JP3555109B2 - Hot air floor heating system - Google Patents

Hot air floor heating system Download PDF

Info

Publication number
JP3555109B2
JP3555109B2 JP2000125361A JP2000125361A JP3555109B2 JP 3555109 B2 JP3555109 B2 JP 3555109B2 JP 2000125361 A JP2000125361 A JP 2000125361A JP 2000125361 A JP2000125361 A JP 2000125361A JP 3555109 B2 JP3555109 B2 JP 3555109B2
Authority
JP
Japan
Prior art keywords
hot air
floor
hot
air passage
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000125361A
Other languages
Japanese (ja)
Other versions
JP2001304594A (en
Inventor
吉次 神山
Original Assignee
株式会社マイルドホーム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マイルドホーム filed Critical 株式会社マイルドホーム
Priority to JP2000125361A priority Critical patent/JP3555109B2/en
Publication of JP2001304594A publication Critical patent/JP2001304594A/en
Application granted granted Critical
Publication of JP3555109B2 publication Critical patent/JP3555109B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Floor Finish (AREA)
  • Central Heating Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は床下に温風を循環させて全室の暖房を行なう温風床暖房装置に関するものである。
【0002】
【従来の技術】
従来の室内の床暖房は、床下に温水を循環させる温水マットタイプと電熱ヒーターを埋設したヒーターパネルタイプとが多く利用されている。しかしながら温水を循環させる温水マットタイプは、床下に温水管を蛇行させて配管し、ここにボイラーで沸かした温水をポンプで循環させるため、設備費や運転コストが高く、しかも床からの荷重が加わるため長期間使用している間に配管に亀裂が発生して水漏れする恐れがある。
【0003】
また電熱ヒーターを埋設したヒーターパネルタイプも施工費用が高く、床に釘やネジを取付けた時に誤って電熱線を断線してしまう危険がある。更に昼間でも暖房する時にだけ通電するので、運転コストの安い深夜電力を利用することができなかった。またこれら従来の装置は施工費が高いため全室に設置せず、通常はリビングルームや食堂など限られた部屋に設備していることが多かった。
【0004】
【発明が解決しようとする課題】
本発明は従来の問題点を除去し、建物の床下全体に設置して全室の床暖房を行なっても、設備費や施工費が安く、冬期間連続して全室を暖房しても運転コストが安く、しかも構造が簡単で腐食などの問題がなく耐久性に優れた温風床暖房装置を提供するものである。
【0005】
【課題を解決するための手段】
本発明の請求項1記載の温風床暖房装置は、土間またはスラブの上に断熱層を形成し、この上に所定の間隔で配置した支持台の上に床板を取付ける根太を設けて、この根太と前記断熱層との間に密閉された温風通路を形成すると共に、床板の下方の、隣接する根太の間に、上下に貫通する複数個の通気孔を開孔した蓄熱体を設け、温風通路の入口側に、温水が循環してフィンから放熱する放熱器と、送風機とで形成された温風発生器を設けると共に、この温風発生器の放熱器を、通水管を介して温風通路の外側に設置した温水ボイラーに接続して、温水ボイラーから温水を前記放熱器に供給し、ここで発生した温風を前記送風機で密閉された温風通路内に循環させて蓄熱体を加熱し、床暖房することを特徴とするものである。
【0006】
更に請求項2記載の温風床暖房装置は、床下の温風通路内に複数の邪魔板を設けて蛇行し た温風通路を形成し、この蛇行した温風通路の入口側に、温風発生器を設けたことを特徴とするものである。
【0007】
【発明の実施の形態】
以下本発明の実施の一形態を図1ないし図3を参照して詳細に説明する。図において1はコンクリート土間基礎で、この上に、発泡ウレタンなどの発泡プラスチックで形成された断熱層2が設けられている。更にこのコンクリート土間基礎1の上に所定の間隔で大引となる直方体状の支持台5…が配置されている。この支持台5…の上には逆T形状の鋼材で形成された支持金具6が取付けられている。この支持金具6の逆T形状の垂直部が、根太8に形成した切欠部7に嵌合して、根太8を支持するようになっている。またこの根太8は集成材で形成したものが好ましい。
【0008】
このように根太8が縦横に格子状に取付けられ、これと前記断熱層2との間に温風通路11Aが形成されている。この格子状に取付けられた根太8の隣接する根太8との間には、蓄熱体3となるコンクリート板9…が取付けられている。このコンクリート板9の両端は図1に示すように、大引となる支持台5の上に取付けた逆T形状の支持金具6の水平部の端に支持されている。またこのコンクリート板9には、上下に貫通する複数個の通気孔10が開口し、温風通路11A内を流通する空気が通過してコンクリート板9を内部からも加熱するようになっている。
【0009】
また根太8と断熱層2との間には図2および図3に示すように金属板で角筒状に形成された送風ダクト14が配管されている。この送風ダクト14には、その両側面に所定の間隔で温風吹出口15…が設けられている。またこの送風ダクト14には図3に示すように温風発生器となる放熱器16と送風機18が取付けられている。
【0010】
この放熱器16は通水管19を介して石油燃焼式の温水ボイラー17に接続され、ここからの温水が放熱器16内に設けた放熱フィンを加熱し、送風機18から送られた空気を加熱して温風にするようになっている。
【0011】
また室内の床板12には温度センサー20が埋め込まれ、この温度センサー20は制御装置21に接続されている。更にこの制御装置21は前記温水ボイラー17と送風機18に接続され、温度センサー20で検知した所定の温度範囲で温水ボイラー17と送風機18をオン・オフするようになっている。
【0012】
また2階についても図1と同様に、1階の天井となるスラブ23の上に断熱層2が形成され、支持台5…の上に支持された根太8と断熱層2との間に温風通路11Bが形成され、格子状に取付けられた根太8の隣接する根太8との間に、蓄熱体3となるコンクリート板9…が取付けられている。
【0013】
また図3に示すように1階の温風通路11Aと、2階の温風通路11Bとを連通する温風上昇管24が設けられ、この上部は2階の温風通路11B内に配管した送風ダクト14に接続されている。また2階の送風ダクト14の入り口側にも放熱器16が設けられ、これは通水管19により1階の温水ボイラー17に接続されている。
【0014】
また2階の温風通路11Bの温風流入側と反対側には、1階の送風機18の流入側と連通する冷風下降管25が設けられ、温風が密閉された1階の温風通路11Aと、2階の温風通路11Bとを循環するようになっている。
【0015】
上記構成の温風床暖房装置は、例えば初冬に暖房が必要になった時には図3に示すように制御装置21のスイッチを入れて加熱温度を設定し、冬期間から春先にかけて連続運転する。先ず運転開始時にスイッチを入れると、温水ボイラー17と送風機18が運転される。温水ボイラー17が運転され、例えば60℃に設定されているとすると60℃に加熱された不凍液が通水管19を通って、1階と2階に設けた放熱器16に送られ、ここでフィンを加熱する。
【0016】
一方、送風機18が運転されることから、送風ダクト14を通って空気が送られ、放熱器16のフィンで放熱されて温風となる。この温風は送風ダクト14の側面に開口した温風吹出口15…から横方向に吹出しながら1階の温風通路11A内に全体に広がる。更に1階の温風通路11A内に広がり温度が低下した温風は温風上昇管24を通って2階の温風通路11B内に配管した送風ダクト14に導かれる。
【0017】
2階の送風ダクト14の温風流入側には温水が循環している放熱器16が設けられているので、ここで再び加熱され送風ダクト14の側面に開口した温風吹出口15…から横方向に吹出しながら2階の温風通路11B内に全体に広がる。この後、温度が低下した温風は冷風下降管25を下降し、送風機18を通って再び1階の送風ダクト14に導かれて放熱器16で再度加熱され、以下同様に温風が密閉された1階と2階の温風通路11A、11Bを循環し、外部に放散しないようになっている。
【0018】
このように温風通路11A、11B内に噴出された温風は床下全体にほぼ均一に広がり、温風通路11A、11Bの上部に設けた蓄熱体3となるコンクリート板9を加熱する。この場合、コンクリート板9には複数の通気孔10…が開口されているのでここを温風が上昇して内部から加熱すると共に、上昇した温風は床板12を裏面側から加熱して室内を暖房する。またコンクリート板9を加熱して蓄熱されると徐々に放熱され、ここから放射された熱が床板12を裏面側から長時間に亘って加熱して室内を暖房する。
【0019】
本発明の装置では床下に蓄熱体3となるコンクリート板9が一面に敷設され、しかもコンクリート板9は蓄熱量が大きいので、運転開始時には暖まるまでに時間がかかるが、一旦、コンクリート板9に蓄熱されると徐々に放熱して長時間に亘って放熱することができる。
【0020】
従って初冬の運転立ち上げ時には設定室内温度に達するまでは多少時間はかかるが、その後は間欠的に運転するだけで室内を設定温度に保持することができる。このため全室を冬中24時間暖房しても、従来の電熱ヒーターを埋設したヒーターパネルタイプや床下に温水を循環させる温水マットタイプに比べて施工費用が安く、また運転コストも15分の1以下となり、特に温水ボイラー17として石油を燃焼させるものは安く、また深夜電力を用いたものでも運転コストを安くすることができる。
【0021】
従来の装置では施工費が高いため全室に設置せず、リビングルームや食堂など限られた部屋に設備していることが多かったが、本発明は配管や配線構造が少なく、その上、規格化されたコンクリート板9を取付けていくだけであり施工が容易である。しかも使用する温水ボイラー17や送風機18は一旦、コンクリート板9に蓄熱されたら、その後、運転は間欠的に行なわれるので容量の小さい機器で十分であり、全室を床暖房しても従来に比べて施工費を10分の1以下にすることができる。
【0022】
更にコンクリート板9を蓄熱体3として使用しているので、コンクリート板9が一旦、加熱されると、ここから二次放射される熱は遠赤外線が多くなり、床板12を貫通して室内にいる人や空気を直接加熱して体を内部から温めることができ、従来の石油ファンヒーターや、温水循環暖房にはない優れた効果も発揮することができる。更にコンクリート板9の表面に遠赤外線発生効率の高いパウダーを塗布したものは、遠赤外線の発生量が多くなり、室内にいる人や空気を効率よく加熱して体を温めることができる。
【0023】
更に本発明は、密閉された温風通路11A、11Bに温風を繰り返し循環させて暖房するので、石油ファンヒーターのように温風を外部に放出せず効率よく熱を再利用することができ、運転コストも従来装置に比べて24時間運転しても15分の1以下に低減でき、従来の1室分の運転コストで全室暖房を行なうことができる。しかも万一、温風通路11A、11Bに隙間ができて、ここから温風が僅かに漏れ出しても燃焼廃ガスが通っていないので、衛生や安全上も影響がなく、その上、構造が簡単で腐食部分もないので耐久性にも優れている。
【0024】
図4および図5は本発明の他の実施の形態を示すもので、1階と2階の温風通路を仕切壁27でそれぞれ2分割して温風通路11a1、11a2、11b1、11b2を形成する。これら各温風通路11a1〜11b2には、それぞれ温風流入側に放熱器16を設けた送風ダクト14が配管されている。また1階の温風通路11a2と2階の温風通路11b2の送風ダクト14の温風流入側は、仕切壁27に開口した連通孔28を貫通している。
【0025】
上記構成の温風床暖房装置は、1階と2階の温風通路を仕切壁27でそれぞれ2分割して温風通路11a1、11a2、11b1、11b2に狭く形成されているので、全体に均一に温風が流れる。しかも各通路を流れる温風が放熱器16により再度加熱されるので、床下を流れる温風をほぼ均一な温度で全体に平均して流すことができ、この結果、各室をほぼ均一に暖房することができる。
【0026】
図6は本発明の他の実施の形態を示すもので、1階と2階の温風通路を仕切壁27でそれぞれ2分割して温風通路11a1、11a2、11b1、11b2を形成する。これら各温風通路11a1〜11b2には、それぞれ仕切壁27の温風流入側に連通孔28が開口され、ここに放熱器16がそれぞれ取付けられている。更に各温風通路11a1〜11b2には、邪魔板29…が千鳥状に取付けられて蛇行した通路が形成されている。この構造では邪魔板29…により温風が蛇行しながら床下を流れるのでほぼ均一な温度で全体を加熱することができる。
【0027】
図7は本発明の他の実施の形態を示すもので、1階と2階の床下に邪魔板29を千鳥状に設けて蛇行した温風通路11A、11Bを形成する。送風機18の近くの1階の温風通路11Aの流入側に放熱器16を設け、更にこの放熱器16の近傍の、温風通路11Aの中間と流出側にそれぞれ放熱器16が設けられ、ここに温風上昇管24が取付けられている。更に2階の蛇行した温風通路11Bの、温風上昇管24の近傍の中間にも放熱器16が設けられ、また流出側に冷風下降管25が設けられ、これは送風機18を介して1階の流入側の放熱器16に接続されている。
【0028】
上記構成の温風床暖房装置は、1階と2階に設けた放熱器16が温水ボイラー17の近くに設置されているので、温水の循環経路が短くなり設備費が安くなる上、放熱や通水抵抗も少なくなって、小さい容量の温水ボイラー17でも効率よく暖房することができる。
【0029】
図8は本発明の他の実施の形態を示すもので、1階と2階の温風通路を仕切壁27でそれぞれ2分割して温風通路11a1、11a2、11b1、11b2を形成する。これら各温風通路11a1〜11b2には、それぞれ仕切壁27の温風流入側に連通孔28が開口され、ここに放熱器16がそれぞれ取付けられている。更に各温風通路11a1〜11b2には、複数の通気孔30を開孔した邪魔板29…が等間隔で取付けられている。
【0030】
この構造では邪魔板29の通気孔30から流入した温風は一旦、広がり、更に隣接する邪魔板29の通気孔30を通ってここで絞られるので、各温風通路11a1〜11b2内を均一に流通させることができる。なお上記説明では1階と2階の温風通路をそれぞれ2分割したものについて示したが3分割以上の構造でも良い。また邪魔板29を木板で構成しても良いが、石膏ボードを使用すればこれ自体が蓄熱体3としても作用するので、更に蓄熱量を増大させることができる。
【0031】
図9は本発明の他の実施の形態を示すもので、通気孔10の表面に凹凸面33を形成したもので、表面積を拡大して温風との接触面積を大きくしたものである。また図10はコンクリート板9の底面をアーチ形に形成し、その両端に係合段部34を設けたものである。
【0032】
11は本発明の他の実施の形態を示すもので、1階の床下を仕切壁27で2分割し、この内部に邪魔板29を千鳥状に設けて蛇行した温風通路11a1、11a2を形成する。各温風通路11a1、11a2には、放熱器16と送風機18が一体に構成されたファンコイル35がそれぞれ設けられ、この放熱器16、16は温水ボイラー17に通水管19で接続されている。
【0033】
上記構成の温風床暖房装置は、放熱器16と送風機18が一体に構成されたファンコイル35を用い、また2分割して流路を短かくした温風通路11a1、11a2にそれぞれ設置するので、容量の小さい小型のファンコイル35を床下に設置することができると共に、温度の均一化を図ることができる。
【0034】
なお上記説明では蓄熱体3としてコンクリート板を用いた場合について示したが、石材や陶器、セラミック焼結体もしくは不凍液を封入した弾性ボールを用いても良い。なおブロック状の蓄熱体を用いる場合には、根太8の底面に金網などの通気性を有する網状体を取付け、この上の床板12との間にブロック状の蓄熱体を載せるか、もしくはネットなどの網状体で包んで取付けても良い。
【0035】
なお上記説明では2階建の建物に適用した場合について示したが、平屋建でも良く、この場合には温風上昇管24や冷風下降管25は不要で、この代わりに温風通路11A内に冷風を放熱器16まで戻す通路や管路を設ける必要がある。またアパートなどでは、各戸の床下に温風が循環する独立した温風通路を形成し、ここに取付けた放熱器16と送風機18を各戸別に制御するようにしても良い。この場合、温水ボイラー17は1台あれば各戸の放熱器16に同時に温水を供給することができる。
【0036】
また本発明は木造家屋やプレハブ住宅にも設置することができ、またコンクリート土間基礎1に限らず、敷石だけを敷した土間の上に断熱層2を設け、この上に温風通路11Aを形成しても良い。
【0037】
【実施例】
図1ないし図3に示す構造の蓄熱体3としてコンクリート板9を設けた温風床暖房装置を設置した、1階が面積50平方m、2階が面積50平方mの合計面積100平方mで温風通路11A、11Bの合計空間容積は16立方mの実験住宅を建てた。また温水ボイラー17としては時間当り6000キロカロリーの発熱量の灯油燃焼式のものを用い、送風機18としては時間当り570立方mの送風量のものを用いた。
【0038】
また1階の台所の床表面に温度センサー20を設置し、制御装置21で27℃でオン、30℃でオフする設定を行なった。また温度センサー20は1階の和室と2階の洋室の床表面にも設置して温度の変化を測定した。測定は3月初頭の外気温が零下にまで下がる日に装置を立ち上げて以後連続運転を行ない、その時の一階の台所と和室および2階の洋室の床の表面温度を測定した。この結果は図12に示すような測定結果が得られた。なおこの日は最高気温が3℃、最低気温が−4.5℃であった。
【0039】
図12の測定結果から、運転開始後、約4時間の午後6時まで急激に温度が上昇し、ほぼ10時間後の午前0時には設定温度に達して制御装置21が作動し、温水ボイラー17と送風機18の運転が停止した。停止後、3時間経過した翌日の午前3時に再び温水ボイラー17と送風機18の運転が再開され、再開して3時間後の午前6時に再び温水ボイラー17と送風機18の運転が停止した。
【0040】
その後、朝になって外気温が上昇し、外部放熱が少なくなってきたため、停止してから6時間後の午後0時まで停止して、再び温水ボイラー17と送風機18の運転が再開され、その3時間後の午後3時に停止し、午後7時に運転が再開された。以後3〜4時間の間隔でオン・オフを繰り返し、台所の床表面が設定温度に保持され、室温は17〜20℃でほぼ一定の温度で暖房されていることが確認できた。
【0041】
【発明の効果】
以上説明した如く本発明に係る請求項1記載の温風床暖房装置によれば、床下に温風通路を設け、この上方の床板の裏面に蓄熱体を設けたので、蓄熱できる熱容量が極めて大きく、蓄熱体の温度が上昇すると緩やかに熱を放出して室内を床下から暖房することができ、全室を冬中暖房しても運転コストを、従来に比べて大幅に低減することができる。また温風と蓄熱体から放熱される放射熱の両者により床を加熱し、しかも蓄熱体には複数の通気孔が開口されているので、ここを温風が上昇して内部から加熱すると共に、上昇した温風は床板を裏面側から加熱して室内を暖房する。この結果、室内の温度上昇を速めることができると共に、設定温度に達して温風の循環を停止した後は、蓄熱体から徐々に放熱するので長時間に亘って暖房することができる。
【0042】
また本発明は、従来の温水マットタイプやヒーターパネルタイプに比べ、床下に温風通路と蓄熱体を設けた簡単な構造により全室を暖房できるので、施工費や設備費が従来構造に比べて10分の1以下に低減できる。また全室を24時間暖房しても運転コストは従来装置に比べて15分の1以下に低減することができる。更に本発明は床下構造のメンテナンスも不要で耐久性に優れ、しかも温風通路から温風が室内に多少漏れたとしても熱的にも安全上も全く問題がなく、クリーンで快適な暖房を行なうことができる。
【0043】
また温水ボイラーからの温水が循環してフィンから放熱して空気を加熱する放熱器を用いているので設備費が安く、メンテナンスも容易で、機器の耐久性に優れている。
【0044】
また請求項2記載の温風床暖房装置によれば、温風通路内に間隔をおいて複数の邪魔板を設けて蛇行した温風通路を形成したので、温風をほぼ均一に流通させて均一に加熱することができ、送風ダクトが不要で施工費を安くできる。
【図面の簡単な説明】
【図1】本発明の実施の一形態による1階の温風床暖房装置を示す斜視図である。
【図2】図1に示す温風床暖房装置の断面図である。
【図3】2階建て住宅に設置した温風床暖房装置の構成を示す斜視図である。
【図4】本発明の他の実施の形態による2階建住宅に設置した温風床暖房装置の構成を示す斜視図である。
【図5】図4に示す温風床暖房装置の断面図である。
【図6】本発明の他の実施の形態による2階建住宅に設置した邪魔板式の温風床暖房装置の構成を示す斜視図である。
【図7】本発明の他の実施の形態による2階建住宅に設置した邪魔板式の温風床暖房装置の構成を示す平面図である。
【図8】本発明の他の実施の形態による2階建住宅に設置した邪魔板式の温風床暖房装置の構成を示す斜視図である。
【図9】本発明の他の実施の形態によるコンクリート板の断面図である。
【図10】本発明の他の実施の形態によるコンクリート板の断面図である。
【図11】本発明の他の実施の形態によるファンコイルを設置した温風床暖房装置の構成を示す平面図である。
【図12】温風床暖房装置による温度の測定結果を示すグラフである。
【符号の説明】
1 コンクリート土間基礎
2 断熱層
3 蓄熱体
5 支持台
6 支持金具
8 根太
9 コンクリート板
10 通気孔
11A 温風通路
12 床板
14 送風ダクト
15 温風吹出口
16 放熱器
17 温水ボイラー
18 送風機
19 通水管
20 温度センサー
21 制御装置
23 スラブ
24 温風上昇管
25 冷風下降管
27 仕切壁
28 連通孔
29 邪魔板
30 通気孔
33 凹凸面
34 係合段部
35 ファンコイル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hot-air floor heating device that circulates warm air under the floor to heat all rooms.
[0002]
[Prior art]
Conventional floor heating in a room often uses a hot water mat type for circulating hot water under the floor and a heater panel type in which an electric heater is embedded. However, the hot water mat type that circulates hot water has a meandering hot water pipe under the floor and pipes it, and circulates the hot water boiled by the boiler with a pump, so equipment costs and operating costs are high, and the load from the floor is added. For this reason, there is a possibility that the pipe may crack during long-term use and leak water.
[0003]
Also, the heater panel type in which the electric heater is buried has a high construction cost, and there is a risk that the heating wire is accidentally disconnected when a nail or a screw is attached to the floor. Furthermore, since electricity is supplied only during heating even in the daytime, it is not possible to use late-night power, which has a low operating cost. Also, these conventional devices are not installed in all rooms due to high construction costs, and are usually installed in limited rooms such as living rooms and dining rooms.
[0004]
[Problems to be solved by the invention]
The present invention eliminates the problems of the prior art, and even if it is installed under the floor of a building to perform floor heating of all rooms, equipment costs and construction costs are low, and operation is possible even if all rooms are heated continuously during the winter. An object of the present invention is to provide a hot-air floor heating device which is inexpensive, has a simple structure, has no problem such as corrosion, and has excellent durability.
[0005]
[Means for Solving the Problems]
The hot-air floor heating device according to claim 1 of the present invention has a heat insulation layer formed on a slab or a slab, and a joist for mounting a floor plate on a support pedestal arranged at a predetermined interval is provided thereon. While forming a closed hot air passage between the joist and the heat insulating layer, below the floorboard, between adjacent joists , provided a heat storage body having a plurality of vertically penetrating ventilation holes, On the inlet side of the hot air passage, a radiator that circulates hot water and radiates heat from the fins, and a hot air generator formed by a blower are provided, and the radiator of this hot air generator is passed through a water pipe. Connected to a hot water boiler installed outside the hot air passage, hot water is supplied from the hot water boiler to the radiator, and the hot air generated here is circulated in the hot air passage closed by the blower to store heat. And floor heating .
[0006]
Furthermore hot air floor heating system according to claim 2, to form a warm air passage serpentine to provide a plurality of baffles under the floor of the hot air passage, the inlet side of the serpentine warm air passage, the hot air A generator is provided .
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. In the figure, reference numeral 1 denotes a concrete-soil foundation, on which a heat insulating layer 2 made of a foamed plastic such as urethane foam is provided. Further, on the concrete-soil foundation 1, there are arranged rectangular parallelepiped supports 5 at predetermined intervals. A support bracket 6 made of an inverted T-shaped steel material is mounted on the support bases 5. The inverted T-shaped vertical portion of the support fitting 6 is fitted into the notch 7 formed in the joist 8 to support the joist 8. The joist 8 is preferably formed of a laminated wood.
[0008]
In this manner, the joists 8 are attached in a grid pattern vertically and horizontally, and a hot air passage 11A is formed between the joists 8 and the heat insulating layer 2. A concrete plate 9 serving as the heat storage body 3 is attached between the joist 8 attached in a lattice shape and the adjacent joist 8. As shown in FIG. 1, both ends of the concrete plate 9 are supported by the ends of a horizontal portion of an inverted T-shaped support bracket 6 mounted on a support base 5 which becomes large. A plurality of ventilation holes 10 penetrating vertically are opened in the concrete plate 9 so that air flowing through the hot air passage 11A passes therethrough to heat the concrete plate 9 from the inside.
[0009]
Further, between the joist 8 and the heat insulating layer 2, a ventilation duct 14 formed of a metal plate in a rectangular cylindrical shape as shown in FIGS. 2 and 3 is provided. The air ducts 14 are provided with hot air outlets 15 at predetermined intervals on both side surfaces thereof. Further, as shown in FIG. 3, a radiator 16 serving as a hot air generator and a blower 18 are attached to the blower duct 14.
[0010]
The radiator 16 is connected to an oil-fired hot water boiler 17 through a water pipe 19, and the hot water from the radiator 16 heats radiating fins provided in the radiator 16 and heats the air sent from the blower 18. To make it warm.
[0011]
A temperature sensor 20 is embedded in the indoor floor plate 12, and the temperature sensor 20 is connected to a control device 21. Further, the control device 21 is connected to the hot water boiler 17 and the blower 18 and turns on and off the hot water boiler 17 and the blower 18 within a predetermined temperature range detected by the temperature sensor 20.
[0012]
Also on the second floor, similarly to FIG. 1, the heat insulating layer 2 is formed on the slab 23 serving as the ceiling of the first floor, and the heat insulation layer 2 is provided between the joists 8 supported on the supports 5. An air passage 11B is formed, and concrete plates 9 serving as the heat storage bodies 3 are mounted between the joists 8 adjacent to the joists 8 mounted in a lattice.
[0013]
Further, as shown in FIG. 3, a hot air rising pipe 24 communicating the hot air passage 11A on the first floor and the hot air passage 11B on the second floor is provided, and the upper part thereof is connected to the hot air passage 11B on the second floor. It is connected to the air duct 14. A radiator 16 is also provided on the entrance side of the ventilation duct 14 on the second floor, which is connected to a hot water boiler 17 on the first floor by a water pipe 19.
[0014]
On the opposite side of the warm air passage 11B on the second floor from the warm air inflow side, a cool air downcomer pipe 25 communicating with the inflow side of the blower 18 on the first floor is provided, and the warm air passage on the first floor in which the warm air is sealed 11A and the warm air passage 11B on the second floor.
[0015]
For example, when heating is required in the early winter, the warm air floor heating device having the above-described configuration switches on the control device 21 to set the heating temperature as shown in FIG. 3, and operates continuously from the winter period to the early spring. First, when the switch is turned on at the start of operation, the hot water boiler 17 and the blower 18 are operated. When the hot water boiler 17 is operated and, for example, the temperature is set to 60 ° C., the antifreeze heated to 60 ° C. is sent to the radiator 16 provided on the first and second floors through the water pipe 19, where the fins are placed. Heat.
[0016]
On the other hand, since the blower 18 is operated, air is sent through the blow duct 14 and is radiated by the fins of the radiator 16 to become hot air. The hot air spreads out in the hot air passage 11A on the first floor while blowing out from the hot air outlets 15... Further, the warm air that has spread in the warm air passage 11A on the first floor and has a reduced temperature is led through the warm air rising pipe 24 to the ventilation duct 14 that is piped into the warm air passage 11B on the second floor.
[0017]
A radiator 16 in which hot water is circulated is provided on the hot air inflow side of the air duct 14 on the second floor. While spreading into the warm air passage 11B on the second floor. Thereafter, the warm air whose temperature has decreased descends through the cool air descending pipe 25, passes through the blower 18, is again guided to the air duct 14 on the first floor, is heated again by the radiator 16, and thereafter the warm air is similarly sealed. The hot-air passages 11A and 11B on the first and second floors are circulated so as not to be radiated to the outside.
[0018]
The hot air blown into the hot air passages 11A and 11B in this manner spreads almost uniformly under the floor, and heats the concrete plate 9 serving as the heat storage body 3 provided above the warm air passages 11A and 11B. In this case, since a plurality of ventilation holes 10 are opened in the concrete plate 9, warm air rises there and heats it from the inside, and the raised warm air heats the floor plate 12 from the back side to make the room indoors. Heat. When the concrete plate 9 is heated and stored, the heat is gradually released, and the heat radiated from the concrete plate 9 heats the floor plate 12 from the back side for a long time to heat the room.
[0019]
In the apparatus of the present invention, the concrete plate 9 serving as the heat storage body 3 is laid on the entire surface under the floor, and since the concrete plate 9 has a large amount of heat storage, it takes time for the concrete plate 9 to warm up at the start of operation. Then, the heat is gradually dissipated and can be dissipated for a long time.
[0020]
Therefore, when the operation is started in the early winter, it takes some time to reach the set room temperature, but thereafter, the room can be maintained at the set temperature only by intermittent operation. For this reason, even if all rooms are heated for 24 hours in winter, the construction cost is lower and the operating cost is 1/15 of that of a conventional heater panel type with a built-in electric heater or a hot water mat type that circulates hot water under the floor. In particular, the hot water boiler 17 that burns oil can be inexpensive, and the one that uses late-night power can reduce the operating cost.
[0021]
Conventional equipment was not installed in all rooms due to high construction costs, and was often installed in limited rooms such as living rooms and dining rooms.However, the present invention has less piping and wiring structure, and furthermore, The construction is easy only by attaching the converted concrete plate 9. Moreover, once the heat of the hot water boiler 17 and the blower 18 to be used is stored in the concrete plate 9, the operation is performed intermittently, so that a small-capacity device is sufficient. The construction cost can be reduced to 1/10 or less.
[0022]
Further, since the concrete plate 9 is used as the heat storage body 3, once the concrete plate 9 is heated, the heat radiated from the secondary plate increases in far-infrared rays and penetrates the floor plate 12 to enter the room. The body can be warmed from the inside by directly heating people and air, and it can also exert excellent effects not found in conventional oil fan heaters or hot water circulation heating. Furthermore, the surface of the concrete plate 9 coated with a powder having a high efficiency of generating far-infrared rays generates a large amount of far-infrared rays, and can efficiently heat a person or air in a room to warm the body.
[0023]
Further, according to the present invention, since heating is performed by repeatedly circulating warm air in the closed warm air passages 11A and 11B, heat can be efficiently reused without releasing warm air to the outside unlike an oil fan heater. In addition, the operating cost can be reduced to 1/15 or less even after 24 hours of operation compared to the conventional apparatus, and all rooms can be heated at the conventional operating cost for one room. In addition, a gap is formed in the hot air passages 11A and 11B, and even if a small amount of hot air leaks therefrom, the combustion waste gas does not pass through. Therefore, there is no effect on hygiene and safety. It is simple and has no corroded parts, so it has excellent durability.
[0024]
4 and 5 show another embodiment of the present invention, in which the hot air passages on the first and second floors are each divided into two by a partition wall 27 to form hot air passages 11a1, 11a2, 11b1, and 11b2. I do. In each of the hot air passages 11a1 to 11b2, a ventilation duct 14 provided with a radiator 16 on the hot air inflow side is provided. The hot air inflow side of the air duct 14 of the hot air passage 11a2 on the first floor and the hot air passage 11b2 on the second floor passes through a communication hole 28 opened in the partition wall 27.
[0025]
In the hot-air floor heating device having the above-described configuration, the hot-air passages on the first and second floors are each divided into two by the partition wall 27, and are formed narrowly in the hot-air passages 11a1, 11a2, 11b1, and 11b2. Warm air flows through. In addition, since the warm air flowing through each passage is heated again by the radiator 16, the warm air flowing under the floor can be uniformly flowed at a substantially uniform temperature as a whole, and as a result, each room is heated substantially uniformly. be able to.
[0026]
FIG. 6 shows another embodiment of the present invention, in which hot air passages on the first and second floors are each divided into two by a partition wall 27 to form hot air passages 11a1, 11a2, 11b1, and 11b2. In each of the hot air passages 11a1 to 11b2, a communication hole 28 is opened on the hot air inflow side of the partition wall 27, and the radiator 16 is attached here. Further, in each of the warm air passages 11a1 to 11b2, a meandering passage in which baffle plates 29 are attached in a staggered manner is formed. In this structure, since the warm air flows under the floor meandering by the baffle plates 29, the entire structure can be heated at a substantially uniform temperature.
[0027]
FIG. 7 shows another embodiment of the present invention, in which baffle plates 29 are provided in a zigzag manner under the first and second floors to form meandering hot air passages 11A and 11B. A radiator 16 is provided on the inflow side of the hot air passage 11A on the first floor near the blower 18, and a radiator 16 is provided near the radiator 16 on the middle and outflow side of the hot air passage 11A. A hot air riser 24 is attached to the chiller. Further, a radiator 16 is provided in the middle of the meandering hot air passage 11B on the second floor in the vicinity of the hot air rising pipe 24, and a cool air descending pipe 25 is provided on the outflow side. It is connected to the radiator 16 on the inflow side of the floor.
[0028]
Since the radiator 16 provided on the first and second floors is installed near the hot water boiler 17 in the hot air floor heating device having the above configuration, the hot water circulation path is shortened, the equipment cost is reduced, and the heat radiation and heat radiation are reduced. The water flow resistance is reduced, and the small volume hot water boiler 17 can be efficiently heated.
[0029]
FIG. 8 shows another embodiment of the present invention. The hot air passages on the first and second floors are each divided into two by a partition wall 27 to form hot air passages 11a1, 11a2, 11b1, and 11b2. In each of the hot air passages 11a1 to 11b2, a communication hole 28 is opened on the hot air inflow side of the partition wall 27, and the radiator 16 is attached here. Further, baffle plates 29 having a plurality of ventilation holes 30 are attached at equal intervals to each of the hot air passages 11a1 to 11b2.
[0030]
In this structure, the warm air that has flowed from the vent holes 30 of the baffle plate 29 once spreads, and is narrowed here through the vent holes 30 of the adjacent baffle plate 29, so that the inside of each of the warm air passages 11a1 to 11b2 is evenly distributed. Can be distributed. In the above description, the hot air passages on the first floor and the second floor are each divided into two, but a structure having three or more divisions may be used. The baffle plate 29 may be made of a wooden plate, but if a gypsum board is used, the gypsum board itself also functions as the heat storage body 3, so that the heat storage amount can be further increased.
[0031]
FIG. 9 shows another embodiment of the present invention, in which an uneven surface 33 is formed on the surface of the ventilation hole 10 and the surface area is enlarged to increase the contact area with hot air. FIG. 10 shows an example in which the bottom surface of the concrete plate 9 is formed in an arch shape and engaging steps 34 are provided at both ends thereof.
[0032]
FIG. 11 shows another embodiment of the present invention, in which the underfloor of the first floor is divided into two by a partition wall 27, and baffle plates 29 are provided in a zigzag manner therein to form meandering hot air passages 11a1 and 11a2. Form. Each of the hot air passages 11a1 and 11a2 is provided with a fan coil 35 in which a radiator 16 and a blower 18 are integrally formed, and the radiators 16 and 16 are connected to a hot water boiler 17 by a water pipe 19.
[0033]
The hot-air floor heating device having the above-described configuration uses the fan coil 35 in which the radiator 16 and the blower 18 are integrally formed, and is installed in the hot-air passages 11a1 and 11a2, each of which is divided into two to shorten the flow path. In addition, the small fan coil 35 having a small capacity can be installed under the floor, and the temperature can be made uniform.
[0034]
In the above description, a case where a concrete plate is used as the heat storage body 3 has been described. However, an elastic ball filled with a stone material, pottery, a ceramic sintered body, or an antifreeze solution may be used. When a block-shaped heat storage material is used, a gas-permeable net such as a wire mesh is attached to the bottom surface of the joist 8 and the block-shaped heat storage material is placed between the floor material 12 and the net or the like. And may be wrapped in a net-like body.
[0035]
In the above description, a case where the present invention is applied to a two-story building is shown. However, a one-story building may be used. In this case, the warm air rising pipe 24 and the cool air descending pipe 25 are not required. It is necessary to provide a passage or a pipe for returning the cool air to the radiator 16. In an apartment or the like, an independent warm air passage may be formed under the floor of each house to circulate warm air, and the radiator 16 and the blower 18 attached thereto may be controlled for each house. In this case, if only one hot water boiler 17 is provided, hot water can be simultaneously supplied to the radiator 16 of each house.
[0036]
In addition, the present invention can be installed in a wooden house or a prefabricated house, and is not limited to the concrete-soil foundation 1, but the heat-insulating layer 2 is provided on the slab where only the paving stones are laid, and the hot air passage 11A is formed thereon. You may.
[0037]
【Example】
A hot air floor heating device provided with a concrete plate 9 as the heat storage body 3 having the structure shown in FIGS. 1 to 3 is installed. The first floor has an area of 50 square meters, and the second floor has an area of 50 square meters. An experimental house with a total space volume of the hot air passages 11A and 11B of 16 m 3 was built. The hot water boiler 17 used was a kerosene combustion type having a calorific value of 6000 kcal / hour, and the blower 18 used was a 570 cubic meter / hour blower.
[0038]
The temperature sensor 20 was installed on the floor of the kitchen on the first floor, and the controller 21 was set to turn on at 27 ° C. and turn off at 30 ° C. The temperature sensors 20 were also installed on the floor surfaces of a Japanese-style room on the first floor and a Western-style room on the second floor to measure changes in temperature. In the measurement, the apparatus was started up on the day when the outside air temperature dropped to below zero in early March, and continuous operation was performed. At that time, the surface temperature of the kitchen and the Japanese-style room on the first floor and the floor temperature of the Western-style room on the second floor were measured. As a result, a measurement result as shown in FIG. 12 was obtained. On this day, the highest temperature was 3 ° C and the lowest temperature was -4.5 ° C.
[0039]
From the measurement results in FIG. 12 , after the start of operation, the temperature sharply rises until about 6:00 pm, about 4 hours, reaches the set temperature at about 00:00, about 10 hours later, the control device 21 operates, and the hot water boiler 17 The operation of the blower 18 was stopped. After the stop, the operation of the hot water boiler 17 and the blower 18 was restarted at 3:00 am on the next day after 3 hours had elapsed, and the operation of the hot water boiler 17 and the blower 18 was stopped again at 6:00 am 3 hours later.
[0040]
Then, in the morning, the outside air temperature increased, and the external heat radiation decreased, so the operation was stopped until 2:00 pm, 6 hours after the stop, and the operation of the hot water boiler 17 and the blower 18 was restarted again. It stopped three hours later at 3:00 pm and resumed operation at 7:00 pm. Thereafter, the on / off operation was repeated at intervals of 3 to 4 hours, and it was confirmed that the kitchen floor surface was maintained at the set temperature and the room temperature was 17 to 20 ° C., and the room was heated at a substantially constant temperature.
[0041]
【The invention's effect】
As described above, according to the warm air floor heating device of the first aspect of the present invention, since the warm air passage is provided under the floor and the heat storage body is provided on the back surface of the floor plate above the floor, the heat capacity capable of storing heat is extremely large. When the temperature of the heat storage body rises, the heat is gradually released, and the room can be heated from under the floor. Even if all the rooms are heated in winter, the operation cost can be greatly reduced as compared with the conventional case. Also, the floor is heated by both the warm air and the radiant heat radiated from the heat accumulator, and since the heat accumulator has a plurality of ventilation holes, the warm air rises and heats it from inside, The rising warm air heats the floorboard from the back side to heat the room. As a result, the temperature rise in the room can be accelerated, and after reaching the set temperature and the circulation of the hot air is stopped, the heat is gradually released from the heat storage body, so that the heating can be performed for a long time.
[0042]
Also, compared to the conventional hot water mat type or heater panel type, the present invention can heat all rooms with a simple structure in which a hot air passage and a heat storage body are provided under the floor, so construction costs and equipment costs are lower than those of the conventional structure. It can be reduced to 1/10 or less. Further, even if all the rooms are heated for 24 hours, the operation cost can be reduced to 1/15 or less as compared with the conventional apparatus. Furthermore, the present invention does not require maintenance of the underfloor structure and is excellent in durability, and even if some warm air leaks into the room from the warm air passage, there is no problem in terms of heat and safety at all, and clean and comfortable heating is performed. be able to.
[0043]
Since also the hot water from the hot water boiler uses a heat radiator which releases heat from the fins by circulating heated air cheap equipment cost, maintenance is easy, and excellent in durability of the equipment.
[0044]
Further , according to the warm air floor heating device of the present invention, since a plurality of baffles are provided at intervals in the warm air passage to form a meandering warm air passage, the warm air can be distributed almost uniformly. Heating can be performed uniformly, and there is no need for a ventilation duct, and construction costs can be reduced.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a first-floor hot-air floor heating device according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of the warm air floor heating device shown in FIG.
FIG. 3 is a perspective view showing a configuration of a hot-air floor heating device installed in a two-story house.
FIG. 4 is a perspective view showing a configuration of a hot-air floor heating device installed in a two-story house according to another embodiment of the present invention.
5 is a cross-sectional view of the warm air floor heating device shown in FIG.
FIG. 6 is a perspective view showing the configuration of a baffle-type hot-air floor heating device installed in a two-story house according to another embodiment of the present invention.
FIG. 7 is a plan view illustrating a configuration of a baffle-type hot-air floor heating device installed in a two-story house according to another embodiment of the present invention.
FIG. 8 is a perspective view showing a configuration of a baffle plate type hot air floor heating device installed in a two-story house according to another embodiment of the present invention.
FIG. 9 is a sectional view of a concrete plate according to another embodiment of the present invention.
FIG. 10 is a sectional view of a concrete plate according to another embodiment of the present invention.
FIG. 11 is a plan view showing a configuration of a hot-air floor heating device provided with a fan coil according to another embodiment of the present invention.
FIG. 12 is a graph showing a measurement result of a temperature by a hot air floor heating device.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 concrete-soil foundation 2 heat insulating layer 3 heat storage element 5 support base 6 support bracket 8 joist 9 concrete plate 10 ventilation hole 11A hot air passage 12 floor plate 14 air duct 15 hot air outlet 16 radiator 17 hot water boiler 18 blower 19 water pipe 20 temperature Sensor 21 Controller 23 Slab 24 Hot air riser pipe 25 Cold air descender pipe 27 Partition wall 28 Communication hole 29 Baffle plate 30 Vent hole 33 Uneven surface 34 Engagement step
35 fan coil

Claims (2)

土間またはスラブの上に断熱層を形成し、この上に所定の間隔で配置した支持台の上に床板を取付ける根太を設けて、この根太と前記断熱層との間に密閉された温風通路を形成すると共に、床板の下方の、隣接する根太の間に、上下に貫通する複数個の通気孔を開孔した蓄熱体を設け、温風通路の入口側に、温水が循環してフィンから放熱する放熱器と、送風機とで形成された温風発生器を設けると共に、この温風発生器の放熱器を、通水管を介して温風通路の外側に設置した温水ボイラーに接続して、温水ボイラーから温水を前記放熱器に供給し、ここで発生した温風を前記送風機で密閉された温風通路内に循環させて蓄熱体を加熱し、床暖房することを特徴とする温風床暖房装置。The heat insulating layer is formed on the earth floor or slab, it is provided a joist attaching the floor plate on a support table arranged at predetermined intervals on the warm air passage is sealed between the joists and the heat insulating layer In addition to forming a heat storage body having a plurality of vertically-penetrating ventilation holes formed between adjacent joists below the floorboard , hot water circulates from the fins to the inlet side of the hot air passage. A radiator for radiating heat and a hot air generator formed by a blower are provided, and the radiator of the hot air generator is connected to a hot water boiler installed outside the hot air passage through a water pipe, Supplying hot water from a hot water boiler to the radiator, circulating hot air generated here in a hot air passage closed by the blower, heating a heat storage body, and performing floor heating. Heating system. 床下の温風通路内に複数の邪魔板を設けて蛇行した温風通路を形成し、この蛇行した温風通路の入口側に、温風発生器を設けたことを特徴とする請求項1記載の温風床暖房装置。2. A meandering hot air passage is formed by providing a plurality of baffles in a warm air passage under the floor, and a hot air generator is provided on an inlet side of the meandering hot air passage. Hot air floor heating system.
JP2000125361A 2000-04-26 2000-04-26 Hot air floor heating system Expired - Fee Related JP3555109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000125361A JP3555109B2 (en) 2000-04-26 2000-04-26 Hot air floor heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000125361A JP3555109B2 (en) 2000-04-26 2000-04-26 Hot air floor heating system

Publications (2)

Publication Number Publication Date
JP2001304594A JP2001304594A (en) 2001-10-31
JP3555109B2 true JP3555109B2 (en) 2004-08-18

Family

ID=18635331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000125361A Expired - Fee Related JP3555109B2 (en) 2000-04-26 2000-04-26 Hot air floor heating system

Country Status (1)

Country Link
JP (1) JP3555109B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3441702B2 (en) * 2000-06-28 2003-09-02 株式会社栗田工業 Indoor cooling and heating system and air circulation panel
JP5176209B2 (en) 2008-10-30 2013-04-03 株式会社ヴァーウィン Hot air floor heating system and installation method thereof
JP4759672B1 (en) * 2010-06-25 2011-08-31 三上 征宏 Heating system

Also Published As

Publication number Publication date
JP2001304594A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
JP5176209B2 (en) Hot air floor heating system and installation method thereof
WO2011033325A1 (en) Cooling, heating, surface-radiating and air exchanging building system with low energy consumption for energy-saving houses with increased passive quality
JP3555109B2 (en) Hot air floor heating system
KR100637877B1 (en) Electric heating apparatus device and construction method of the same
JP4223467B2 (en) Temperature control structure and temperature control method for buildings
KR101004797B1 (en) A heating device by using carbon heating element and installing method thereof
JP3552217B2 (en) Heat storage underfloor heating system using midnight power in highly insulated and airtight houses
WO2000001989A1 (en) Panel for air conditioning and room air conditioning system using the panel
KR20130085675A (en) Central building ventilation device
KR102526058B1 (en) Radiant Panel for Heating and Cooling and Heating and Cooling System Using the Same
JP2000356356A (en) Hot air floor heating device
WO2000009954A1 (en) Environmental control system
JP2005201601A (en) Heating system for building
JP2007163023A (en) Heating device and cooling device associated with structure of house
JP3825779B2 (en) Temperature control structure and temperature control method for buildings
JP5897252B2 (en) Cooling system
JP4284312B2 (en) Hot air floor heater
KR102660053B1 (en) Heated floor structure for apartments and construction method thereof
JP4083137B2 (en) Underfloor heat storage and heating device, building equipped with the same
JP2002081161A (en) Hot-air floor heating sleeper
CN217759772U (en) Floor heating system
JP4084830B2 (en) Underfloor heating system
JPS6311567B2 (en)
Junasová et al. Adjusting the design of a radiant heating system for office retrofit
JP3801593B2 (en) Double floor heating system using planar heating element and metal floor panel

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees