JP3555364B2 - Manufacturing method of semiconductor pressure sensor - Google Patents

Manufacturing method of semiconductor pressure sensor Download PDF

Info

Publication number
JP3555364B2
JP3555364B2 JP34477996A JP34477996A JP3555364B2 JP 3555364 B2 JP3555364 B2 JP 3555364B2 JP 34477996 A JP34477996 A JP 34477996A JP 34477996 A JP34477996 A JP 34477996A JP 3555364 B2 JP3555364 B2 JP 3555364B2
Authority
JP
Japan
Prior art keywords
silicon substrate
protective film
metal wiring
pressure
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34477996A
Other languages
Japanese (ja)
Other versions
JPH10185720A (en
Inventor
敦史 石上
正美 堀
隆司 西條
山口周一郎
万士 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP34477996A priority Critical patent/JP3555364B2/en
Publication of JPH10185720A publication Critical patent/JPH10185720A/en
Application granted granted Critical
Publication of JP3555364B2 publication Critical patent/JP3555364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、腐食性を有する流体、すなわち気体又は液体の圧力を測定する半導体圧力センサの製造方法に関するものである。
【0002】
【従来の技術】
従来、この種の半導体圧力センサの製造方法として、図2に示す製造法が存在する。この製造法は、先ず、導電型がP型で圧力による抵抗変化を電気信号に変換するピエゾ抵抗A1と、そのピエゾ抵抗A1と接続して導電型がP+型で電気伝導度の良好な導電部A2とが、シリコン基板Aの一面側へ形成される(a)。そして、耐エッチング膜A3がシリコン基板Aの両面に形成され、他面側の耐エッチング膜A3をピエゾ抵抗A1の対応位置にて除去し、その除去部から異方性エッチングし、底部に有した断面台形状の凹部A4を形成して、底部を受圧面A5とするダイアフラム部A6が形成され、測定対象である流体の圧力を受圧面A5にて受圧して撓む(b)。
【0003】
次いで、シリコン基板Aの他面側における耐エッチング膜A3を除去し(c)、さらにシリコン基板Aに形成された酸化珪素膜A7を除去し(d)、アルミニウムの金属からなる金属配線部Bが、導電部A2を介してピエゾ抵抗A1と電気的に接続するよう、シリコン基板Aの一面側へ形成される(e)。次いで、酸化珪素膜からなる保護膜Cが化学的蒸着法、いわゆるCVD法を用いて受圧面A5及びシリコン基板の他面に形成され、ダイアフラム部A6の受圧面A5を保護する(f)。
【0004】
【発明が解決しようとする課題】
上記した従来の半導体圧力センサの製造方法では、ダイアフラム部A6を保護する保護膜Cが受圧面A5に形成されて、腐食性を有する流体の圧力を測定する半導体圧力センサを製造できる。
【0005】
しかしながら、ピエゾ抵抗A1と電気的に接続した金属配線部Bを形成した後、ダイアフラム部A6の受圧面A5を保護する保護膜Cを形成するから、金属配線部Bは保護膜C形成時の熱に起因する酸化等のダメージを受けて形状精度が劣化する。さらに、酸化珪素膜からなる保護膜Cがシリコン基板Aを所定温度で熱処理することによって密度の高い状態で得られるが、このとき、熱処理時の所定温度がアルミニウムの融点よりも高く、金属配線部Bが溶融してしまう。したがって、保護膜Cを熱処理法ではなくCVD法を用いて形成せざるを得ず、そのCVD法では保護膜Cは空隙を形成して、密度の低いものとなっていた。
【0006】
本発明は、上記事由に鑑みてなしたもので、その目的とするところは、空隙なく密度の高い状態で保護膜を形成して、受圧面を腐食性流体から保護できる半導体圧力センサの製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上記した課題を解決するために、請求項1記載の半導体圧力センサの製造方法は、圧力による抵抗変化を電気信号に変換するピエゾ抵抗がシリコン基板の一面側へ形成されるピエゾ抵抗形成工程と、シリコン基板の両面に形成された耐エッチング膜を他面側におけるピエゾ抵抗対応位置にて除去し、異方性エッチングし断面台形状の凹部を形成して、測定対象である流体の圧力を受圧する受圧面を有したダイアフラム部を形成するダイアフラム部形成工程と、耐エッチング膜を除去し、所定温度で熱処理してダイアフラム部の受圧面を保護する保護膜がその受圧面及びシリコン基板の他面に形成される保護膜形成工程と、金属からなりピエゾ抵抗と電気的に接続した金属配線部がシリコン基板の一面側へ形成される金属配線部形成工程と、有する構成にしてある。
【0008】
請求項2記載の半導体圧力センサの製造方法は、請求項1記載の製造方法において、前記金属配線部における金属が、前記所定温度未満の融点を有する構成にしてある。
【0009】
請求項3記載の半導体圧力センサの製造方法は、請求項2記載の製造方法において、前記保護膜が酸化珪素であるとともに、前記金属配線部の金属がアルミニウムである構成にしてある。
【0010】
請求項4記載の半導体圧力センサの製造方法は、請求項3記載の製造方法において、軸孔を設けたガラス台座のメタライズされた一方面を、その軸孔及び前記ダイアフラム部の互いの位置を対応した状態で、シリコン基板の他面側と接合するガラス台座接合工程が金属配線部形成工程に次いで設けられるとともに、前記保護膜は膜厚が0.1乃至0.5ミクロンメートルに形成された構成にしてある。
【0011】
請求項5記載の半導体圧力センサの製造方法は、請求項乃至3記載の製造方法において、軸孔を設けたガラス台座のメタライズされた一方面を、その軸孔及び前記ダイアフラム部の互いの位置を対応した状態で、前記保護膜が除去された前記シリコン基板の他面と接合するガラス台座接合工程が、前記金属配線部形成工程に次いで設けられた構成にしてある。
【0012】
【発明の実施の形態】
本発明の第1実施形態を図1に基づいて以下に説明する。先ず、導電型がN型で一面11及び他面12を有したシリコン基板1を熱酸化して酸化珪素膜13を形成し、その酸化珪素膜13を所定位置にて除去しボロンを拡散して、導電型がP+型で電気伝導度の良好な導電部14を、シリコン基板1の一面11側にて中央に対して両側へそれぞれ形成する。次いで、ピエゾ抵抗形成工程において、酸化珪素膜13を両導電部14と接続する所定位置にて除去しボロンを拡散することによって、導電型をP型とするピエゾ抵抗15がシリコン基板1の一面11側へ形成され、圧力による抵抗変化を電気信号に変換する(a)。
【0013】
次いで、ダイアフラム部形成工程において、窒化珪素からなる耐エッチング膜16が化学的蒸着法、いわゆるCVD法を用いてシリコン基板1の両面11,12に形成され、他面12側の耐エッチング膜16を通常のフォトリソグラフィー又はエッチングでもって、ピエゾ抵抗15の対応位置にて除去し除去部を形成する。耐エッチング膜16をマスクとしてKOH溶液でもって、除去部から異方性エッチングして、一面11側へ行くほど幅を狭くした断面台形状の凹部17を形成し、凹部17の底部を受圧面21とするダイアフラム部2が形成されて、測定対象である流体の圧力を受圧面21にて受圧して撓む(a)。そして、シリコン基板1の他面12側における耐エッチング膜16及び酸化珪素膜13を除去する(b)。
【0014】
次いで、保護膜形成工程において、酸化珪素からなる保護膜18がシリコン基板1を所定温度、すなわち摂氏約900度で熱処理して、空隙なく密度の高い状態で、かつ0.3ミクロンメートルの膜厚でダイアフラム部2の受圧面21及び他面12に形成されて、受圧面21を保護する(c)。
【0015】
次いで、金属配線部形成工程において、一面11側の両導電部14の対応位置19にて酸化珪素膜13及び耐エッチング膜16を除去し(d)、所定温度未満であって660度の融点を有する金属のアルミニウムをスパッタして、金属配線部3がピエゾ抵抗15と導電部14を介して電気的に接続した状態で、シリコン基板1の一面11側へ形成される(e)。
【0016】
次いで、ガラス台座接合工程において、一方面41を有したガラス台座4はパイレックスガラスにより、軸孔42を設け、一方面41が金属でメタライズされ、軸孔42及びダイアフラム部2の互いの位置を対応した状態で、直流の高電圧を印加して接合する陽極接合でもって、一方面41がシリコン基板1の他面12側と接合される。ここで、保護膜18は酸化珪素からなり、膜厚が0.3ミクロンメートルであって薄膜状に形成されているので、シリコン基板1の他面12に形成された保護膜18を除去することなく、シリコン基板1の他面12側がガラス台座4の一方面41と直接接合される(f)。
【0017】
ここで、保護膜18の膜厚は0.1乃至0.5ミクロンメートルが適正であって、0.1ミクロンメートル未満であると腐食性流体から受圧面21を保護する保護効果が小さくなり、0.5ミクロンメートルを越えると、シリコン基板1の他面12側とガラス台座4の一方面41との接合強度が劣化する。
【0018】
このものの動作を説明する。測定対象である流体はガソリン蒸気等の腐食性を有し、圧力を持ってガラス台座4の軸孔42に導入されて、ダイアフラム部2の受圧面21がその流体の圧力を受圧する。受圧面21が流体の圧力を負荷されると、ダイアフラム部2は流体の圧力と大気圧との差に比例して撓み、したがって、ダイアフラム部2に形成されたピエゾ抵抗15は撓んで抵抗値がその撓みの大きさに比例して変化し、この抵抗値を電気信号として導電部14及び金属配線部3を介して端子(図示せず)に出力して、流体の圧力を測定する。ここで、ダイアフラム部2は、保護膜18が空隙を形成することなく密度の高い状態で受圧面21に形成されて、受圧面21がその保護膜18でもって保護されているので、ダイアフラム部2は測定する流体が腐食性であっても腐食されることがない。
【0019】
かかる第1実施形態の半導体圧力センサの製造方法にあっては、上記したように、保護膜18がシリコン基板1を所定温度で熱処理してダイアフラム部2の受圧面21に形成された後、金属からなる金属配線部3がピエゾ抵抗15を配設した一面11側へ形成されたから、ダイアフラム部2が保護膜18でもって保護されて、腐食性の流体であっても腐食されることなく、流体の圧力を測定できるとともに、金属配線部3が熱処理時の熱に起因する酸化等のダメージを受けることなく精度よく形成された半導体圧力センサを、安定して製造することができる。
【0020】
また、金属配線部3の金属が所定温度未満の融点を有するから、金属の融点より高い所定温度で熱処理することによって、保護膜18が従来困難であった空隙を形成することなく密度の高い状態で形成されて、ダイアフラム部2の受圧面21が確実に保護される保護膜18を形成できるとともに、高価な高融点金属を使用することなく金属配線部3を安価に形成することができる。
【0021】
また、保護膜18が酸化珪素であるとともに、金属配線部3がアルミニウムであるから、導電率が高くコストの安いアルミニウムでもって金属配線部3を形成できるとともに、アルミニウムの融点より高い所定温度で熱処理し酸化珪素からなる耐腐食性の良好な保護膜18を形成して、ダイアフラム部2の受圧面21が確実に保護される保護膜18を形成することができる。
【0022】
また、ガラス台座接合工程が金属配線部形成工程に次いで設けられるとともに、保護膜18の膜厚が0.1乃至0.5ミクロンメートルであって薄膜状に形成されたから、シリコン基板1の他面12に形成された保護膜18を除去することなく、ガラス台座4の一方面41をシリコン基板1の他面12と直接接合して、容易に組立を行うことができる。
【0023】
なお、第1実施形態では、金属配線部3の金属をアルミニウムとしたが、金属をアルミニウムではなく他の金属で金属配線部3を形成してもよく、限定されない。
【0024】
本発明の第2実施形態を以下に説明する。なお、第2実施形態ではガラス台座接合工程のみが異なり、他の工程は第1実施形態と同様であるので説明を省略する。
【0025】
ガラス台座接合工程において、ダイアフラム部2の受圧面21に耐エッチング性を有するレジスト膜を形成後エッチングし、シリコン基板1の他面12に形成された保護膜18を除去する。そして、軸孔42を設けたガラス台座4を、軸孔42及びダイアフラム部2の互いの位置を対応した状態で、直流の高電圧を印加して接合する陽極接合でもって、シリコン基板1の他面12と接合する。
【0026】
かかる第2実施形態の半導体圧力センサの製造方法にあっては、上記したように、シリコン基板1の他面12の保護膜18を除去し、保護膜18が除去されたシリコン基板1の他面12とガラス台座4の一方面41とをそれぞれ接合するガラス台座接合工程が、金属配線部形成工程に次いで設けられたから、シリコン基板1の他面12とガラス台座4の一方面41とを強固に接合できるとともに、膜厚を厚くできるので保護膜18の耐腐食性がさらに良好になって、ダイアフラム部2の受圧面21を腐食から確実に保護する保護膜18を形成することができる。
【0027】
【発明の効果】
請求項1記載の半導体圧力センサの製造方法は、保護膜がシリコン基板を所定温度で熱処理してダイアフラム部の受圧面に形成された後、金属からなる金属配線部がピエゾ抵抗を配設した一面側へ形成されたから、ダイアフラム部が保護膜でもって保護されて、腐食性の流体であっても腐食されることなく、流体の圧力を測定できるとともに、金属配線部が熱処理時の熱に起因する酸化等のダメージを受けることなく精度よく形成された半導体圧力センサを、安定して製造することができる。
【0028】
請求項2記載の半導体圧力センサの製造方法は、請求項1記載の製造方法の効果に加えて、金属配線部の金属が所定温度未満の融点を有するから、金属の融点より高い所定温度で熱処理することによって、保護膜が空隙を形成することなく密度の高い状態で形成されて、ダイアフラム部の受圧面が確実に保護される保護膜を形成できるとともに、高価な高融点金属を使用することなく金属配線部を安価に形成することができる。。
【0029】
請求項3記載の半導体圧力センサの製造方法は、請求項2記載の製造方法の効果に加えて、保護膜が酸化珪素であるとともに、金属配線部がアルミニウムであるから、導電率が高くコストの安いアルミニウムでもって金属配線部を形成できるとともに、アルミニウムの融点より高い所定温度で熱処理し酸化珪素からなる耐腐食性の良好な保護膜を形成して、ダイアフラム部の受圧面が確実に保護される保護膜を形成することができる。
【0030】
請求項4記載の半導体圧力センサの製造方法は、請求項3記載の製造方法の効果に加えて、ガラス台座接合工程が金属配線部形成工程に次いで設けられるとともに、保護膜の膜厚が0.1乃至0.5ミクロンメートルであって薄膜状に形成されたから、シリコン基板の他面に形成された保護膜を除去することなく、ガラス台座の一方面をシリコン基板の他面と直接接合して、容易に組立を行うことができる。
【0031】
請求項5記載の半導体圧力センサの製造方法は、請求項1乃至3記載の製造方法の効果に加えて、シリコン基板の他面の保護膜を除去し、保護膜が除去されたシリコン基板の他面とガラス台座の一方面とをそれぞれ接合するガラス台座接合工程が、金属配線部形成工程に次いで設けられたから、シリコン基板の他面とガラス台座の一方面とを強固に接合できるとともに、膜厚を厚くできるので保護膜の耐腐食性がさらに良好になって、ダイアフラム部の受圧面を腐食から確実に保護する保護膜を形成することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示す製造工程図である。
【図2】従来例を示す製造工程図である。
【符号の説明】
1 シリコン基板
11 一面
12 他面
15 ピエゾ抵抗
16 耐エッチング膜
17 凹部
18 保護膜
2 ダイアフラム部
21 受圧面
3 金属配線部
4 ガラス台座
41 一方面
42 軸孔
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of manufacturing a semiconductor pressure sensor for measuring the pressure of a corrosive fluid, that is, a gas or a liquid.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a method of manufacturing a semiconductor pressure sensor of this type, there is a manufacturing method shown in FIG. In this manufacturing method, first, a piezo-resistor A1 that converts a resistance change due to pressure into an electric signal with a P-type conductivity, and a conductive portion having a P + type conductivity and good electrical conductivity connected to the piezoresistance A1. A2 is formed on one surface side of the silicon substrate A (a). Then, the etching resistant film A3 was formed on both surfaces of the silicon substrate A, and the etching resistant film A3 on the other surface was removed at a position corresponding to the piezoresistor A1, and anisotropically etched from the removed portion to have the bottom. A concave portion A4 having a trapezoidal cross section is formed, and a diaphragm portion A6 having a bottom portion as a pressure receiving surface A5 is formed. The diaphragm portion A6 receives the pressure of the fluid to be measured by the pressure receiving surface A5 and bends (b).
[0003]
Next, the etching-resistant film A3 on the other surface side of the silicon substrate A is removed (c), and the silicon oxide film A7 formed on the silicon substrate A is removed (d), and the metal wiring portion B made of aluminum metal is removed. Is formed on one surface side of the silicon substrate A so as to be electrically connected to the piezoresistor A1 via the conductive portion A2 (e). Next, a protective film C made of a silicon oxide film is formed on the pressure receiving surface A5 and the other surface of the silicon substrate by using a chemical vapor deposition method, a so-called CVD method, to protect the pressure receiving surface A5 of the diaphragm portion A6 (f).
[0004]
[Problems to be solved by the invention]
According to the above-described conventional method for manufacturing a semiconductor pressure sensor, the protective film C for protecting the diaphragm portion A6 is formed on the pressure receiving surface A5, so that a semiconductor pressure sensor for measuring the pressure of a corrosive fluid can be manufactured.
[0005]
However, after forming the metal wiring portion B electrically connected to the piezoresistor A1, the protection film C for protecting the pressure receiving surface A5 of the diaphragm portion A6 is formed. The shape accuracy is degraded due to damage such as oxidation caused by the above. Further, the protective film C made of a silicon oxide film is obtained in a high density state by heat-treating the silicon substrate A at a predetermined temperature. At this time, the predetermined temperature during the heat treatment is higher than the melting point of aluminum, B melts. Therefore, the protection film C must be formed not by the heat treatment method but by the CVD method. In the CVD method, the protection film C has a low density due to the formation of voids.
[0006]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method of manufacturing a semiconductor pressure sensor capable of forming a protective film in a high-density state without voids and protecting a pressure-receiving surface from a corrosive fluid. Is to provide.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a method of manufacturing a semiconductor pressure sensor according to claim 1 includes a piezoresistor forming step in which a piezoresistor for converting a resistance change due to pressure into an electric signal is formed on one surface side of a silicon substrate; The etching resistant film formed on both sides of the silicon substrate is removed at the position corresponding to the piezo resistance on the other side, and anisotropic etching is performed to form a concave portion having a trapezoidal cross section, and the pressure of the fluid to be measured is received. A diaphragm portion forming step of forming a diaphragm portion having a pressure receiving surface, and a protective film for removing the etching resistant film and heat-treating at a predetermined temperature to protect the pressure receiving surface of the diaphragm portion is provided on the pressure receiving surface and the other surface of the silicon substrate. Forming a protective film to be formed; and forming a metal wiring portion formed of metal and electrically connected to the piezoresistor on one surface side of the silicon substrate. Are you on the configuration that.
[0008]
According to a second aspect of the present invention, in the method of the first aspect, the metal in the metal wiring portion has a melting point lower than the predetermined temperature.
[0009]
According to a third aspect of the present invention, in the method for manufacturing a semiconductor pressure sensor according to the second aspect, the protective film is made of silicon oxide, and the metal of the metal wiring portion is made of aluminum.
[0010]
According to a fourth aspect of the present invention, in the manufacturing method of the third aspect, the metalized one surface of the glass pedestal having the shaft hole corresponds to the mutual positions of the shaft hole and the diaphragm. In this state, a glass pedestal bonding step of bonding to the other surface side of the silicon substrate is provided subsequent to the metal wiring part forming step, and the protective film is formed to a thickness of 0.1 to 0.5 μm. It is.
[0011]
According to a fifth aspect of the present invention, there is provided a method for manufacturing a semiconductor pressure sensor according to any one of the first to third aspects, wherein one of the metallized surfaces of the glass pedestal provided with the shaft hole is positioned relative to each other. In a corresponding state, a glass pedestal bonding step of bonding to the other surface of the silicon substrate from which the protective film has been removed is provided next to the metal wiring part forming step.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
A first embodiment of the present invention will be described below with reference to FIG. First, the silicon substrate 1 having an N-type conductivity and having one surface 11 and the other surface 12 is thermally oxidized to form a silicon oxide film 13, the silicon oxide film 13 is removed at a predetermined position, and boron is diffused. A conductive portion 14 having a conductivity type of P + and having good electric conductivity is formed on one side 11 of the silicon substrate 1 on both sides of the center. Next, in a piezoresistor forming step, the silicon oxide film 13 is removed at a predetermined position connected to both conductive portions 14 and boron is diffused, so that a piezoresistor 15 having a P-type conductivity type is formed on one surface 11 of the silicon substrate 1. It converts the resistance change due to pressure into an electric signal (a).
[0013]
Next, in a diaphragm portion forming step, an etching resistant film 16 made of silicon nitride is formed on both surfaces 11 and 12 of the silicon substrate 1 by using a chemical vapor deposition method, a so-called CVD method, and the etching resistant film 16 on the other surface 12 is formed. Removal is performed at a position corresponding to the piezoresistor 15 by ordinary photolithography or etching to form a removed portion. Anisotropic etching is performed from the removed portion with a KOH solution using the etching resistant film 16 as a mask to form a concave portion 17 having a trapezoidal cross section with a width narrowing toward the one surface 11 side. Is formed, and the pressure of the fluid to be measured is received by the pressure receiving surface 21 to bend (a). Then, the etching resistant film 16 and the silicon oxide film 13 on the other surface 12 side of the silicon substrate 1 are removed (b).
[0014]
Next, in a protective film forming step, a protective film 18 made of silicon oxide heat-treats the silicon substrate 1 at a predetermined temperature, that is, about 900 degrees Celsius, and has a high density without gaps and a thickness of 0.3 μm. And is formed on the pressure receiving surface 21 and the other surface 12 of the diaphragm portion 2 to protect the pressure receiving surface 21 (c).
[0015]
Next, in the metal wiring portion forming step, the silicon oxide film 13 and the etching resistant film 16 are removed at the corresponding positions 19 of the two conductive portions 14 on the one surface 11 (d), and the melting point is lower than a predetermined temperature and 660 degrees. The metal wiring 3 is formed on the one surface 11 side of the silicon substrate 1 in a state where the metal wiring portion 3 is electrically connected to the piezoresistor 15 via the conductive portion 14 by sputtering the metal aluminum (e).
[0016]
Next, in the glass pedestal bonding step, the glass pedestal 4 having one surface 41 is provided with a shaft hole 42 of Pyrex glass, and the one surface 41 is metallized with metal, and the positions of the shaft hole 42 and the diaphragm portion 2 correspond to each other. In this state, one surface 41 is bonded to the other surface 12 of the silicon substrate 1 by anodic bonding in which a high DC voltage is applied to perform bonding. Here, since the protective film 18 is made of silicon oxide and has a thickness of 0.3 μm and is formed in a thin film shape, the protective film 18 formed on the other surface 12 of the silicon substrate 1 needs to be removed. Instead, the other surface 12 side of the silicon substrate 1 is directly joined to one surface 41 of the glass pedestal 4 (f).
[0017]
Here, the thickness of the protective film 18 is appropriately from 0.1 to 0.5 μm, and if it is less than 0.1 μm, the protection effect of protecting the pressure receiving surface 21 from the corrosive fluid becomes small, If it exceeds 0.5 μm, the bonding strength between the other surface 12 of the silicon substrate 1 and the one surface 41 of the glass pedestal 4 will be deteriorated.
[0018]
The operation of this will be described. The fluid to be measured has a corrosive property such as gasoline vapor and is introduced with pressure into the shaft hole 42 of the glass pedestal 4, and the pressure receiving surface 21 of the diaphragm 2 receives the pressure of the fluid. When the pressure receiving surface 21 is loaded with the pressure of the fluid, the diaphragm 2 bends in proportion to the difference between the pressure of the fluid and the atmospheric pressure. Therefore, the piezoresistor 15 formed on the diaphragm 2 bends to have a resistance value. The resistance value changes in proportion to the magnitude of the deflection, and the resistance value is output as an electric signal to a terminal (not shown) via the conductive portion 14 and the metal wiring portion 3 to measure the pressure of the fluid. Here, the diaphragm portion 2 is formed on the pressure receiving surface 21 in a state where the protective film 18 has a high density without forming a gap, and the pressure receiving surface 21 is protected by the protective film 18. Does not corrode even if the fluid to be measured is corrosive.
[0019]
In the method of manufacturing the semiconductor pressure sensor according to the first embodiment, as described above, after the protective film 18 is formed on the pressure receiving surface 21 of the diaphragm portion 2 by heat-treating the silicon substrate 1 at a predetermined temperature. Since the metal wiring portion 3 is formed on the one surface 11 side on which the piezoresistor 15 is disposed, the diaphragm portion 2 is protected by the protective film 18 so that even if it is a corrosive fluid, it is not corroded, , And a semiconductor pressure sensor can be stably manufactured in which the metal wiring portion 3 is accurately formed without receiving damage such as oxidation caused by heat during heat treatment.
[0020]
Further, since the metal of the metal wiring portion 3 has a melting point lower than the predetermined temperature, by performing a heat treatment at a predetermined temperature higher than the melting point of the metal, the protective film 18 can be formed in a high-density state without forming voids, which has been conventionally difficult. And the protective film 18 that reliably protects the pressure receiving surface 21 of the diaphragm portion 2 can be formed, and the metal wiring portion 3 can be formed at low cost without using an expensive high melting point metal.
[0021]
Further, since the protective film 18 is made of silicon oxide and the metal wiring portion 3 is made of aluminum, the metal wiring portion 3 can be formed of aluminum having high conductivity and low cost, and is heat-treated at a predetermined temperature higher than the melting point of aluminum. By forming the protective film 18 made of silicon oxide and having good corrosion resistance, the protective film 18 for surely protecting the pressure receiving surface 21 of the diaphragm 2 can be formed.
[0022]
In addition, since the glass pedestal bonding step is provided subsequent to the metal wiring part forming step, and the protective film 18 is formed in a thin film shape with a thickness of 0.1 to 0.5 μm, the other surface of the silicon substrate 1 is formed. The first surface 41 of the glass pedestal 4 can be directly joined to the other surface 12 of the silicon substrate 1 without removing the protective film 18 formed on the silicon substrate 1, thereby facilitating assembly.
[0023]
In the first embodiment, the metal of the metal wiring portion 3 is aluminum. However, the metal wiring portion 3 may be formed of another metal instead of aluminum, and there is no limitation.
[0024]
A second embodiment of the present invention will be described below. In the second embodiment, only the glass pedestal joining step is different, and the other steps are the same as those in the first embodiment, and thus the description is omitted.
[0025]
In the glass pedestal joining step, a resist film having etching resistance is formed on the pressure receiving surface 21 of the diaphragm portion 2 and then etched to remove the protective film 18 formed on the other surface 12 of the silicon substrate 1. Then, the glass pedestal 4 provided with the shaft hole 42 is bonded to the silicon substrate 1 by anodic bonding in which a high DC voltage is applied to the glass pedestal 4 in a state where the positions of the shaft hole 42 and the diaphragm portion 2 correspond to each other. Join with surface 12.
[0026]
In the method of manufacturing the semiconductor pressure sensor according to the second embodiment, as described above, the protection film 18 on the other surface 12 of the silicon substrate 1 is removed, and the other surface of the silicon substrate 1 from which the protection film 18 has been removed. Since the glass pedestal joining step of joining the glass pedestal 12 and the one surface 41 of the glass pedestal 4 is provided next to the metal wiring portion forming step, the other surface 12 of the silicon substrate 1 and the one surface 41 of the glass pedestal 4 are firmly connected. Since the bonding can be performed and the film thickness can be increased, the corrosion resistance of the protective film 18 is further improved, and the protective film 18 that reliably protects the pressure receiving surface 21 of the diaphragm 2 from corrosion can be formed.
[0027]
【The invention's effect】
The method for manufacturing a semiconductor pressure sensor according to claim 1, wherein the protective film is formed on the pressure receiving surface of the diaphragm portion by heat-treating the silicon substrate at a predetermined temperature, and then the metal wiring portion made of metal is provided with a piezo resistor. Since it is formed on the side, the diaphragm part is protected by a protective film, and even if it is a corrosive fluid, the pressure of the fluid can be measured without being corroded, and the metal wiring part is caused by heat during heat treatment. A semiconductor pressure sensor formed accurately without being damaged by oxidation or the like can be stably manufactured.
[0028]
According to a second aspect of the present invention, in addition to the effect of the first aspect, since the metal of the metal wiring portion has a melting point lower than a predetermined temperature, the heat treatment is performed at a predetermined temperature higher than the melting point of the metal. By doing so, the protective film is formed in a high-density state without forming voids, and it is possible to form a protective film in which the pressure-receiving surface of the diaphragm portion is reliably protected, and without using an expensive refractory metal. The metal wiring portion can be formed at low cost. .
[0029]
The manufacturing method of the semiconductor pressure sensor according to the third aspect has the advantages of the manufacturing method according to the second aspect. In addition, the protective film is made of silicon oxide and the metal wiring portion is made of aluminum. The metal wiring portion can be formed with inexpensive aluminum, and a heat treatment is performed at a predetermined temperature higher than the melting point of aluminum to form a protective film made of silicon oxide having good corrosion resistance, so that the pressure receiving surface of the diaphragm portion is reliably protected. A protective film can be formed.
[0030]
According to a fourth aspect of the present invention, in addition to the effect of the third aspect, a glass pedestal bonding step is provided after the metal wiring section forming step, and the thickness of the protective film is set to 0.1 mm. Since it is 1 to 0.5 μm and formed in a thin film form, one surface of the glass pedestal is directly joined to the other surface of the silicon substrate without removing the protective film formed on the other surface of the silicon substrate. , And can be easily assembled.
[0031]
According to a fifth aspect of the present invention, in addition to the effects of the first to third aspects, the protective film on the other surface of the silicon substrate is removed. Since the glass pedestal joining step of joining the surface and the one side of the glass pedestal is provided after the metal wiring portion forming step, the other surface of the silicon substrate and one side of the glass pedestal can be firmly joined, and Therefore, the corrosion resistance of the protective film is further improved, and a protective film that reliably protects the pressure receiving surface of the diaphragm from corrosion can be formed.
[Brief description of the drawings]
FIG. 1 is a manufacturing process diagram showing a first embodiment of the present invention.
FIG. 2 is a manufacturing process diagram showing a conventional example.
[Explanation of symbols]
Reference Signs List 1 silicon substrate 11 one surface 12 other surface 15 piezoresistor 16 etching resistant film 17 concave portion 18 protective film 2 diaphragm portion 21 pressure receiving surface 3 metal wiring portion 4 glass pedestal 41 one surface 42 shaft hole

Claims (5)

圧力による抵抗変化を電気信号に変換するピエゾ抵抗がシリコン基板の一面側へ形成されるピエゾ抵抗形成工程と、
シリコン基板の両面に形成された耐エッチング膜を他面側におけるピエゾ抵抗対応位置にて除去し、異方性エッチングし断面台形状の凹部を形成して、測定対象である流体の圧力を受圧する受圧面を有したダイアフラム部を形成するダイアフラム部形成工程と、
耐エッチング膜を除去し、所定温度で熱処理してダイアフラム部の受圧面を保護する保護膜が、その受圧面及びシリコン基板の他面に形成される保護膜形成工程と、
金属からなりピエゾ抵抗と電気的に接続した金属配線部がシリコン基板の一面側へ形成される金属配線部形成工程と、有することを特徴とする半導体圧力センサの製造方法。
A piezoresistor forming step in which a piezoresistor for converting a resistance change due to pressure into an electric signal is formed on one surface side of the silicon substrate;
The etching resistant film formed on both sides of the silicon substrate is removed at the position corresponding to the piezo resistance on the other side, and anisotropic etching is performed to form a concave portion having a trapezoidal cross section, and the pressure of the fluid to be measured is received. A diaphragm portion forming step of forming a diaphragm portion having a pressure receiving surface,
A protective film for removing the etching-resistant film and heat-treating at a predetermined temperature to protect the pressure-receiving surface of the diaphragm portion, a protective-film forming step formed on the pressure-receiving surface and the other surface of the silicon substrate;
A method for manufacturing a semiconductor pressure sensor, comprising: a metal wiring portion forming step in which a metal wiring portion made of metal and electrically connected to a piezo resistor is formed on one surface side of a silicon substrate.
前記金属配線部における金属が、前記所定温度未満の融点を有することを特徴とする請求項1記載の半導体圧力センサの製造方法。2. The method according to claim 1, wherein the metal in the metal wiring portion has a melting point lower than the predetermined temperature. 前記保護膜が酸化珪素であるとともに、前記金属配線部の金属がアルミニウムであることを特徴とする請求項2記載の半導体圧力センサの製造方法。3. The method according to claim 2, wherein the protective film is silicon oxide, and the metal of the metal wiring portion is aluminum. 軸孔を設けたガラス台座のメタライズされた一方面を、その軸孔及び前記ダイアフラム部の互いの位置を対応した状態で、シリコン基板の他面側と接合するガラス台座接合工程が金属配線部形成工程に次いで設けられるとともに、前記保護膜は膜厚が0.1乃至0.5ミクロンメートルに形成されてなることを特徴とする請求項3記載の半導体圧力センサの製造方法。A glass pedestal bonding step of bonding one metalized surface of the glass pedestal provided with the shaft hole to the other surface of the silicon substrate in a state where the position of the shaft hole and the diaphragm portion correspond to each other is performed. 4. The method according to claim 3, wherein the protective film is provided after the step, and the protective film is formed to have a thickness of 0.1 to 0.5 micrometers. 軸孔を設けたガラス台座のメタライズされた一方面を、その軸孔及び前記ダイアフラム部の互いの位置を対応した状態で、前記保護膜が除去された前記シリコン基板の他面と接合するガラス台座接合工程が、前記金属配線部形成工程に次いで設けられたことを特徴とする請求項1乃至3記載の半導体圧力センサの製造方法。A glass pedestal that joins one of the metalized surfaces of the glass pedestal provided with the shaft hole to the other surface of the silicon substrate from which the protective film has been removed in a state where the position of the shaft hole and the diaphragm portion correspond to each other. 4. The method for manufacturing a semiconductor pressure sensor according to claim 1, wherein a joining step is provided after the step of forming a metal wiring portion.
JP34477996A 1996-12-25 1996-12-25 Manufacturing method of semiconductor pressure sensor Expired - Fee Related JP3555364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34477996A JP3555364B2 (en) 1996-12-25 1996-12-25 Manufacturing method of semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34477996A JP3555364B2 (en) 1996-12-25 1996-12-25 Manufacturing method of semiconductor pressure sensor

Publications (2)

Publication Number Publication Date
JPH10185720A JPH10185720A (en) 1998-07-14
JP3555364B2 true JP3555364B2 (en) 2004-08-18

Family

ID=18371923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34477996A Expired - Fee Related JP3555364B2 (en) 1996-12-25 1996-12-25 Manufacturing method of semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JP3555364B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2516980A1 (en) * 2009-12-23 2012-10-31 Epcos AG Piezoresistive pressure sensor and process for producing a piezoresistive pressure sensor

Also Published As

Publication number Publication date
JPH10185720A (en) 1998-07-14

Similar Documents

Publication Publication Date Title
US7216547B1 (en) Pressure sensor with silicon frit bonded cap
JP4916449B2 (en) Semiconductor pressure sensor and manufacturing method thereof
WO2017028466A1 (en) Mems strain gauge chip and manufacturing process therefor
KR100966150B1 (en) Pressure sensor
JP5748257B2 (en) High-temperature pressure sensor element for measuring the internal pressure of the engine, its manufacturing method, and engine parts
JP4739164B2 (en) Semiconductor strain sensitive sensor for measuring intake air pressure of vehicle engine
KR100544772B1 (en) A thermosensitive flow rate detecting element and method for the manufacture thereof
JP3383644B2 (en) Sensor element
US6644113B2 (en) Flow-rate detecting device for heat-sensitive type flow sensor
JP3555364B2 (en) Manufacturing method of semiconductor pressure sensor
JP3601993B2 (en) Thermal sensor and method of manufacturing the same
JP2822486B2 (en) Strain-sensitive sensor and method of manufacturing the same
JP3555365B2 (en) Manufacturing method of semiconductor pressure sensor
EP0341964B1 (en) Silicon micro sensor and manufacturing method therefor
JP2001012985A (en) Thermal air flow rate sensor and controller for internal combustion engine
KR100240012B1 (en) Diaphragm
JPH1022511A (en) Semiconductor pressure sensor and its manufacture
JPH09116173A (en) Semiconductor sensor and its manufacture
JPH098326A (en) Semiconductor pressure sensor
JP7158369B2 (en) Thermal detection sensor
JPH07318445A (en) Capacitance type pressure sensor and manufacture thereof
JP2002267560A (en) Manufacturing method for pressure sensor
JPH1074957A (en) Manufacture of semiconductor pressure sensor
JP3405222B2 (en) Semiconductor acceleration sensor element and method of manufacturing the same
JPH10221144A (en) Micro heater and its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040503

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees