JP3554287B2 - Chemical vapor deposition apparatus and chemical vapor deposition method - Google Patents

Chemical vapor deposition apparatus and chemical vapor deposition method Download PDF

Info

Publication number
JP3554287B2
JP3554287B2 JP2001129255A JP2001129255A JP3554287B2 JP 3554287 B2 JP3554287 B2 JP 3554287B2 JP 2001129255 A JP2001129255 A JP 2001129255A JP 2001129255 A JP2001129255 A JP 2001129255A JP 3554287 B2 JP3554287 B2 JP 3554287B2
Authority
JP
Japan
Prior art keywords
infrared
temperature
semiconductor wafer
mounting table
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001129255A
Other languages
Japanese (ja)
Other versions
JP2001358083A (en
Inventor
裕二 大倉
真司 船場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001129255A priority Critical patent/JP3554287B2/en
Publication of JP2001358083A publication Critical patent/JP2001358083A/en
Application granted granted Critical
Publication of JP3554287B2 publication Critical patent/JP3554287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は加熱しながら半導体ウェハ上に成長膜を成長させるための化学気相成長装置および化学気相成長方法に関する。
【0002】
【従来の技術】
<第1の従来例>
図7は半導体レーザ素子等の製造に用いられる第1の従来例の化学気相成長装置(MOCVD装置)を示す概略構成図である。図7において、1は半導体ウェハ、2は載置台、3はヒータ、4は載置台2を回転するモータ、4aはモータ4の回転シャフト、5は熱電対、6はリアクタチャンバー、7は原料となるトリメチルガリウム(TMG)等の有機金属とアルシン等のハイドライドガスの混合ガスを供給する配管である。
【0003】
次に動作について説明する。配管7より供給された混合ガスは、ヒータ3により載置台2を通して加熱された半導体ウェハ1上で熱分解し、半導体ウェハ1上に結晶成長が生じる。例えば半導体ウェハ1としてGaAsを用い、TMGとアルシンからなる混合ガスを用い、半導体ウェハ温度を約700℃とすることによりGaAsが結晶成長する。またTMGとジエチルジンク(DEZ)およびアルシンを用いるとp型の導電型を示すGaAsが、またTMGとトリメチルインジウム(TMI)とホスフィンからなる混合ガスを用いるとGaInPが、夫々結晶成長する。このとき半導体ウェハ1の温度が変化すると、p型GaAsのキャリア濃度が変化し、またGaInPのバンドギャップが変化する。これを防止するため、半導体ウェハ1の温度は熱電対5から出る信号(電圧)をモニターし、ヒータ3の出力にフィードバックすることにより一定に制御される。また回転シャフト4は成長層の均一性を向上させるために設けられたもので、これにより成長中に半導体ウェハ1を回転させることにより、成長層の均一性を高めることができる。
【0004】
<第2の従来例>
図8は第2の従来例のMOCVD装置を示す概略構成図である。図8において、半導体ウェハ1、載置台2、ヒータ3、回転シャフト4、リアクタチャンバー6および配管7は、図7と同一のものが用いられる。また9は温度の測定装置のひとつである赤外線検出器(パイロメータ)である。一般に物質から放出される赤外線の強度は、その物質の温度により異なる。したがって、赤外線検出器9によって半導体ウェハ1の表面より放出される赤外線の強度を測定することにより、半導体ウェハ1の表面温度を測定することができる。図8に示す第2従来例のMOCVD装置は、この赤外線検出器9の測定値をヒータ3の出力にフィードバックすることにより、半導体ウェハ1の温度を制御しp型GaAsのキャリア濃度やGaInPのバンドギャップの制御性を向上させることを試みたものである。
【0005】
【発明が解決しようとする課題】
<第1の従来例における問題点>
第1の従来例では、結晶成長を重ねるにつれ、図9に示すように半導体ウェハ1周辺の載置台2、ヒータ3の表面およびリアクタチャンバー6の側壁等に供給ガスの分解生成物8が付着する。その付着量が多くなると、半導体ウェハ1の周辺部の熱の放射特性が変化するため、熱電対5に伝わる温度と半導体ウェハ1の温度との関係が変化してしまう。そうすると、第1の従来例のように熱電対5の温度が一定となるようなヒータ出力の制御方法では、半導体ウェハ1の温度変化を熱電対5で正確に把握できないおそれがあり、半導体ウェハ1の温度を安定的に再現性良く制御することはできない。このため、例えばp型GaAsのキャリア濃度やGaInPのバンドギャップ(または屈折率)の設定において、これらの設定値が成長工程ごとに経時変化を生じるといった欠点があった。
【0006】
<第2の従来例における問題点>
第2の従来例では、赤外線検出器9で半導体ウェハ1からの赤外線の強度を直接測定することでその表面温度を測定しているため、周囲への分解生成物8の付着による影響はなく、第1の従来例で問題となった欠点は解消される。しかし、物質からの赤外線放出特性は物質の成分により異なり、特に半導体レーザ素子のようにヘテロ構造の作製が必要なものに対しては、各成長層ごとに赤外線放出特性が異なるといった新たな問題が生じる。図10に可視光半導体レーザ素子のダブルヘテロ構造(DH構造)を示す。図10において、10はn型GaAs基板、11はn型AlGaInP下クラッド層、12はGaInP活性層、13はp型AlGaInP上クラッド層、14はp型GaAsコンタクト層である。このように半導体レーザ素子の作製には、順次異なった物質を結晶成長する必要が生じる。しかしながら、上述の如く、赤外線放出特性は物質により異なるため、異なった材料を成長した場合、図11に示すように半導体ウェハ1の表面が同一温度であっても、赤外線検出器9は各成長層ごとに異なった値を出力する。したがって、かかる赤外線検出器9からの信号に基づいてヒータ3の出力を変化させようとすると、半導体ウェハ1の表面が同一温度であるにかかわらず、成長材料が異なるたびにヒータ3の出力を変化させてしまう。半導体ウェハ1の温度は、ヒータ3の出力の変化によっては瞬時に変化しないため、各成長層界面に変成層を生じさせることとなり、半導体レーザ素子の特性を劣化させてしまう。
【0007】
また、図10のようにn型GaAs基板10上にn型AlGaInP下クラッド層11のような屈折率の異なった材料を成長させた場合、半導体ウェハ1から放出された赤外線は、図12に示すように例えばn型GaAs基板10およびn型AlGaInP下クラッド層11の間の界面F1と、n型AlGaInP下クラッド層11の上面F2との間で多重反射を生じ、干渉効果が生じるため、半導体ウェハ1の表面からの赤外線強度は、図13に示すようにn型AlGaInP下クラッド層11の成長厚により周期的な変動を起こす。そして、赤外線強度が強いとき赤外線検出器9は温度が高いと判断し、ヒータ3をオフする等して温度を下げようとするため、適正温度に対して誤制御してしまうおそれがある。
【0008】
さらに、図14に示すように載置台2上に複数の半導体ウェハ1を配置し、半導体ウェハ1の中央部からの赤外線を赤外線検出器9で検出するようにした場合、成長層の均一性を向上させるため回転シャフト4により載置台2を自転させると、赤外線検出器9の検出スポットの中心点の軌跡は図14中のLpのようになるが、半導体ウェハ1同士が離間して配置されると、前記軌跡Lpは半導体ウェハ1だけでなく載置台2上をも通過するため、前記赤外線検出器9は半導体ウェハ1からの赤外線と載置台2からの赤外線とを交互に検出することになる。このことは、赤外線検出器9の半導体ウェハ1表面の温度判断の正確さを悪化させる。
【0009】
これらのことから、半導体レーザ素子の特性が悪化し、歩留りが劣化するという欠点があった。
【0010】
本発明は、上記課題に鑑み、ヘテロ界面に変成層を生じさせることなく、再現性よく半導体レーザ素子を製造するための化学気相成長装置および化学気相成長方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の請求項1に係る課題解決手段は、反応室内において、回転する載置台上に複数個の半導体ウェハを並置し、前記各半導体ウェハを加熱しつつ、前記反応室内に反応ガスを供給することにより前記各半導体ウェハの上面に成長膜を形成する化学気相成長装置であって、前記載置台上の前記半導体ウェハを加熱する加熱手段と、前記載置台を縦軸を中心として回転する回転手段と、加熱された前記半導体ウェハから放射される赤外線の強度を検出する赤外線検出手段と、少なくとも前記赤外線検出手段からの検出情報に基づいて前記加熱手段での加熱温度を制御する制御手段と、前記赤外線検出手段からの赤外線検出情報受信時にこれと異なる異種情報の受信を前記載置台の回転に同期して間欠的に禁止する異種情報受信禁止手段とを備える。
【0012】
本発明の請求項2に係る課題解決手段は、反応室内において載置台を回転させながら載置台上の複数個の半導体ウェハを加熱手段で加熱し、前記半導体ウェハから放射される赤外線の強度を検出し、検出された赤外線の強度に基づいて温度制御しながら、前記各半導体ウェハの上面に成長膜を形成する化学気相成長方法において、前記半導体ウェハからの赤外線の強度を検出する際に、赤外線の検出スポットが半導体ウェハ上にあるときに赤外線の強度を検出する検出工程と、赤外線の検出スポットが半導体ウェハ以外にあるときに赤外線の強度検出を禁止する禁止工程とが、前記載置台の回転に同期して間欠交互に繰り返されるものである。
【0013】
【実施例】
[第1の実施例]
本発明の第1の実施例の化学気相成長装置は、化学気相成長工程の初めの昇温段階において赤外線検出器を用いた温度制御の下で行い、その後に続く高温安定段階において熱電対を用いた温度制御を行うものである。
【0014】
<構成>
図1は本発明の第1の実施例の化学気相成長装置(MOCVD装置)を示す概略構成図である。図1中、21は反応室を形成するリアクタチャンバ、22は前記リアクタチャンバ21内で半導体ウェハ23を載置する載置台(サセプタ)、24は前記載置台22を縦軸25(回転シャフト)を中心に回転する回転手段、26は前記載置台22上の半導体ウェハ23を加熱する加熱手段(ヒータ)、27は前記反応室内の所定位置の温度を検出する温度検知手段、28は加熱された前記半導体ウェハ23から放射される赤外線の強度を検出する赤外線検出手段、29は前記温度検知手段27および前記赤外線検出手段28からの検出情報に基づいて前記加熱手段26での加熱温度を制御する制御手段である。
【0015】
前記リアクタチャンバ21は、例えば石英管を使用した自然空冷型ものやステンレス鋼を使用したジャケット構造または銅管巻構造のもの等が用いられ、該リアクタチャンバ21の上部は前記反応ガスを半導体ウェハ23の上面に均一に供給すべく略円錐(コーン)状に形成され、その上端中央部には反応ガスを供給するための供給孔31が形成されている。該供給孔31はガス供給管32を介してガス供給器33に連通されている。また、前記リアクタチャンバ21の上部の所定位置には、前記赤外線検出手段28を取り付ける取付孔34が形成されている。前記載置台22は、例えばカーボンまたはSiCでコートされたカーボン等を用いて円板状に形成され、前記反応室内の中央部に固定された支持筒35の上端部に、図示しないベアリング機構等にて水平に支持され、かつ前記支持筒35内に貫通された前記回転手段24の縦軸25に連結されて水平方向に回転される。前記回転手段24は、半導体ウェハ23の上面に成長膜(結晶)を形成する際に該成長膜の均一性を高めるために設けられたもので、回転誤差の少ない直流電動機等が用いられる。前記加熱手段26は、前記載置台22と略同形かつ略同面積に形成され、前記支持筒35の上部外周に固定されることで前記載置台22の裏面側に平行に配置される。前記温度検知手段27は、例えば白金−白金ロジウム、アルメル−クロメル、銅−コンスタンタン、クロメル−コンスタンタン等からなる一般的な熱電対が使用され、反応ガスの半導体ウェハ23への流れを阻害しないよう、前記リアクタチャンバ21の底部に固定されている。前記赤外線検出手段28は、微少な赤外輻射線の変化に対して高感度にかつ速い応答で感応することのできる熱型赤外線センサであり、例えばサーモパイル赤外線センサ、PbTiO薄膜焦電型赤外線センサ、または高分子焦電型赤外線センサ等が使用され、前記リアクタチャンバ21の取付孔34の奥部に取り付けられている。なお、前記赤外線検出手段28の検出スポットの中心点は、前記各半導体ウェハ23の平面視中心点付近を通過するように設定される。
【0016】
前記制御手段29は、CPU、ROMおよびRAMを有するマイクロコンピュータチップが用いられ、前記赤外線検出手段28からの赤外線検出情報および前記熱電対27からの検出情報のいずれかを選択する自動選択部41と、前記自動選択部41が前記赤外線検出情報を選択したときに該赤外線検出情報に基づいて半導体ウェハ23の表面温度を演算する演算部42と、前記自動選択部41が赤外線検出情報から温度検出情報に切り換わったときに前記演算部42で演算した半導体ウェハ23の表面温度と前記熱電対27での検出温度との差を求めて記憶する温度差記憶部43と、該温度差記憶部43に記憶した温度差を前記熱電対27での検出温度から減算することで前記自動選択部41が前記温度検出情報を選択したときの温度補正を行う温度補正部44と、前記演算部42または温度補正部44からの温度情報に基づいて前記加熱手段26を駆動制御する駆動制御部45とを備える。ここで、前記自動選択部41は、前記加熱手段26での昇温開始時から、前記半導体ウェハ23から放射される赤外線の強度が一定値となるまでの段階、すなわち昇温段階においては前記赤外線検出手段28からの赤外線検出情報を選択し、前記昇温段階が終わり成長膜を形成するに適した所定の高温に安定した段階、すなわち高温安定段階においては前記熱電対27からの温度検出情報を選択するよう機能する。また、前記駆動制御部45は、前記演算部42または温度補正部44からの温度情報と、予め設定された温度基準値とを比較し、その大小関係から前記加熱手段26をON−OFF切換する。
【0017】
<動作>
本実施例の化学気相成長方法を、図10に示した半導体レーザ素子の成長を例にとって説明する。図2は上記化学気相成長装置を用いた化学気相成長方法を示すフローチャートである。まず、反応室内の載置台22上にn型GaAs基板10となる単一の半導体ウェハ23を載置し、これを加熱手段26で加熱して反応室内の昇温を開始する(ステップS01:昇温工程)。これと略同時に、半導体ウェハ23から放射される赤外線の強度を、赤外線検出手段28で検出し始める(ステップS02)。この際、制御手段29の自動選択部41は赤外線検出情報および温度検出情報のうち赤外線検出情報を選択し、この赤外線検出情報に基づいて加熱手段26の加熱制御を行う。すなわち、演算部42にて赤外線検出情報から半導体ウェハ23の表面温度を演算し、演算した表面温度が設定した値となったとき(ステップS03)、加熱手段26での昇温を停止し(ステップS04)、反応室内を高温安定状態とする。なお、昇温停止から高温安定状態になるまである程度の時間を要するため、その後も赤外線検出手段28による検出を続け、赤外線の強度が昇温停止に伴って安定したとき(高温安定段階)、制御手段29はそのことを判断し、自動選択部41での選択を赤外線検出情報から温度検出情報に切り換える。そうすると、赤外線検出手段28は検出を停止し、同時に熱電対27は反応室内の所定位置の温度検出を開始する(ステップS05)。この際、温度差記憶部43は、演算部42で演算した半導体ウェハ23の表面温度と、熱電対27での検出温度との間の温度差を求めて記憶する。そうすると、半導体ウェハ23の周辺に付着物が付いたために前記熱電対27で得た温度検出情報に狂いが生じても、前記赤外線検出手段28からの赤外線検出情報を用いて温度検出情報を正確に補正でき、後工程の熱電対27での温度制御が正確となる。
【0018】
また、自動選択部41にて赤外線検出情報から温度検出情報に選択を切り換えるのと略同時に、反応ガスとして例えばトリメチルガリウム(TMG)等の有機金属とアルシン等のハイドライドガスの混合ガスを反応室内へ供給し始め、半導体ウェハ23の上面での前記半導体ウェハ23と異なる物質、すなわちn型AlGaInP下クラッド層11の成長を開始する(ステップS06:成長工程)。同時に、温度補正部44にて、熱電対27での温度検出温度から温度差記憶部43に記憶した温度差を減算することで、温度検出情報の温度補正する。そして、補正された検出温度を予め設定された基準温度と比較して、以後の加熱手段26での温度制御を行う。この温度補正は、以後、最上層のp型GaAsコンタクト層14の形成完了に至るまで続けられる(ステップS07)。
【0019】
ここで、熱電対27による温度制御では半導体ウェハ23の周辺の付着物(図9中の8参照)の影響を受けてしまい、成長温度を長期にわたって再現することが困難であるが、本実施例では、昇温段階において、周辺の付着物によって影響の受けない赤外線検出手段28で半導体ウェハ23の表面温度を一旦得た後、その後に熱電対27での温度制御を行うので、まず赤外線検出情報に基づいて正確な温度水準を検出し、これに基づいて誤差を含む温度検出情報を補正でき、以後、補正された温度検出情報で温度制御できるため、第1の従来例で問題とされていた周辺付着物の温度制御への悪影響を防止できる。
【0020】
また、半導体ウェハ1と異なった物質を成長した場合、赤外線放射特性は変化してしまい、また、赤外線の多重反射による干渉効果のため、赤外線検出に誤差が生じるが、本実施例では、成長膜形成工程においては熱電対27で反応室内の所定位置の温度を検出することで温度制御を行うため、成長膜の物質の変化に影響されずに温度制御できる。したがって、第2の従来例で問題とされていた材質による赤外線放出特性の変化や、多重反射による干渉を防止でき、温度制御の安定性を確保でき、長期にわたり再現性良く所望の成長膜を成長することができる。
【0021】
なお、半導体ウェハ23の上面に成長膜が形成されることにより、加熱手段26による加熱環境が僅かに変化し、そのために赤外線検出手段28での赤外線検出情報および熱電対27での温度検出情報に僅かな影響を与えるが、図8に示すように、たかだか数μmの膜厚成長においては、1回の成長中にでの付着物または成長膜の影響による半導体ウェハ23の温度変化は無視できるものである。
【0022】
[第2の実施例]
本発明の第2の実施例は、化学気相成長工程の初めの昇温段階およびその後に続く半導体ウェハと同一物質の結晶成長段階は、赤外線検出器を用いた温度制御の下で行い、その後に続く半導体ウェハと異なった物質の結晶成長以降の段階においては、熱電対を用いて半導体ウェハの温度制御を行うものである。
【0023】
<構成>
本発明の第2の実施例の化学気相成長装置(MOCVD装置)は、基本的には図1に示した第1の実施例と略同様の構成とされるが、制御手段29の自動選択部41において赤外線検出手段28からの赤外線検出情報を熱電対27からの温度検出情報に切り換えるタイミングを、第1の実施例においては赤外線強度の安定時に合致させていたのに対し、本実施例では、半導体ウェハ23と同一物質から半導体ウェハ23と異なる物質の成長(ヘテロ構造作成)段階に切り換わる時点に合致させる点で、本実施例は第1の実施例と異なる。
【0024】
すなわち、前記制御手段29の自動選択部41は、内蔵された計時手段(タイマー)の計時判断に基づいて、半導体ウェハ23と同一物質の成長段階が終了する時点で、赤外線検出情報から温度検出情報に選択を切り換える機能を有せしめられている。かかる制御手段29の機能は、マイクロコンピュータチップのROMまたはRAMに記録される。また、各成長膜形成用のガス供給器33による反応ガスの供給タイミングは、内臓される計時手段によって決定づけられる。これらのタイミングは経験値に基づいて予め設定しておく。その他の構成は第1の実施例と同様であるため、説明を省略する。
【0025】
<動作>
図3は本実施例の化学気相成長装置を用いた化学気相成長方法を示すフローチャートである。本実施例の化学気相成長方法は、まず、反応室内において載置台22上に載置された半導体ウェハ23を、加熱手段26で加熱し、反応室内の昇温を開始する(ステップS11)。これと略同時に、半導体ウェハ23から放射される赤外線の強度を、赤外線検出手段28で検出し始める(ステップS12)。この際、制御手段29の自動選択部41は赤外線検出情報および温度検出情報のうち赤外線検出情報を選択し、この赤外線検出情報に基づいて加熱手段26の加熱制御を行う。すなわち、演算部42にて赤外線検出情報から半導体ウェハ23の表面温度を演算し、演算した表面温度が設定した値となったとき(ステップS13)、加熱手段26での昇温を停止し(ステップS14)、反応室内を高温安定状態とする。なお、赤外線検出手段28はあと少しそのまま赤外線の強度を検出し続ける。赤外線の強度が昇温停止に伴って安定した後、図示しない計時手段からの信号に基づいて、反応室内への反応ガスの供給を開始し、半導体ウェハ23の上面に成長膜を形成する。ここで、半導体ウェハ23の上面にこれと同一の物質を形成する際には(ステップS15)、引続き赤外線検出手段28での赤外線強度検出に基づいて温度補正を行う(ステップS16:同膜形成工程)。そして、半導体ウェハ23と異なる物質の成長膜の成長を開始するとき(ステップS17)、これと略同時に、自動選択部41は、計時手段からの信号に基づいて、赤外線検出情報から温度検出情報に選択を切り換える(異膜形成工程)。そうすると、赤外線検出手段28は検出を停止し、同時に熱電対27は反応室内の所定位置の温度検出を開始する(ステップS18〜S19)。この際、温度差記憶部43は、演算部42で演算した半導体ウェハ23の表面温度と、熱電対27での検出温度との間の温度差を求めて記憶する。以後、温度補正部44にて、熱電対27での温度検出温度から温度差記憶部43に記憶した温度差を減算することで、温度検出情報の温度補正しつつ、補正された検出温度を予め設定された基準温度と比較して、以後の加熱手段26の駆動制御を行う。このようにすれば、本実施例によっても、第1の実施例と同様の効果がある。
【0026】
[第3の実施例]
<構成>
本発明の第3の実施例の化学気相成長装置(MOCVD装置)は、図5の如く、反応室内において回転する載置台22上に複数個の半導体ウェハ23を並置し、前記各半導体ウェハ23の上面に成長膜を形成するものであって、図4の如く、前記載置台22上の前記半導体ウェハ23を加熱する加熱手段26と、前記載置台22を縦軸25を中心として回転する回転手段24と、前記反応室内の所定位置の温度を検出する熱電対27と、加熱された前記半導体ウェハ23から放射される赤外線の強度を検出する赤外線検出手段28と、前記熱電対27および前記赤外線検出手段28からの検出情報に基づいて前記加熱手段26での加熱温度を制御する制御手段29と、前記赤外線検出手段28からの赤外線検出情報受信時にこれと異なる異種情報の受信を前記載置台22の回転に同期して間欠的に禁止する異種情報受信禁止手段49とを備えている。
【0027】
前記反応室を形成するリアクタチャンバ21は、第1の実施例と同様、上部に反応ガスを供給する供給孔31が形成され、ガス供給管32を介してガス供給器33が取り付けられる。また、前記リアクタチャンバ21の上部の所定位置には、前記赤外線検出手段28を取り付ける取付孔34が形成されている。前記載置台22は、カーボンまたはSiCでコートされたカーボンを用いて、図5のように複数個(3枚)の半導体ウェハ23を並置できる径の円板状に形成され、前記反応室内の中央部に固定された支持筒35の上端部に図示しないベアリング機構等にて水平に支持され、かつ前記支持筒35内に貫通された前記回転手段24の縦軸25に連結されて水平方向に回転される。なお、望ましくは、該載置台22の上面には各半導体ウェハ23を位置決するための複数の凹部(図示せず)が形成され、該凹部は載置台22の回転中心点を軸に互いに精度よく点対称に配される。
【0028】
前記異種情報受信禁止手段49は、図4の如く、前記リアクタチャンバ21の取付孔34の開口部付近を開閉するチョッパー51と、該チョッパー51を開閉駆動制御する開閉制御部52と、該開閉制御部52に開閉タイミングを提供する開閉タイミング提供部53と、前記チョッパー51からの間欠的な信号を平滑化する平滑回路54とからなる。
【0029】
前記チョッパー51は、取付孔34を開閉することで前記半導体ウェハ23の上面と前記赤外線検出手段28との間の赤外線を断続するものある。前記開閉タイミング提供部53は前記載置台22の回転角を検出するもので、フォトエンコーダ等が用いられる。そして、前記開閉制御部52は、前記赤外線検出手段28の検出スポットと前記載置台22の回転角との対応関係が予め記憶された記憶機能と、前記開閉タイミング提供部53からの回転角信号および前記記憶機能で記憶されたデータに基づいて前記赤外線検出手段28の検出スポットが半導体ウェハ23上に位置するか否かを判断する判断機能と、該判断機能にて前記検出スポットが前記半導体ウェハ23上に位置すると判断したときに前記取付孔34が開になり前記半導体ウェハ23上に位置しない(禁止範囲にある)と判断したときに閉となるよう前記チョッパー51を切り換える切換機能とを有せしめられている。
【0030】
なお、本実施例における熱電対27は、第1または第2の実施例と同様、昇温後の高温安定段階または半導体ウェハと異なった物質の成長開始以降において温度制御を行うものである。その他の構成は第1または第2の実施例と同様でよく、説明を省略する。
【0031】
<動作>
図6は本実施例の化学気相成長方法を示すフローチャートである。図6の如く、まず、反応室内において載置台22上に複数個(3枚)の半導体ウェハ23を並置し、載置台22を縦軸25を中心として一定速度で回転しながら、加熱手段26で半導体ウェハ23等を加熱して反応室内の昇温を開始する(ステップS41)。これと略同時に、赤外線検出手段28での検出による温度制御を開始する(ステップS42〜S47)。この際、制御手段29の自動選択部41は赤外線検出情報および温度検出情報のうち赤外線検出情報を選択する。そうすると、赤外線検出手段28は、入力された赤外線の強度を電気信号に変換しようとする。
【0032】
ところで、載置台22には、図5のように複数個の半導体ウェハ23が並置されている。図5中、Lpは赤外線検出手段28の検出スポットの中心点の軌跡、Spは隣合う半導体ウェハ23の間には隙間である。この状態で半導体ウェハ23の中央部からの赤外線を赤外線検出手段28で検出する場合、前記検出スポットの中心点の軌跡Lpは、半導体ウェハ23だけでなく、隣合う半導体ウェハ23の間の隙間Spに露出した載置台22上をも通過するため、赤外線検出手段28は半導体ウェハ23からの赤外線と載置台22からの赤外線とを交互に検出することになる。ここで、載置台22はカーボンまたはSiCでコートされたカーボンである。一方、半導体ウェハ23は一般にGaAsないしはInPからなり、両者の赤外線放出特性が異なるため、両者からの赤外線をそのまま交互に検出した場合、半導体ウェハ23の表面温度の測定精度が悪化する。そこで、本実施例では、前記隙間Spに露出した載置台22からの赤外線の受信を、異種情報の受信として禁止する。具体的には、図4においてまず開閉タイミング提供部53にて載置台22の回転角を検出し(ステップS42)、この検出結果が開閉制御部52に伝達される。開閉制御部52は、予め記憶された載置台22の回転角と赤外線検出手段28の検出スポットの位置との対応関係から、赤外線検出手段28の検出スポットが半導体ウェハ23上に位置するか否かを判断し(ステップS43)、その判断結果に基づいて、半導体ウェハ23上に位置すると判断したときはチョッパー51にてリアクタチャンバ21の取付孔34の入口を開とし(ステップS45:検出工程)、それ以外の禁止範囲、すなわち載置台22上に位置すると判断したときは取付孔34を閉とする(ステップS44:禁止工程)。このように、検出工程および禁止工程を、載置台22の回転に同期して間欠交互に繰り返す。そうすると、赤外線検出手段28には、半導体ウェハ23からの赤外線のみが入射される。そして、赤外線検出手段28は赤外線の強度を電気信号に変換し、該電気信号は平滑回路54にて平滑化されて直流信号となり、制御手段29に伝達される。かかる動作は、赤外線の強度が一定値となるまで繰り返される(ステップS46)。そうすると、赤外線検出手段28での赤外線検出情報が正確になり、昇温段階での温度制御を適正化できる。
【0033】
次に、赤外線の強度が一定値となったとき、図6の如く、加熱手段26での昇温を停止し(ステップS47)、反応室内を高温安定状態とする。なお、図6は、赤外線検出情報を温度検出情報に切り換えるタイミングを、第1の実施例と同様に赤外線強度の安定時に合致させた例である。図6の如く、赤外線の強度が昇温停止に伴って安定したとき、制御手段29は赤外線検出情報から温度検出情報に選択を切り換え、以後、熱電対27を用いて反応室内の温度制御を行いながら(ステップS48)、半導体ウェハ23の上面で成長膜を形成する(ステップS49,S50)。
【0034】
このように、載置台22に複数個の半導体ウェハ23を並置しても、第1または第2の実施例と同様の動作を精度よく行うことができ、大量生産によるコスト低減の要請に合致する。
【0035】
[変形例]
(1)第2の実施例において、新たな成長膜の形成開始を計時手段の計時情報に基づいて認識していたが、新たな成長膜が少しでも形成されると、赤外線検出手段28で検出した赤外線の強度は急激に変化することを利用し、一定以上の速度で赤外線の強度が急激に変化したときに新たな成長膜が形成されたと判断し、この判断結果に基づいて、自動選択部41のて赤外線検出情報から温度検出情報への選択切換を行ってもよい。
(2)第3の実施例において、赤外線検出手段28の他に熱電対27を使用していたが、熱電対27を省略し、赤外線検出手段28による温度制御のみの化学気相成長装置に適用してもよい。
(3)第3の実施例において、図6では、赤外線検出情報から温度検出情報に切り換えるタイミングを、第1の実施例と同様に赤外線強度の安定時に合致させていたが、第2の実施例と同様、半導体ウェハ23と同一物質から半導体ウェハ23と異なる物質の成長段階に切り換わる時点に合致させてもよい。
(4)第3の実施例において、赤外線検出手段28の異種情報の受信を禁止後、平滑回路で平滑化することで温度制御を安定化させていたが、載置台22の回転速度が遅い場合は、検出値の誤差を回路的に補正しにくい状況が生じる可能性がある。そこで、赤外線検出手段28の異種情報受信禁止時は、熱電対27からの温度検出情報を活用して温度制御してもよい。
(5)第3の実施例において、取付孔34の入口を開閉するチョッパー51で異種情報の受信を機械的に禁止していたが、これに代えて、赤外線検出手段28からの出力をリレー等の電気回路を用いて開閉することで、異種情報の受信を電気的に禁止してもよい。
(6)第3の実施例の異種情報受信禁止手段49において、異種情報の受信を禁止するタイミングは、載置台22の回転角を検出することで行っていたが、回転手段24の回転速度が正確ならば、計時手段によって異種情報の受信禁止タイミングを時間的に固定してもよい。
【0036】
【発明の効果】
本発明請求項1および請求項2によると、反応室内において、回転する載置台上に複数個の半導体ウェハを並置して加熱する。この際、赤外線検出手段の検出スポットは、半導体ウェハ上面と、互いに隣合う半導体ウェハの間の隙間に現れる載置台の上面とを交互に通過する。検出スポットが半導体ウェハ上にあるときに赤外線の強度を検出する検出工程と、検出スポットが半導体ウェハ以外にあるときに赤外線の強度検出を禁止する禁止工程とを、載置台の回転に同期して間欠交互に繰り返すので、半導体ウェハからの赤外線検出情報と異なる異種情報の受信を禁止でき、赤外線検出手段での赤外線検出情報を正確にできる。
【0037】
以上のことから、本発明によると、温度制御の安定性を確保でき、長期にわたり再現性良く所望の成長膜を成長することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例の化学気相成長装置を示す概略構成図である。
【図2】本発明の第1の実施例の化学気相成長方法を示すフローチャートである。
【図3】本発明の第2の実施例の化学気相成長方法を示すフローチャートである。
【図4】本発明の第3の実施例の化学気相成長装置を示す概略構成図である。
【図5】本発明の第3の実施例において複数個の半導体ウェハを載置台上に並置した状態を示す図である。
【図6】本発明の第3の実施例の化学気相成長方法を示すフローチャートである。
【図7】第1の従来例の化学気相成長装置を示す概略構成図である。
【図8】第2の従来例の化学気相成長装置を示す概略構成図である。
【図9】第1の従来例の化学気相成長装置内における分解生成物の付着状態を示す図である。
【図10】可視光半導体レーザ素子のダブルヘテロ構造を示す図である。
【図11】第2の従来例において成長物質の違いによる赤外線検出器の検出赤外線強度の違いを示す概念図である。
【図12】第2の従来例における赤外線の多重反射による干渉を示す概念図である。
【図13】第2の従来例において赤外線の干渉の影響による赤外線検出器の検出温度の変動を示す概念図である。
【図14】第2の従来例において複数個の半導体ウェハを載置台上に並置した状態を示す図である。
【符号の説明】
22 載置台、23 半導体ウェハ、24 回転手段、25 縦軸、26 加熱手段、27 温度検知手段、28 赤外線検出手段、29 制御手段、41 自動選択部、45 駆動制御部、49 異種情報受信禁止手段。
[0001]
[Industrial applications]
The present invention relates to a chemical vapor deposition apparatus and a chemical vapor deposition method for growing a growth film on a semiconductor wafer while heating.
[0002]
[Prior art]
<First conventional example>
FIG. 7 is a schematic configuration diagram showing a first conventional example of a chemical vapor deposition apparatus (MOCVD apparatus) used for manufacturing a semiconductor laser device or the like. 7, 1 is a semiconductor wafer, 2 is a mounting table, 3 is a heater, 4 is a motor for rotating the mounting table 2, 4a is a rotating shaft of the motor 4, 5 is a thermocouple, 6 is a reactor chamber, and 7 is a raw material. This is a pipe for supplying a mixed gas of an organic metal such as trimethylgallium (TMG) and a hydride gas such as arsine.
[0003]
Next, the operation will be described. The mixed gas supplied from the pipe 7 is thermally decomposed on the semiconductor wafer 1 heated by the heater 3 through the mounting table 2, and crystal growth occurs on the semiconductor wafer 1. For example, GaAs is grown as the semiconductor wafer 1 by using a mixed gas of TMG and arsine and setting the temperature of the semiconductor wafer to about 700 ° C. When TMG, diethyl zinc (DEZ) and arsine are used, GaAs exhibiting p-type conductivity is grown, and when a mixed gas of TMG, trimethylindium (TMI) and phosphine is used, GaInP grows, respectively. At this time, when the temperature of the semiconductor wafer 1 changes, the carrier concentration of p-type GaAs changes, and the band gap of GaInP changes. To prevent this, the temperature of the semiconductor wafer 1 is controlled to be constant by monitoring a signal (voltage) output from the thermocouple 5 and feeding it back to the output of the heater 3. The rotating shaft 4 is provided for improving the uniformity of the grown layer. By rotating the semiconductor wafer 1 during the growth, the uniformity of the grown layer can be improved.
[0004]
<Second conventional example>
FIG. 8 is a schematic configuration diagram showing a second conventional MOCVD apparatus. 8, the same semiconductor wafer 1, mounting table 2, heater 3, rotary shaft 4, reactor chamber 6, and pipe 7 as those in FIG. 7 are used. Reference numeral 9 denotes an infrared detector (pyrometer) which is one of the temperature measuring devices. In general, the intensity of infrared light emitted from a substance depends on the temperature of the substance. Therefore, the surface temperature of the semiconductor wafer 1 can be measured by measuring the intensity of infrared rays emitted from the surface of the semiconductor wafer 1 by the infrared detector 9. The MOCVD apparatus of the second conventional example shown in FIG. 8 controls the temperature of the semiconductor wafer 1 by feeding back the measured value of the infrared detector 9 to the output of the heater 3 to control the carrier concentration of p-type GaAs and the band of GaInP. An attempt was made to improve the controllability of the gap.
[0005]
[Problems to be solved by the invention]
<Problems in the first conventional example>
In the first conventional example, as the crystal growth is repeated, the decomposition products 8 of the supply gas adhere to the mounting table 2 around the semiconductor wafer 1, the surface of the heater 3, the side wall of the reactor chamber 6, and the like as shown in FIG. . When the amount of adhesion increases, the radiation characteristic of heat in the peripheral portion of the semiconductor wafer 1 changes, so that the relationship between the temperature transmitted to the thermocouple 5 and the temperature of the semiconductor wafer 1 changes. Then, in the method of controlling the heater output such that the temperature of the thermocouple 5 becomes constant as in the first conventional example, there is a possibility that the temperature change of the semiconductor wafer 1 cannot be accurately grasped by the thermocouple 5, and the semiconductor wafer 1 Cannot be stably controlled with good reproducibility. For this reason, for example, when setting the carrier concentration of p-type GaAs or the band gap (or refractive index) of GaInP, there is a disadvantage that these set values change with time for each growth process.
[0006]
<Problems in the second conventional example>
In the second conventional example, since the surface temperature is measured by directly measuring the intensity of infrared rays from the semiconductor wafer 1 with the infrared detector 9, there is no influence due to the adhesion of the decomposition products 8 to the surroundings. The disadvantage which has become a problem in the first conventional example is eliminated. However, the infrared emission characteristics of a substance differ depending on the components of the substance. Particularly, for a semiconductor laser element that requires fabrication of a heterostructure, there is a new problem that the infrared emission characteristic differs for each growth layer. Occurs. FIG. 10 shows a double hetero structure (DH structure) of a visible light semiconductor laser device. In FIG. 10, 10 is an n-type GaAs substrate, 11 is an n-type AlGaInP lower cladding layer, 12 is a GaInP active layer, 13 is a p-type AlGaInP upper cladding layer, and 14 is a p-type GaAs contact layer. As described above, in manufacturing a semiconductor laser device, it is necessary to grow crystals of different substances sequentially. However, as described above, since the infrared emission characteristics differ depending on the substance, when different materials are grown, even if the surface of the semiconductor wafer 1 is at the same temperature as shown in FIG. Output different values for each. Therefore, if the output of the heater 3 is changed based on the signal from the infrared detector 9, the output of the heater 3 is changed every time the growth material is different, regardless of whether the surface of the semiconductor wafer 1 is at the same temperature. Let me do it. Since the temperature of the semiconductor wafer 1 does not change instantaneously due to a change in the output of the heater 3, a metamorphic layer is formed at each interface between the growth layers, and the characteristics of the semiconductor laser element are degraded.
[0007]
When a material having a different refractive index such as an n-type AlGaInP lower cladding layer 11 is grown on an n-type GaAs substrate 10 as shown in FIG. 10, the infrared rays emitted from the semiconductor wafer 1 are shown in FIG. As described above, for example, multiple reflection occurs between the interface F1 between the n-type GaAs substrate 10 and the n-type AlGaInP lower cladding layer 11 and the upper surface F2 of the n-type AlGaInP lower cladding layer 11, thereby causing an interference effect. As shown in FIG. 13, the infrared intensity from the surface of the substrate 1 periodically varies depending on the growth thickness of the n-type AlGaInP lower cladding layer 11. When the infrared intensity is high, the infrared detector 9 determines that the temperature is high, and tries to lower the temperature by turning off the heater 3 or the like.
[0008]
Further, when a plurality of semiconductor wafers 1 are arranged on the mounting table 2 as shown in FIG. 14 and infrared rays from the central portion of the semiconductor wafer 1 are detected by the infrared detector 9, the uniformity of the grown layer is reduced. When the mounting table 2 is rotated by the rotating shaft 4 for improvement, the locus of the center point of the detection spot of the infrared detector 9 becomes like Lp in FIG. 14, but the semiconductor wafers 1 are arranged apart from each other. And the trajectory Lp passes not only on the semiconductor wafer 1 but also on the mounting table 2, so that the infrared detector 9 detects infrared rays from the semiconductor wafer 1 and infrared rays from the mounting table 2 alternately. . This degrades the accuracy of the infrared detector 9 in determining the temperature of the surface of the semiconductor wafer 1.
[0009]
For these reasons, the characteristics of the semiconductor laser device are deteriorated, and the yield is deteriorated.
[0010]
In view of the above problems, an object of the present invention is to provide a chemical vapor deposition apparatus and a chemical vapor deposition method for producing a semiconductor laser element with good reproducibility without generating a metamorphic layer at a hetero interface. .
[0011]
[Means for Solving the Problems]
Means for Solving the Problems According to claim 1 of the present invention, a plurality of semiconductor wafers are juxtaposed on a rotating mounting table in a reaction chamber, and a reaction gas is supplied into the reaction chamber while heating each of the semiconductor wafers. A chemical vapor deposition apparatus for forming a growth film on an upper surface of each of the semiconductor wafers by heating means for heating the semiconductor wafer on the mounting table, and rotating the mounting table about a vertical axis. Means, infrared detection means for detecting the intensity of infrared radiation emitted from the heated semiconductor wafer, and control means for controlling the heating temperature in the heating means based on at least detection information from the infrared detection means, And a heterogeneous information reception prohibiting means for intermittently prohibiting reception of heterogeneous information different from the infrared detection information when the infrared detection information is received from the infrared detecting means in synchronization with the rotation of the mounting table. That.
[0012]
Means for solving the problem according to claim 2 of the present invention is to heat a plurality of semiconductor wafers on a mounting table by heating means while rotating the mounting table in a reaction chamber, and to detect the intensity of infrared rays radiated from the semiconductor wafer. In the chemical vapor deposition method of forming a growth film on the upper surface of each of the semiconductor wafers while controlling the temperature based on the intensity of the detected infrared light, when detecting the intensity of the infrared light from the semiconductor wafer, The detecting step of detecting the intensity of the infrared light when the detection spot of the infrared ray is on the semiconductor wafer, and the prohibiting step of prohibiting the detection of the intensity of the infrared light when the detection spot of the infrared ray is other than the semiconductor wafer are performed by rotating the mounting table. Are repeated intermittently in synchronism with.
[0013]
【Example】
[First Embodiment]
The chemical vapor deposition apparatus according to the first embodiment of the present invention performs the temperature control using an infrared detector in the initial temperature rising stage of the chemical vapor deposition process, and performs the thermocouple in the subsequent high temperature stable stage. Is used to perform temperature control.
[0014]
<Structure>
FIG. 1 is a schematic configuration diagram showing a chemical vapor deposition apparatus (MOCVD apparatus) according to a first embodiment of the present invention. In FIG. 1, reference numeral 21 denotes a reactor chamber forming a reaction chamber; 22, a mounting table (susceptor) on which a semiconductor wafer 23 is mounted in the reactor chamber 21; A rotating unit that rotates about the center, 26 is a heating unit (heater) that heats the semiconductor wafer 23 on the mounting table 22, 27 is a temperature detecting unit that detects the temperature of a predetermined position in the reaction chamber, and 28 is the heated unit. An infrared detecting means 29 for detecting the intensity of infrared light emitted from the semiconductor wafer 23; a control means for controlling a heating temperature of the heating means 26 based on detection information from the temperature detecting means 27 and the infrared detecting means 28 It is.
[0015]
The reactor chamber 21 is, for example, a natural air-cooled type using a quartz tube, a jacket structure using stainless steel, or a copper tube winding structure, and the like. Is formed in a substantially conical shape so as to uniformly supply the gas to the upper surface thereof, and a supply hole 31 for supplying a reaction gas is formed in the center of the upper end. The supply hole 31 is connected to a gas supply device 33 via a gas supply pipe 32. At a predetermined position on the upper part of the reactor chamber 21, a mounting hole 34 for mounting the infrared detecting means 28 is formed. The mounting table 22 is formed in a disk shape by using, for example, carbon or carbon coated with SiC, and is provided at a top end of a support cylinder 35 fixed to a central portion in the reaction chamber, a bearing mechanism (not shown), and the like. And is connected to the longitudinal axis 25 of the rotating means 24 penetrated into the support cylinder 35 to be rotated horizontally. The rotating means 24 is provided for improving the uniformity of the grown film (crystal) when forming the grown film (crystal) on the upper surface of the semiconductor wafer 23, and a DC motor or the like having a small rotation error is used. The heating means 26 is formed in substantially the same shape and substantially the same area as the mounting table 22, and is fixed to the outer periphery of the upper part of the support cylinder 35 so as to be arranged in parallel with the back surface of the mounting table 22. As the temperature detecting means 27, for example, a general thermocouple made of platinum-platinum rhodium, alumel-chromel, copper-constantan, chromel-constantan, or the like is used, so as not to hinder the flow of the reaction gas to the semiconductor wafer 23. It is fixed to the bottom of the reactor chamber 21. The infrared detecting means 28 is a thermal infrared sensor capable of responding with a high sensitivity and a quick response to a minute change in infrared radiation, for example, a thermopile infrared sensor, PbTiO. 3 A thin-film pyroelectric infrared sensor, a polymer pyroelectric infrared sensor, or the like is used, and is attached to the inside of the mounting hole 34 of the reactor chamber 21. Note that the center point of the detection spot of the infrared detecting means 28 is set to pass near the center point of each of the semiconductor wafers 23 in plan view.
[0016]
The control unit 29 includes a microcomputer chip having a CPU, a ROM, and a RAM, and includes an automatic selection unit 41 that selects one of infrared detection information from the infrared detection unit 28 and detection information from the thermocouple 27. An arithmetic unit 42 for calculating the surface temperature of the semiconductor wafer 23 based on the infrared detection information when the automatic selection unit 41 selects the infrared detection information; A temperature difference storage unit 43 for obtaining and storing a difference between the surface temperature of the semiconductor wafer 23 calculated by the calculation unit 42 and the temperature detected by the thermocouple 27 when the calculation unit 42 is switched to; By subtracting the stored temperature difference from the temperature detected by the thermocouple 27, the temperature correction when the automatic selection unit 41 selects the temperature detection information. Comprises performing a temperature correction unit 44, a drive control unit 45 for driving and controlling the heating means 26 based on the temperature information from the operation unit 42 or the temperature correction unit 44. Here, the automatic selection unit 41 performs the step from the start of heating by the heating means 26 to the time when the intensity of the infrared ray radiated from the semiconductor wafer 23 becomes a constant value, that is, in the temperature rising step, The infrared detection information from the detecting means 28 is selected, and the temperature detection information from the thermocouple 27 is used in the stage where the temperature raising stage is completed and the temperature is stabilized at a predetermined high temperature suitable for forming a grown film, that is, in the high temperature stabilization stage. Works to select. Further, the drive control unit 45 compares the temperature information from the calculation unit 42 or the temperature correction unit 44 with a preset temperature reference value, and switches the heating unit 26 on and off based on the magnitude relationship. .
[0017]
<Operation>
The chemical vapor deposition method of the present embodiment will be described by taking the growth of the semiconductor laser device shown in FIG. 10 as an example. FIG. 2 is a flowchart showing a chemical vapor deposition method using the above chemical vapor deposition apparatus. First, a single semiconductor wafer 23 serving as the n-type GaAs substrate 10 is mounted on the mounting table 22 in the reaction chamber, and is heated by the heating means 26 to start raising the temperature in the reaction chamber (step S01: temperature increase). Temperature process). At about the same time, the intensity of infrared rays emitted from the semiconductor wafer 23 starts to be detected by the infrared detecting means 28 (step S02). At this time, the automatic selection unit 41 of the control unit 29 selects infrared detection information from the infrared detection information and the temperature detection information, and controls heating of the heating unit 26 based on the infrared detection information. That is, the arithmetic unit 42 calculates the surface temperature of the semiconductor wafer 23 from the infrared detection information, and when the calculated surface temperature reaches a set value (step S03), the temperature rise in the heating unit 26 is stopped (step S03). S04) The reaction chamber is brought into a stable state at a high temperature. Since a certain period of time is required from the stop of the temperature rise to the high-temperature stable state, the detection by the infrared detecting means 28 is continued thereafter, and when the intensity of the infrared light becomes stable with the stop of the temperature rise (high-temperature stabilization stage), the control is started. The means 29 determines this, and switches the selection in the automatic selection unit 41 from infrared detection information to temperature detection information. Then, the infrared detector 28 stops the detection, and at the same time, the thermocouple 27 starts the temperature detection at a predetermined position in the reaction chamber (step S05). At this time, the temperature difference storage unit 43 obtains and stores a temperature difference between the surface temperature of the semiconductor wafer 23 calculated by the calculation unit 42 and the temperature detected by the thermocouple 27. Then, even if the temperature detection information obtained by the thermocouple 27 is misaligned due to the adhered matter around the semiconductor wafer 23, the temperature detection information can be accurately detected using the infrared detection information from the infrared detection means 28. The temperature can be corrected, and the temperature control by the thermocouple 27 in the subsequent process becomes accurate.
[0018]
At about the same time that the automatic selection unit 41 switches the selection from infrared detection information to temperature detection information, a mixed gas of an organic metal such as trimethyl gallium (TMG) and a hydride gas such as arsine is introduced into the reaction chamber as a reaction gas. The supply is started, and the growth of a material different from the semiconductor wafer 23, that is, the n-type AlGaInP lower cladding layer 11 on the upper surface of the semiconductor wafer 23 is started (Step S06: growth step). At the same time, the temperature correction unit 44 corrects the temperature of the temperature detection information by subtracting the temperature difference stored in the temperature difference storage unit 43 from the temperature detected by the thermocouple 27. Then, the corrected detected temperature is compared with a preset reference temperature, and the subsequent temperature control by the heating means 26 is performed. This temperature correction is continued thereafter until the formation of the uppermost p-type GaAs contact layer 14 is completed (step S07).
[0019]
Here, in the temperature control by the thermocouple 27, it is difficult to reproduce the growth temperature over a long period of time because it is affected by the deposits (see 8 in FIG. 9) around the semiconductor wafer 23. Then, in the temperature rising stage, after the surface temperature of the semiconductor wafer 23 is once obtained by the infrared detecting means 28 which is not affected by the attached matter in the surroundings, and then the temperature control by the thermocouple 27 is performed. , The temperature detection information including the error can be corrected based on the accurate temperature level, and the temperature can be controlled with the corrected temperature detection information. It is possible to prevent adverse effects on the temperature control of the peripheral deposits.
[0020]
Further, when a material different from that of the semiconductor wafer 1 is grown, the infrared radiation characteristic changes, and an error occurs in infrared detection due to an interference effect due to multiple reflections of infrared light. In the forming step, the temperature is controlled by detecting the temperature at a predetermined position in the reaction chamber with the thermocouple 27, so that the temperature can be controlled without being affected by the change in the material of the grown film. Therefore, it is possible to prevent a change in the infrared emission characteristic due to the material, which has been a problem in the second conventional example, and to prevent interference due to multiple reflection, to ensure the stability of temperature control, and to grow a desired growth film with good reproducibility over a long period of time. can do.
[0021]
Note that the formation of the grown film on the upper surface of the semiconductor wafer 23 causes a slight change in the heating environment by the heating means 26, so that the infrared detection information from the infrared detection means 28 and the temperature detection information from the thermocouple 27 Although it has a slight effect, as shown in FIG. 8, in a film thickness growth of only a few μm, the temperature change of the semiconductor wafer 23 due to the attachment or the growth film during one growth is negligible. It is.
[0022]
[Second embodiment]
In the second embodiment of the present invention, the initial temperature raising step of the chemical vapor deposition process and the subsequent crystal growth step of the same substance as the semiconductor wafer are performed under temperature control using an infrared detector, and thereafter, In the subsequent stage after the crystal growth of a substance different from that of the semiconductor wafer, the temperature of the semiconductor wafer is controlled using a thermocouple.
[0023]
<Structure>
The chemical vapor deposition apparatus (MOCVD apparatus) according to the second embodiment of the present invention has basically the same configuration as that of the first embodiment shown in FIG. In the first embodiment, the timing at which the infrared detection information from the infrared detection means 28 is switched to the temperature detection information from the thermocouple 27 in the unit 41 is matched when the infrared intensity is stable in the first embodiment. The present embodiment is different from the first embodiment in that the timing is switched to the time when the semiconductor material is switched from the same material as the semiconductor wafer 23 to a growth (heterostructure creation) stage of a material different from the semiconductor wafer 23.
[0024]
That is, the automatic selection unit 41 of the control unit 29 determines the temperature detection information from the infrared detection information at the time when the growth stage of the same substance as the semiconductor wafer 23 is completed based on the time determination of the built-in time measurement unit (timer). Has a function to switch the selection. The function of the control means 29 is recorded in the ROM or RAM of the microcomputer chip. The supply timing of the reaction gas by the gas supply device 33 for forming each grown film is determined by built-in clock means. These timings are set in advance based on experience values. The other configuration is the same as that of the first embodiment, and the description is omitted.
[0025]
<Operation>
FIG. 3 is a flowchart showing a chemical vapor deposition method using the chemical vapor deposition apparatus of the present embodiment. In the chemical vapor deposition method according to the present embodiment, first, the semiconductor wafer 23 mounted on the mounting table 22 in the reaction chamber is heated by the heating means 26, and the temperature inside the reaction chamber is started (step S11). At about the same time, the intensity of infrared rays emitted from the semiconductor wafer 23 starts to be detected by the infrared detecting means 28 (step S12). At this time, the automatic selection unit 41 of the control unit 29 selects infrared detection information from the infrared detection information and the temperature detection information, and controls heating of the heating unit 26 based on the infrared detection information. That is, the arithmetic unit 42 calculates the surface temperature of the semiconductor wafer 23 from the infrared detection information, and when the calculated surface temperature reaches the set value (step S13), the temperature rise in the heating unit 26 is stopped (step S13). S14) The reaction chamber is brought into a high temperature stable state. The infrared detecting means 28 continues to detect the intensity of the infrared light as it is. After the intensity of the infrared light stabilizes due to the stop of the temperature rise, the supply of the reaction gas into the reaction chamber is started based on a signal from a timing unit (not shown), and a growth film is formed on the upper surface of the semiconductor wafer 23. Here, when the same substance is formed on the upper surface of the semiconductor wafer 23 (step S15), the temperature is subsequently corrected based on the detection of the infrared intensity by the infrared detecting means 28 (step S16: the same film forming step). ). Then, when the growth of a growth film of a material different from that of the semiconductor wafer 23 is started (step S17), at almost the same time, the automatic selection unit 41 converts the infrared detection information into the temperature detection information based on the signal from the time measuring means. The selection is switched (different film formation step). Then, the infrared detector 28 stops the detection, and at the same time, the thermocouple 27 starts the temperature detection at a predetermined position in the reaction chamber (steps S18 to S19). At this time, the temperature difference storage unit 43 obtains and stores a temperature difference between the surface temperature of the semiconductor wafer 23 calculated by the calculation unit 42 and the temperature detected by the thermocouple 27. Thereafter, the temperature correction unit 44 subtracts the temperature difference stored in the temperature difference storage unit 43 from the temperature detected by the thermocouple 27, thereby correcting the temperature of the temperature detection information and preliminarily calculating the corrected detected temperature. The drive control of the heating means 26 is performed thereafter by comparing with the set reference temperature. With this configuration, the present embodiment has the same effect as that of the first embodiment.
[0026]
[Third embodiment]
<Structure>
In a chemical vapor deposition apparatus (MOCVD apparatus) according to a third embodiment of the present invention, as shown in FIG. 5, a plurality of semiconductor wafers 23 are juxtaposed on a mounting table 22 rotating in a reaction chamber. A heating means 26 for heating the semiconductor wafer 23 on the mounting table 22, and a rotating means for rotating the mounting table 22 about a vertical axis 25, as shown in FIG. Means 24, a thermocouple 27 for detecting a temperature at a predetermined position in the reaction chamber, an infrared detecting means 28 for detecting the intensity of infrared light emitted from the heated semiconductor wafer 23, the thermocouple 27 and the infrared light A control unit 29 for controlling the heating temperature of the heating unit 26 based on the detection information from the detection unit 28, and a different type when receiving the infrared detection information from the infrared detection unit 28 And a heterogeneous information reception inhibit means 49 for intermittently prohibiting synchronization to receive the broadcast with the rotation of the mounting table 22.
[0027]
As in the first embodiment, a supply hole 31 for supplying a reaction gas is formed in the upper part of the reactor chamber 21 forming the reaction chamber, and a gas supply device 33 is attached via a gas supply pipe 32. At a predetermined position on the upper part of the reactor chamber 21, a mounting hole 34 for mounting the infrared detecting means 28 is formed. The mounting table 22 is formed in a disc shape having a diameter capable of juxtaposing a plurality of (three) semiconductor wafers 23 as shown in FIG. 5 using carbon coated with carbon or SiC. The upper end of the support cylinder 35 fixed to the section is horizontally supported by a bearing mechanism or the like (not shown), and is connected to the longitudinal axis 25 of the rotating means 24 penetrated into the support cylinder 35 to rotate in the horizontal direction. Is done. Preferably, a plurality of recesses (not shown) for positioning the respective semiconductor wafers 23 are formed on the upper surface of the mounting table 22, and the concaves are accurately aligned with each other about the rotation center point of the mounting table 22. They are arranged point-symmetrically.
[0028]
As shown in FIG. 4, the heterogeneous information reception prohibiting means 49 includes a chopper 51 that opens and closes the vicinity of the opening of the mounting hole 34 of the reactor chamber 21, an opening and closing control unit 52 that controls opening and closing of the chopper 51, An opening / closing timing providing section 53 for providing opening / closing timing to the section 52, and a smoothing circuit 54 for smoothing an intermittent signal from the chopper 51.
[0029]
The chopper 51 opens and closes the mounting hole 34 to interrupt the infrared light between the upper surface of the semiconductor wafer 23 and the infrared detecting means 28. The opening / closing timing providing unit 53 detects the rotation angle of the mounting table 22, and uses a photo encoder or the like. The opening / closing control unit 52 includes a storage function in which the correspondence between the detection spot of the infrared detection unit 28 and the rotation angle of the mounting table 22 is stored in advance, and a rotation angle signal from the opening / closing timing providing unit 53 and A determination function for determining whether or not the detection spot of the infrared detection means 28 is located on the semiconductor wafer 23 based on the data stored by the storage function; and A switching function is provided for switching the chopper 51 so that the mounting hole 34 is opened when it is determined that the chopper 51 is located above and is closed when it is determined that the chopper 51 is not located on the semiconductor wafer 23 (in the prohibited range). Have been.
[0030]
The thermocouple 27 in this embodiment controls the temperature at a high temperature stabilization stage after the temperature rise or after the start of the growth of a material different from the semiconductor wafer, as in the first or second embodiment. Other configurations may be the same as in the first or second embodiment, and a description thereof will be omitted.
[0031]
<Operation>
FIG. 6 is a flowchart showing the chemical vapor deposition method of this embodiment. As shown in FIG. 6, first, a plurality of (three) semiconductor wafers 23 are juxtaposed on the mounting table 22 in the reaction chamber, and the mounting table 22 is rotated at a constant speed about the vertical axis 25 by the heating unit 26. The semiconductor wafer 23 and the like are heated to start raising the temperature in the reaction chamber (step S41). At substantially the same time, the temperature control based on the detection by the infrared detecting means 28 is started (steps S42 to S47). At this time, the automatic selection unit 41 of the control means 29 selects infrared detection information from the infrared detection information and the temperature detection information. Then, the infrared detecting means 28 attempts to convert the intensity of the input infrared light into an electric signal.
[0032]
Meanwhile, a plurality of semiconductor wafers 23 are juxtaposed on the mounting table 22 as shown in FIG. In FIG. 5, Lp is a locus of the center point of the detection spot of the infrared detecting means 28, and Sp is a gap between the adjacent semiconductor wafers 23. In this state, when infrared rays from the central portion of the semiconductor wafer 23 are detected by the infrared detecting means 28, the locus Lp of the center point of the detection spot is determined not only by the semiconductor wafer 23 but also by the gap Sp between the adjacent semiconductor wafers 23. The infrared detection means 28 alternately detects infrared rays from the semiconductor wafer 23 and infrared rays from the mounting table 22 because the infrared rays pass through the mounting table 22 that is exposed to the outside. Here, the mounting table 22 is carbon or carbon coated with SiC. On the other hand, since the semiconductor wafer 23 is generally made of GaAs or InP and has different infrared emission characteristics, when the infrared rays from both are detected alternately as they are, the measurement accuracy of the surface temperature of the semiconductor wafer 23 deteriorates. Therefore, in the present embodiment, reception of infrared rays from the mounting table 22 exposed in the gap Sp is prohibited as reception of heterogeneous information. Specifically, in FIG. 4, first, the rotation angle of the mounting table 22 is detected by the opening / closing timing providing unit 53 (step S42), and this detection result is transmitted to the opening / closing control unit 52. The opening / closing control unit 52 determines whether the detection spot of the infrared detection unit 28 is located on the semiconductor wafer 23 based on the correspondence between the rotation angle of the mounting table 22 and the position of the detection spot of the infrared detection unit 28 stored in advance. Is determined (step S43), and based on the determination result, when it is determined that it is located on the semiconductor wafer 23, the chopper 51 opens the entrance of the mounting hole 34 of the reactor chamber 21 (step S45: detection step), If it is determined that it is located on the other prohibition range, that is, on the mounting table 22, the mounting hole 34 is closed (step S44: prohibition process). As described above, the detection process and the prohibition process are intermittently repeated alternately in synchronization with the rotation of the mounting table 22. Then, only infrared rays from the semiconductor wafer 23 are incident on the infrared detecting means 28. Then, the infrared detecting means 28 converts the intensity of the infrared light into an electric signal, and the electric signal is smoothed by the smoothing circuit 54 to become a DC signal, which is transmitted to the control means 29. This operation is repeated until the intensity of the infrared ray reaches a constant value (step S46). Then, the infrared detection information of the infrared detecting means 28 becomes accurate, and the temperature control in the temperature raising stage can be optimized.
[0033]
Next, when the intensity of the infrared ray becomes a constant value, as shown in FIG. 6, the heating by the heating means 26 is stopped (step S47), and the reaction chamber is brought into a stable high temperature state. FIG. 6 shows an example in which the timing at which the infrared detection information is switched to the temperature detection information is matched when the infrared intensity is stable, as in the first embodiment. As shown in FIG. 6, when the intensity of the infrared light becomes stable with the stop of the temperature rise, the control means 29 switches the selection from the infrared detection information to the temperature detection information, and thereafter controls the temperature in the reaction chamber using the thermocouple 27. While (step S48), a growth film is formed on the upper surface of the semiconductor wafer 23 (steps S49 and S50).
[0034]
As described above, even when a plurality of semiconductor wafers 23 are juxtaposed on the mounting table 22, the same operation as that of the first or second embodiment can be performed with high accuracy, and the requirement for cost reduction by mass production is met. .
[0035]
[Modification]
(1) In the second embodiment, the start of the formation of a new growth film is recognized based on the timing information of the timing unit. However, when a new growth film is formed even a little, the infrared detection unit 28 detects it. Utilizing the fact that the intensity of the infrared light changes rapidly, it is determined that a new growth film has been formed when the intensity of the infrared light changes rapidly at a certain speed or higher, and based on this determination result, the automatic selection unit At 41, selection switching from infrared detection information to temperature detection information may be performed.
(2) In the third embodiment, the thermocouple 27 is used in addition to the infrared detecting means 28. However, the thermocouple 27 is omitted, and the present invention is applied to a chemical vapor deposition apparatus in which only the temperature is controlled by the infrared detecting means 28. May be.
(3) In the third embodiment, in FIG. 6, the timing of switching from the infrared detection information to the temperature detection information is matched when the infrared intensity is stable as in the first embodiment. Similarly to the above, the time may be matched at the time of switching from the same substance as the semiconductor wafer 23 to the growth step of a substance different from the semiconductor wafer 23.
(4) In the third embodiment, the temperature control is stabilized by smoothing with the smoothing circuit after the reception of the heterogeneous information of the infrared detecting means 28 is prohibited, but the rotation speed of the mounting table 22 is low. May cause a situation where it is difficult to correct the error of the detected value in a circuit. Therefore, when the infrared detection means 28 prohibits the reception of heterogeneous information, the temperature may be controlled using the temperature detection information from the thermocouple 27.
(5) In the third embodiment, the reception of the heterogeneous information is mechanically prohibited by the chopper 51 that opens and closes the entrance of the mounting hole 34. Instead, the output from the infrared detecting means 28 is relayed. The reception of different types of information may be electrically prohibited by opening and closing using the electric circuit described above.
(6) In the heterogeneous information reception prohibiting means 49 of the third embodiment, the timing of prohibiting the reception of heterogeneous information is performed by detecting the rotation angle of the mounting table 22. If it is accurate, the timing for prohibiting the reception of the heterogeneous information may be fixed temporally by a clocking means.
[0036]
【The invention's effect】
According to the first and second aspects of the present invention, a plurality of semiconductor wafers are heated side by side on a rotating mounting table in a reaction chamber. At this time, the detection spot of the infrared detecting means alternately passes through the upper surface of the semiconductor wafer and the upper surface of the mounting table appearing in the gap between the adjacent semiconductor wafers. The detection step of detecting the intensity of infrared light when the detection spot is on the semiconductor wafer and the prohibition step of prohibiting detection of the intensity of infrared light when the detection spot is on a part other than the semiconductor wafer are synchronized with the rotation of the mounting table. Since the intermittent repetition is repeated, reception of different information different from the infrared detection information from the semiconductor wafer can be prohibited, and the infrared detection information by the infrared detection means can be accurately obtained.
[0037]
As described above, according to the present invention, the stability of temperature control can be ensured, and a desired growth film can be grown with good reproducibility over a long period of time.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a chemical vapor deposition apparatus according to a first embodiment of the present invention.
FIG. 2 is a flowchart showing a chemical vapor deposition method according to the first embodiment of the present invention.
FIG. 3 is a flowchart illustrating a chemical vapor deposition method according to a second embodiment of the present invention.
FIG. 4 is a schematic configuration diagram showing a chemical vapor deposition apparatus according to a third embodiment of the present invention.
FIG. 5 is a view showing a state where a plurality of semiconductor wafers are juxtaposed on a mounting table in a third embodiment of the present invention.
FIG. 6 is a flowchart illustrating a chemical vapor deposition method according to a third embodiment of the present invention.
FIG. 7 is a schematic configuration diagram showing a first conventional chemical vapor deposition apparatus.
FIG. 8 is a schematic configuration diagram showing a chemical vapor deposition apparatus of a second conventional example.
FIG. 9 is a view showing a state of adhesion of decomposition products in a first conventional chemical vapor deposition apparatus.
FIG. 10 is a diagram showing a double hetero structure of a visible light semiconductor laser device.
FIG. 11 is a conceptual diagram showing a difference in detected infrared intensity of an infrared detector due to a difference in a growth substance in the second conventional example.
FIG. 12 is a conceptual diagram showing interference due to multiple reflection of infrared rays in a second conventional example.
FIG. 13 is a conceptual diagram showing a change in the temperature detected by an infrared detector due to the influence of infrared interference in the second conventional example.
FIG. 14 is a view showing a state in which a plurality of semiconductor wafers are juxtaposed on a mounting table in the second conventional example.
[Explanation of symbols]
22 mounting table, 23 semiconductor wafer, 24 rotating means, 25 vertical axis, 26 heating means, 27 temperature detecting means, 28 infrared detecting means, 29 controlling means, 41 automatic selecting section, 45 drive controlling section, 49 different kind information receiving inhibiting means .

Claims (2)

反応室内において、回転する載置台上に複数個の半導体ウェハを並置し、前記各半導体ウェハを加熱しつつ、前記反応室内に反応ガスを供給することにより前記各半導体ウェハの上面に成長膜を形成する化学気相成長装置であって、
前記載置台上の前記半導体ウェハを加熱する加熱手段と、
前記載置台を縦軸を中心として回転する回転手段と、
加熱された前記半導体ウェハから放射される赤外線の強度を検出する赤外線検出手段と、
少なくとも前記赤外線検出手段からの検出情報に基づいて前記加熱手段での加熱温度を制御する制御手段と、
前記赤外線検出手段からの赤外線検出情報受信時にこれと異なる異種情報の受信を前記載置台の回転に同期して間欠的に禁止する異種情報受信禁止手段とを備えた化学気相成長装置。
In the reaction chamber, a plurality of semiconductor wafers are juxtaposed on a rotating mounting table, and while heating each of the semiconductor wafers, a reaction gas is supplied into the reaction chamber to form a growth film on the upper surface of each of the semiconductor wafers. Chemical vapor deposition apparatus,
Heating means for heating the semiconductor wafer on the mounting table,
Rotating means for rotating the mounting table about a vertical axis,
Infrared detection means for detecting the intensity of infrared radiation emitted from the heated semiconductor wafer,
Control means for controlling the heating temperature in the heating means based on at least the detection information from the infrared detection means,
A chemical vapor deposition apparatus comprising: a heterogeneous information reception prohibiting unit that intermittently prohibits reception of different types of information different from the infrared detection information upon reception of the infrared detection information from the infrared detection unit in synchronization with the rotation of the mounting table.
反応室内において載置台を回転させながら載置台上の複数個の半導体ウェハを加熱手段で加熱し、前記半導体ウェハから放射される赤外線の強度を検出し、検出された赤外線の強度に基づいて温度制御しながら、前記各半導体ウェハの上面に成長膜を形成する化学気相成長方法において、
前記半導体ウェハからの赤外線の強度を検出する際に、
赤外線の検出スポットが半導体ウェハ上にあるときに赤外線の強度を検出する検出工程と、
赤外線の検出スポットが半導体ウェハ以外にあるときに赤外線の強度検出を禁止する禁止工程とが、前記載置台の回転に同期して間欠交互に繰り返される化学気相成長方法。
A plurality of semiconductor wafers on the mounting table are heated by heating means while rotating the mounting table in the reaction chamber, the intensity of infrared radiation emitted from the semiconductor wafer is detected, and temperature control is performed based on the detected infrared light intensity. In the chemical vapor deposition method for forming a growth film on the upper surface of each semiconductor wafer,
When detecting the intensity of infrared light from the semiconductor wafer,
A detection step of detecting the intensity of infrared light when the detection spot of infrared light is on the semiconductor wafer,
A chemical vapor deposition method in which the step of prohibiting infrared intensity detection when the infrared detection spot is located on a part other than the semiconductor wafer is intermittently and alternately repeated in synchronization with the rotation of the mounting table.
JP2001129255A 2001-04-26 2001-04-26 Chemical vapor deposition apparatus and chemical vapor deposition method Expired - Fee Related JP3554287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001129255A JP3554287B2 (en) 2001-04-26 2001-04-26 Chemical vapor deposition apparatus and chemical vapor deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001129255A JP3554287B2 (en) 2001-04-26 2001-04-26 Chemical vapor deposition apparatus and chemical vapor deposition method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22439793A Division JP3205442B2 (en) 1993-09-09 1993-09-09 Chemical vapor deposition apparatus and chemical vapor deposition method

Publications (2)

Publication Number Publication Date
JP2001358083A JP2001358083A (en) 2001-12-26
JP3554287B2 true JP3554287B2 (en) 2004-08-18

Family

ID=18977809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001129255A Expired - Fee Related JP3554287B2 (en) 2001-04-26 2001-04-26 Chemical vapor deposition apparatus and chemical vapor deposition method

Country Status (1)

Country Link
JP (1) JP3554287B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173346A (en) * 2004-12-15 2006-06-29 Matsushita Electric Ind Co Ltd Manufacturing method of organic metal gas phase growing device and semiconductor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040182600A1 (en) 2003-03-20 2004-09-23 Fujitsu Limited Method for growing carbon nanotubes, and electronic device having structure of ohmic connection to carbon element cylindrical structure body and production method thereof
CN115307751B (en) * 2022-09-01 2023-08-29 江苏实为半导体科技有限公司 Mocvd heater temperature monitoring device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173346A (en) * 2004-12-15 2006-06-29 Matsushita Electric Ind Co Ltd Manufacturing method of organic metal gas phase growing device and semiconductor
JP4524175B2 (en) * 2004-12-15 2010-08-11 パナソニック株式会社 Metal organic vapor phase growth apparatus and semiconductor manufacturing method

Also Published As

Publication number Publication date
JP2001358083A (en) 2001-12-26

Similar Documents

Publication Publication Date Title
KR100881244B1 (en) Method and device for controlling the surface temperatures of substrates in a chemical vapour deposition reactor
US8047706B2 (en) Calibration of temperature control system for semiconductor processing chamber
US7283734B2 (en) Rapid thermal processing apparatus and method of manufacture of semiconductor device
KR100803187B1 (en) Apparatus and method for controlling temperature uniformity of substrates
US6191399B1 (en) System of controlling the temperature of a processing chamber
US8967860B2 (en) Low temperature measurement and control using low temperature pyrometry
US7921802B2 (en) System and method for suppression of wafer temperature drift in cold-wall CVD systems
US6217212B1 (en) Method and device for detecting an incorrect position of a semiconductor wafer
TWI661085B (en) Apparatus and method for controlling temperature in a processing chamber of a CVD reactor by using two temperature sensing devices
JP2007116094A (en) Temperature control method of epitaxial growth apparatus
US20060216840A1 (en) Methods for assessing alignments of substrates within deposition apparatuses; and methods for assessing thicknesses of deposited layers within deposition apparatuses
WO2006083819A1 (en) Calibration wafer and method of calibrating in situ temperatures
TW201940850A (en) Device and method for measuring a surface temperature of substrates arranged on a rotating susceptor
JP3554287B2 (en) Chemical vapor deposition apparatus and chemical vapor deposition method
JP3205442B2 (en) Chemical vapor deposition apparatus and chemical vapor deposition method
US20130167769A1 (en) Targeted temperature compensation in chemical vapor deposition systems
KR20040078116A (en) A method of calibrating and using a semiconductor processing system
KR20220130610A (en) Wafer Temperature Gradient Control to Suppress Slip Formation in High-Temperature Epitaxial Film Growth
JP3922018B2 (en) Vapor growth apparatus and temperature detection method for vapor growth apparatus
JPH05259082A (en) Epitaxial growth device and method
JP3872838B2 (en) Crystal growth method
JP2001220286A (en) Molecular beam source and molecular beam epitaxial device
CN108511333B (en) Method for manufacturing epitaxial wafer
JPH11251249A (en) Method of forming semiconductor film
US5462012A (en) Substrates and methods for gas phase deposition of semiconductors and other materials

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees