the like can be solved. It can be solved and is very useful in practice.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a yarn path of the present invention.
[Explanation of symbols]
1: yarn path 2: fiber

Claims (1)

糸案内部が遊離炭素を含む炭化珪素‐窒化珪素の複合セラミックスにより形成され、前記糸案内部とポリエステル繊維との摩擦係数が0.25以下であることを特徴とする糸道。A yarn path wherein the yarn guide portion is formed of a silicon carbide-silicon nitride composite ceramic containing free carbon, and a coefficient of friction between the yarn guide portion and the polyester fiber is 0.25 or less .
JP27239893A 1993-10-29 1993-10-29 Thread path Expired - Fee Related JP3556250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27239893A JP3556250B2 (en) 1993-10-29 1993-10-29 Thread path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27239893A JP3556250B2 (en) 1993-10-29 1993-10-29 Thread path

Publications (2)

Publication Number Publication Date
JPH07125923A JPH07125923A (en) 1995-05-16
JP3556250B2 true JP3556250B2 (en) 2004-08-18

Family

ID=17513349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27239893A Expired - Fee Related JP3556250B2 (en) 1993-10-29 1993-10-29 Thread path

Country Status (1)

Country Link
JP (1) JP3556250B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110217646A (en) * 2019-05-24 2019-09-10 湖北三江航天江北机械工程有限公司 The method for reducing carbon fiber winding process abrasion loss

Also Published As

Publication number Publication date
JPH07125923A (en) 1995-05-16

Similar Documents

Publication Publication Date Title
JP3556250B2 (en) Thread path
JP3152774B2 (en) Alumina ceramics for sliding members
US5105513A (en) Wear disks for crimping machines
JPH073549A (en) Guide member
JP2001158658A (en) Guide member for fiber
JPH10262510A (en) Guide member for fishing line and its production
KR950003775B1 (en) Auxiliary sub-nozzle for fluld jet type loom and production there of
JP3502738B2 (en) Fiber guide
JP2604155B2 (en) Ceramic tool with coating layer
JPH06226509A (en) Coating cutting tool
JPH0593388A (en) Supporting member for wire cloth of paper machine
JP2873353B2 (en) Spinning ring
JP2902823B2 (en) Yarn guide and method of manufacturing the same
JP4560813B2 (en) Fiber nib and manufacturing method thereof
JP3563460B2 (en) Fiber guide and manufacturing method thereof
JP4428805B2 (en) Aluminum oxide-containing composite ceramic sintered body and coated composite ceramic sintered body
JPH10102330A (en) Thread guide and its production
JP2000072543A (en) Sliding member and thread guide using the same
JPH036106B2 (en)
JPH09175735A (en) Fiber guidance member
JP2000191375A (en) Member for guide
JPH10108594A (en) Spool ring for reel
JPH0643648B2 (en) Ring for spinning machine
JPH10262515A (en) Production of member for guide
JP2000219932A (en) Wear resistant member

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees