JP3553753B2 - パルス信号復調用pll装置 - Google Patents

パルス信号復調用pll装置 Download PDF

Info

Publication number
JP3553753B2
JP3553753B2 JP01916297A JP1916297A JP3553753B2 JP 3553753 B2 JP3553753 B2 JP 3553753B2 JP 01916297 A JP01916297 A JP 01916297A JP 1916297 A JP1916297 A JP 1916297A JP 3553753 B2 JP3553753 B2 JP 3553753B2
Authority
JP
Japan
Prior art keywords
pulse
signal
phase
clock
operation clock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01916297A
Other languages
English (en)
Other versions
JPH10224193A (ja
Inventor
昌弘 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP01916297A priority Critical patent/JP3553753B2/ja
Priority to TW087101021A priority patent/TW406475B/zh
Priority to US09/015,944 priority patent/US6066982A/en
Publication of JPH10224193A publication Critical patent/JPH10224193A/ja
Application granted granted Critical
Publication of JP3553753B2 publication Critical patent/JP3553753B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • H04L7/0331Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop with a digital phase-locked loop [PLL] processing binary samples, e.g. add/subtract logic for correction of receiver clock
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K9/00Demodulating pulses which have been modulated with a continuously-variable signal
    • H03K9/04Demodulating pulses which have been modulated with a continuously-variable signal of position-modulated pulses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4902Pulse width modulation; Pulse position modulation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、PPM変調された信号など、パルス幅には一定のパルスを有するパルス信号を復調するPLL(フェーズロックトループ)装置に関する。
【0002】
【従来の技術】
従来からパルス位相変調(pulse phase modulation)やパルス位置変調(pulse position modulation)などと呼ばれるPPMが、赤外線などを利用する光通信分野で広く用いられている。PPMは、パルスの位置によって情報を伝送する方式であり、通常は便宜上4−PPMや、16−PPMなどが好んで用いられる。
【0003】
図11は、PPMについての基本的な考え方を示す。図11(1)は4−PPMについての変調波形を示し、図11(2)は16−PPMについての変調波形を示す。ここでは、図11(1)に示す4−PPM変調方式を例にとって詳しく説明する。4−PPM変調方式では、1bit毎に情報を伝送するのではなく、2bit毎に情報を伝送する。2bit情報として考え得る組合せには、「00」、「01」、「10」、および「11」の4種類がある。この4種類では、パルスの存在する位相または位置が異なる。パルスは、4種類のパルススロットと呼ばれる位置のいずれかに存在する。図11(2)に示す16−PPMでは、パルススロットの数は16個存在することになる。
【0004】
図12は、PPM変調波形を復調するための構成を示す。PPM復調装置は、PLL部1と、PPM復調部2とから成る。PLL部1は、復調に必要なタイミングを受信されるPPM信号から取出し、PPM復調部2に再生クロックとして与える。
【0005】
PPM復調部2では、各パルススロット間の電圧を積分して比較し、最大の値を示すパルススロットにパルスが存在したとみなして積分を行う方法である積分放電フィルタ法、あるいは積分を行うかわりに単に各パルススロットの中のある一点でサンプリングを行い、最大の値を示すパルススロットを検出する最大電圧検出法などが一般的に行われている。しかしながら、これらの方法を用いて復調を行う場合には、パルススロットに対して比較的精度の高い再生クロックが必要となる。PLL部1は、PPM復調部2で再生に必要な再生クロックを発生する。PLL部1としては、アナログ回路のみで実現する方式、デジタル回路のみで実現する方式、アナログ回路およびデジタル回路を混在させて実現する方式などが考えられているけれども、デジタル回路のみで実現する方式が最も容易に実現可能である。PLL部1をデジタル回路のみで実現する場合は、位相比較部3およびカウンタ部4を有する。デジタル方式のPLL回路の先行技術は、たとえば実開昭62−109528などに開示されている。
【0006】
図13は、図12のPLL部1をデジタル回路で実現する場合の動作原理を示す。PLL動作クロックは、PPM復調装置の外部から与えられる。図13(1)は、受信されるPPM信号とカウンタ部4のカウンタ値の変化の位相が合っている状態を示す。PPM信号の立上りエッジでカウンタ部4のカウンタ値をサンプルすると、カウンタ値が丁度0になっており、この状態をPPM信号とカウンタ値は「位相が合っている」と呼ぶことにする。図12の位相比較部3は、PPM信号とカウンタ値との位相が合っているかあっていないかの検査を行う。
【0007】
位相比較部3は、2つの位相が合っている場合には何の制御も行わないけれども、位相が合っていない場合にはその位相を合わせ込むような補正信号をカウンタ部4に対して与える。図13(2)は、PPM信号に対してカウンタ値が遅れている場合、図13(3)は進んでいる場合にどのようにカウンタ部4の補正が行われるかを示す。すなわち、この例では、カウンタ部4は位相比較部3からの補正信号が与えられない限りカウントアップを続ける。PPM信号に対してカウンタ値の方が遅れてきた場合には1回だけ2つ分カウントアップし、逆にカウンタ部4の方が進んできた場合には1回だけカウントアップを止める。このような制御を行うことによって、カウンタの位相は常にPPM信号に合わせ込まれるようになる。
【0008】
一方、再生クロックはカウンタ部4の出力から生成される。図13では、カウンタ値の最上位ビットが再生クロックとなっている。このため、カウンタ値が3から4に変わるときに再生クロックが立上り、7から0に変わるときに再生クロックが立下る。PPM信号とカウンタ値との位相が常に合うように制御されるので、図13に示す例ではPPM信号のパルスの丁度中間付近で再生クロックが立上るような位相関係が得られている。
【0009】
【発明が解決しようとする課題】
図12に示すような従来のPPM復調装置では、PLL部1をデジタル回路で実現する場合に、図13に示すように入力されるPPM信号に比較して高い周波数のPLL動作クロックを必要としている。まずPPM変調に用いられるパルスのパルス幅をTo(s)とするとき、その時間を1周期とするようなクロック信号の周波数は1/To(Hz)となる。この周波数をfo(Hz)とすると、PLL部にはn×fo(Hz)の周波数のPLL動作クロックを必要とすることが判る。ただしnは、カウンタ部4が1パルススロット時間あたりにカウントアップする回数を示す。図13に示す例では、n=8である。このnを、今後単に「PLLの精度」と呼ぶこととする。また「精度nのPLL」と言うのは、「PPM変調に用いるパルスのパルス幅時間の1/nの時間を、1周期として持つようなクロックを動作クロックとするPLL回路」と定義することもできる。
【0010】
PLLの精度であるnを大きくすればするほど「きめの細やかな」位相合わせが可能となる。特にPPM復調部2で前述の積分放電フィルタ法や最大電圧検出法などを用いる場合には、少しの位相のずれでも性能に大きく関わってくる可能性もあるため、PLLの精度nを大きくしてきめ細やかな位相合わせが必要となる。
【0011】
また、精度nの値を大きくすればするほどノイズに対する性能も良くなるという利点もある。図12に示すようなPPM信号は、通信の過程で様々なノイズが混入する可能性がある。カウンタ値が0以外の値を示しているときにノイズが入力されると、位相比較部3がノイズに基づいてカウンタ部4を補正してしまい、再生クロックの位相がずれてしまう。この誤った補正による位相のずれは、次のPPM信号のパルスが受信されるときに修正されることになるけれども、次のPPMパルスを受信するまでの間にさらにノイズが入力されるような場合には、位相のずれがどんどん広がってしまう可能性がある。1つのノイズパルスを受けたときに誤って補正される位相の量は2π/nとなるので、精度nの大きい方がノイズに対して位相のずれの影響を受けにくいことが判る。
【0012】
PPM復調方式としては、前述の積分放電フィルタ法や最大電圧検出法のように、サンプル自体に高精度の位置合わせが必要とされる方式と、それほど高精度の位置合わせを必要としない方式とが存在する。高精度の位置合わせを必要としない方式には、デジタルレベルに変換されたPPM信号を再生クロックによってサンプルし、サンプル結果が1であったパルススロットに信号が存在したとみなす方式がある。しかしながら、このような方式であっても、耐ノイズ性能の向上のためにはPLLの精度nの値を大きくとる必要がある。
【0013】
従来のPPM復調装置においては、以上のような理由から精度nの値を大きくし、たとえば8以上に取っている。しかしながら、nの値が大きければ大きいほど回路の消費電力も大きくなってしまう。一般に電子回路は、高速度で動作を繰返すと、状態変化に伴う消費電力の増加を招くからである。特に、C−MOSで回路を構成するような場合には、スタチックな動作ではほとんど消費電力がないのに比較し、動作周波数が高くなるほど消費電力が急増する。
【0014】
たとえば16−PPMで2Mbpsの通信を行う場合を想定する。パルス幅は125nsとなり、パルス幅を1周期とするような周波数の値はfo=8MHzとなる。したがって精度n≧8とすれば、PLLの動作クロックは64MHz以上となる。このようなPPM復調装置を何らかの機器に搭載し、マスタクロックに基づいて動作クロックを得る場合を想定すると、その機器のマスタクロックは64MHz以上必要である。しかしながら、現在は、マスタクロックが64MHzよりも低い可能性の方が大きく、そのような低いマスタクロックの機器にはPLLの動作クロックが64MHz以上のPPM復調装置を搭載することは困難である。すなわち、従来のデジタル方式のPPM復調装置では、PLLの精度nの値を復調方式からの要求、および耐ノイズ性能からの要求によって大きく取る必要があるので、消費電力が大きくなってしまうばかりではなく、PPM復調装置を搭載する機器内ではPLLの動作クロックが得られない可能性も高くなるという問題点がある。
【0015】
実開昭62−109528の先行技術では、従来と同じ周波数変動に収まる再生クロックを得るために必要な動作クロックの周波数を1/2に落とすことができる考え方を開示している。しかしながら、従来n=8のところをn=4にすることができるに過ぎない。
【0016】
本発明の目的は、PLLの精度nの値を大きくしないでも復調すべきパルスと位相が合う再生用クロック信号を容易に得ることができるパルス信号復調用PLL装置を提供することである。
【0017】
【課題を解決するための手段】
本発明は、パルス幅が一定範囲内のパルス信号を復調するための基準となるパルス幅で周期的に発生され、予め定める波形変化時点でパルスの有無を検出するための再生クロック信号の位相を制御するパルス信号復調用PLL装置において、
予め定める複数の周期が前記基準となるパルス幅に対応するような周期を有する動作クロック信号を発生する動作クロック発生手段と、
動作クロック発生手段からの動作クロック信号に基づいて復調すべきパルス信号をサンプルする結果に対し、パルス信号のパルス幅の変動が基準パルス幅に対して所定の比率以内に収っていると仮定し、動作クロック信号を基準にして復調すべきパルス信号中の相対的な位相を考える時、パルス信号のサンプル結果が取り得る全てのパターンをdelay とleadとに分類して予め記憶しておき、実際のサンプル結果と前記全てのパターンを比較し、一致するパターンが有ればパルス有を検出し、一致するパターンが無ければパルス無を検出するパルス検出手段と、
前記再生クロック信号を発生する再生クロック発生手段と、
パルス検出手段の検出結果に従って、前記一致するパターンがdelay に属するパターンのときには再生クロック信号の位相を進め、leadに属するパターンのときには再生クロック信号の位相を遅らせるように、再生クロック発生手段を位相制御する位相比較手段とを含むことを特徴とするパルス信号復調用PLL装置である。
本発明に従えば、パルス検出手段は、動作クロックに基づいて復調すべきパルス信号をサンプルし、サンプル結果と予想されるパターンとの比較によって信頼性の高いパルス検出を行うことができる。パルス信号のパルス幅の変動が基準となるパルス幅に対して所定の比率以内に収まっていると仮定するので、複数回以上サンプルするときにdelay またはleadに分類される特定のパターンを有することが予想される。したがって予想されるパターンに該当しないときには、復調すべきパルス信号中にはパルスが無いと判断され、パターンに該当するものが存在するときにパルスが有ると判断される。位相比較手段は、パルス検出手段によってパルスが有ると判断されたときに、パターンがdelay に属すればPLLの位相を進め、パターンがleadに属するときに再生クロック信号の位相を遅らせるように再生クロック発生手段を位相制御するので、ノイズによる誤動作を避けることができ、動作クロックの周波数を低くしても再生クロック信号回路を正常に動作させることが可能となる。
また本発明で、前記再生クロック発生手段は、前記再生信号に同期して予め定める波形変化時点より同一周期内で先行して波形変化が生じるタイミング信号を発生し、
前記位相比較手段は、タイミング信号の波形変化時点での前記パルス検出手段によるパルス有無の検出結果に基づいて、再生クロック発生手段を位相制御することを特徴とする。
本発明に従えば、タイミング信号の波形変化時点は、再生クロック信号によってパルスの有無を検出するタイミングに先行するので、再生クロック発生手段に対する位相制御を有効に行うことができる。
【0018】
また本発明で、前記パルス検出手段は、前記パルス有を検出すると、パルス検出信号を出力し、
前記位相比較手段は、
パルス検出信号の位相と前記タイミング信号の位相とを比較する比較手段と、
比較手段による比較結果を、予め定める回数分保持可能で、予め定める回数だけ同一の比較結果が続くとき、再生クロック発生手段を位相制御する保持手段とを備えることを特徴とする。
本発明に従えば、位相比較手段は予め定める回数だけ同一の比較結果が続くときに再生クロック発生手段を位相制御するのでノイズなどによる誤動作の影響をさらに低減し、動作クロックの周期をパルスの1/2まで低くすることも可能となる。
【0019】
また本発明で、前記動作クロック発生手段は、デューテイ比50%の矩形波として動作クロック信号を発生し、
前記パルス検出手段は、動作クロック信号の立上りエッジおよび立下りエッジ毎にパルス信号のサンプルを行うことを特徴とする。
本発明に従えば、動作クロックがデューテイ比50%の矩形波であるので、その立上りエッジと立下りエッジとでパルス信号をサンプルすれば、動作クロックの周期の1/2の周期でサンプルを行うことができる。
【0020】
また本発明で、前記パルス信号は、PPM変調されていることを特徴とする。本発明に従えば、複数のパルススロットに対して1つだけパルスが存在するPPM変調されるパルス信号を復調する際に、パルスと同期した再生クロックを容易に発生させることができる。
【0022】
【発明の実施の形態】
図1は、本発明の実施の一形態の概略的な電気的構成を示す。動作クロック発生部9は、パルス信号復調用PLL装置を搭載する機器のマスタクロックなどに基づいて、復調すべきパルス信号のパルス幅が精度n倍の周期となるように、動作クロック信号を発生する。パルス検出部10は、動作クロック発生部9から供給される動作クロックまたはそれを分周したクロックによってパルス信号をサンプルする。複数回のサンプルを連続的に行うと、動作クロック信号の周期に対してパルス幅が一定の範囲内であれば、サンプル結果は予想されるパターンのうちのいずれかと一致する。パターンが一致するパルスが検出されると、パルス検出部10はそのパルスをパルス検出信号として位相比較部11に与える。位相比較部11では、クロック再生部12で発生される再生クロックと同期する再生クロックタイミング信号とパルス検出信号との位相比較を行う。位相比較部11は、位相比較の結果に従ってクロック再生部12を位相制御する。
【0023】
図2は、図1のパルス検出部10の具体的な構成例を示す。復調すべきパルス信号RxDは、動作クロックCLK8Mに従ってサンプルされる。サンプルは、Dフリップフロップ(以下、「DFF」と略称する)100〜107を用いる。DFF108〜113は、DFF100〜107の出力Q0〜Q7に基づいて論理回路115がパターンの比較を行った結果から、パルス検出信号PULSE、遅れ信号DELAYおよび進み信号LEADを発生させるために用いられる。パルス信号をサンプルするDFF100〜107のうち、DFF101,103,105,107は、動作クロックCLK8Mの立上りエッジでデータ入力Dを取り込む。DFF100,102,104,106は、インバータ119を介して与えられる動作クロックCLK8Mの立上りエッジ、すなわち元の動作クロックCLK8Mの立下りエッジでデータ入力Dを取込む。DFF108,109,110は、動作クロックCLK8Mの立上りエッジでデータ入力を取込み、DFF111,112,113は動作クロックCLK8Mの立下りエッジでデータ入力Dを取込む。
【0024】
復調すべきパルス信号は、DFF100,101のデータ入力Dに与えられる。論理回路115の出力pulse、delayおよびleadは、DFF108,109,110のデータ入力Dにそれぞれ与えられる。DFF103,105,107のデータ入力Dは、DFF101,103,105の出力Qにそれぞれ接続される。DFF102,104,106のデータ入力Dは、DFF100,102,104の出力Qにそれぞれ接続される。DFF111,112,113のD入力は、DFF108,109,110の出力Qにそれぞれ接続される。論理回路115は、Q0〜Q7までの8つの入力データに従って、pulse,delay,leadの3つの出力を変化させる。Q0〜Q7をアドレス信号とするROMとして構成することもできる。
【0025】
図3は、図2のパルス検出部10で検出するパルス信号と動作クロックの位相関係、および図1の各信号の位相関係を示す。動作クロックを基準にして復調すべきパルス信号中のパルスの相対的な位相を考えると、波形1〜6に示す6種類しかあり得ない。ただしパルス幅は、基準パルス幅の±1/5以内に収まっていると仮定する。波形1および波形4は、パルス幅が動作クロックの2周期分である場合を示す。波形1では動作クロックの立上りエッジから立下りエッジまでの間にパルスが立上る。波形4では動作クロックの立下りエッジから立上りエッジまでの間にパルスが立上る。波形2および波形5は、パルス幅が動作クロックの周期の2倍よりも大きくなっている場合である。波形2では動作クロックの立上りエッジと立下りエッジとの間でパルスが立上り、波形5では動作クロックの立下りエッジと立上りエッジとの間で波形が立上る。波形3および波形6は、パルス幅が動作クロック周期の2倍よりも小さい場合である。波形3では動作クロックの立下りエッジと立上りエッジとの間でパルスが立上り、波形6では波形1〜波形5のパルスが立上った動作クロックの周期の次の周期の立上りエッジと立下りエッジとの間でパルスが立上る。
【0026】
図2の論理回路115は、図3に示す波形1〜6に対応して、図3の時刻t0でDFF100〜107の出力Q0〜Q7を予想されるパターンと比較する。図3に示すような波形1〜6からは、時刻t0直後に次の表1に示すようなパターンとなることが予想される。
【0027】
【表1】
Figure 0003553753
【0028】
パルス検出部10は、パルス検出と同時に再生クロックの位相がパルス信号に対して遅れているか進んでいるかも検出する。図3では、PLLがロックしている状態でのパルス信号に対する再生クロックおよび再生クロックタイミングの位相関係も示す。再生クロックタイミング信号は、再生クロック信号に同期して発生され、立下りエッジは一致し、立上りエッジは先行する。再生クロックは、パルス信号のサンプルを行うように発生する必要があるので、パルス信号中にパルスが存在するときに丁度1回立上るようなタイミングが常に保たれていなければならない。
【0029】
図3の波形1〜6に対しては、波形1〜3に対して再生クロックの立上りは遅れ気味であり、波形4〜6に対しては進み気味であることが判る。したがって、表1のように、遅れを表す信号dealyと進みを表す信号leadの論理を決定する。すなわち波形1〜3に該当するパターンであるときには、dealyが1でleadが0となり、波形4〜6に該当するときにはdealyが0でleadが1となる。波形1〜6に該当しないパターンに対しては、3つの出力pulse、dealyおよびleadはいずれも0となる。
【0030】
図3のパルス検出信号は、その立上りエッジで再生クロックタイミング信号をサンプルすれば、サンプル結果が0となっている。パルス信号が波形1よりもさらに左側にくると、パルス検出信号が動作クロックの1周期分だけ左に移動するので、パルス検出信号の立上りエッジでの再生クロックタイミング信号のサンプル結果は1となる。逆にパルス信号が波形6よりも右にくるときには、パルス検出信号も動作クロックの1周期分右に移動するので、その立上りエッジでの再生クロックタイミング信号のサンプル結果は1になる。したがってパルス検出信号の立上りエッジでの再生クロックタイミング信号のサンプル結果に従って、PLLのロックが外れたかどうかを検査することができる。図1の位相比較部11は、基本的に、クロックタイミング信号をデータ入力Dに与え、クロック入力にパルス検出信号を与えるDFFで実現される。PLLのロックが外れるか外れないかの微妙な位置関係にあるときには、サンプル結果は0になったり1になったりする可能性がある。したがって、位相比較部11としては、5回程度連続してサンプル結果が1になったときに初めてロックが外れたと判定し、ロック外れと判断して制御信号を導出するように構成することが望ましい。さらに後述する遅れ回復処理終了信号および進み回復処理終了信号と同等な制御信号をクロック再生部12に与えることが望ましい。
【0031】
パルス検出部10は、パルス信号を動作クロックあるいはそれを分周した信号によって複数回サンプルした結果のパターンを基にパルスを検出するので、パルス信号に乗っているノイズの大部分は出力のパルス検出信号としては表れない。位相比較部11では、パルス検出信号と再生クロックタイミング信号との位相比較を行うことによって位相のずれをチェックする。再生クロックタイミング信号としては、図3に示すような位相関係を有する信号をクロック再生部12で発生させているけれども、再生クロックをそのまま用いることもできる。位相比較部11は、位相比較の結果でクロック再生部12に対し、位相遅れ制御や位相進み制御等のための制御信号を出力し、再生クロックを遅らせたり進ませたりする制御を行う。
【0032】
従来のPLLではノイズによる誤動作の恐れがあるために、パルス幅Toに対して充分に高い周波数の動作クロック(8×fo=8/to以上)を使用しているけれども、本実施形態ではパルス検出部10によってパルス検出信号にはノイズが乗らないとみなすことができるので、PLL回路の動作クロックの周波数を低くすることが可能となる。
【0033】
図4は、本発明の実施の他の形態の概略的な構成を示す。本実施形態のパルス検出部10は、ロック外れ検出部13にパルス検出信号を与えるとともに、モード保持部14に遅れ信号または進み信号を与える。復調すべきパルス信号中に含まれる各パルスに対して遅れまたは進みの判断がパルス検出部10によって行われるけれども、復調すべきパルスがジッタ等を含む場合にはその個々の情報は信頼性に欠ける。しかしながら、遅れ信号がたとえば5回連続して検出される場合には、恐らくこの情報は正しいと考えることができる。モード保持部14は、たとえば5回連続して遅れ信号が与えられるときには遅れモード、逆に5回連続して進み信号が与えられるときには進みモードにモードを切換える。それ以外の場合には、モードをそのまま保持する。したがってロック外れが生じると、その直後にはモード保持部14はロック外れが起こる直前のモードを保持し続ける。
【0034】
たとえばロック外れが起きた直後にモード保持部14が「遅れモード」を保持していたとすると、再生クロックの位相がパルス信号に対して遅れ過ぎてしまったためにロック外れが発生したと判明する。この場合、クロック再生部12は、再生クロックを進ませる遅れ回復処理を行う。逆にロック外れ直後にモード保持部14が「進みモード」を保持していた場合には、再生クロックを遅らせる進み回復処理を行う。なおクロック再生部12が遅れ回復処理や進み回復処理を行ったという情報がモード判定に役立つような場合には、クロック再生部12からモード保持部14に対して、遅れ回復処理終了信号または進み回復処理終了信号を送る。
【0035】
パルス検出部10とともにモード保持部14を設けることによって、パルス信号に対するPLLの動作クロックの位相が遅れているか進んでいるかを常に保持することができ、PLLの精度nをn=2まで小さくすることができる。すなわち、PLL回路動作クロックの周波数を2×f0(Hz)まで低くしても、遅れまたは進みの判定が可能となる。
【0036】
図5は、図4のロック外れ検出部13の構成を示す。DFF120のデータ入力Dには、クロック再生部12からの再生クロックタイミング信号RxCenが入力される。DFF120の出力Qは、DFF121のデータ入力Dに与えられる。DFF120,121のクロック入力には、パルス検出部10からのパルス検出信号が与えられ、その立上りエッジでデータ入力Dを取込む。DFF120およびDFF121の出力Qがともに1のときに、AND回路125の出力であるロック外れ検出信号UNLOCKが1となる。図4のロック外れ検出部13は、ロック外れ検出信号をクロック再生部12に与える。クロック再生部12からは、遅れ回復処理終了信号INCRxCと進み回復処理終了信号DECRxCが与えられ、その論理はOR回路126からDFF120,121のクリア入力CLRに与えられる。すなわち、図3に示すようにパルス検出信号の立上り時点で再生クロックタイミング信号が1となることが連続するときロック外れ検出信号も1となり、遅れ回復処理終了信号または進み回復処理信号が導出されれば、ロック外れ検出信号は0となる。前述のように、ロック外れの判断は5回程度連続してサンプルした結果が1になった時点で初めて判定する方が望ましいけれども、説明の便宜上DFF120,121は2段にして示す。
【0037】
図6は、図4のモード保持部14の構成を示す。DFF130,131,132は、遅れ信号DELAYの立上りエッジで順次Q=1の出力を導出する。DFF130,131,132のクリア入力CLRには、進み信号LEADまたは進み回復処理終了信号DECRxCまたは遅れ回復処理終了信号INCRxCのうちのいずれかが1になると出力Qを0にクリアするような入力が与えられる。DFF133は、動作クロックCLK8Mの立下りエッジで3つのDFF130,131,132の出力Qがともに1のときデータ入力Dとして1を取込む。DFF134,135,136は、同様にして、進み信号LEADが3回連続して検知される場合に、動作クロックCLK8Mの立下りエッジに同期してDFF137のデータ入力Dに1を与える。DFF134,135,136のクリア入力CLRには、遅れ信号DELAYまたは進み回復処理終了信号DECRxCまたは遅れ回復処理終了信号INCRxCのうちのいずれかが1になると出力をクリアするような入力が与えられる。DFF138は、DFF133の出力Qが1になるか進み回復処理終了信号が1になるとセットされ、DFF137の出力Qが1になるか遅れ回復処理終了信号が1になればクリアされる。すなわちDFF138の出力Qからはモード信号DELAY MODEとして1であれば遅れモードを表し、0であれば進みモードを表す信号が導出される。
【0038】
DFF133,134のクロック入力には、動作クロックCLK8Mがインバータ回路140を介して与えられる。DFF133のデータ入力Dには、DFF130,131,132の出力Qが3入力のAND回路141を介して与えられる。DFF137のデータ入力Dには、DFF134,135,136の出力Qが3入力AND回路142を介して与えられる。DFF138のプリセット入力PRには、DFF133の出力Qおよび進み回復処理終了信号が2入力OR回路143を介して与えられる。DFF138のクリア入力CLRには、DFF137の出力Qおよび遅れ回復処理終了信号が2入力OR回路144を介して与えられる。
【0039】
図6に示すモード保持部14は、パルス検出部10から3回連続して遅れ信号DELAYを検知した場合にモード信号DELAY MODEを「遅れモード」である1として保持し、逆に3回連続して進み信号LEADを検知した場合にはモード信号DELAY MODEが0である「進みモード」として保持する。
【0040】
図7の(1)から(2)は、図6で「遅れモード」のときにロック外れが検出される場合について、遅れ回復処理のタイミングチャートの例を示す。なお、状態遷移は、図10で後述する。このような状態は、図3でパルス信号が波形1〜3よりもさらに左側にずれることによって発生する。すなわち、時刻t1,t3,t5からのパルス信号に対して、時刻t2,t4,t6からパルス検出信号が生成される。時刻t6で再生クロックタイミングがハイレベルとなり、時刻t7からのパルス信号のパルス検出時刻t8でも再生クロックタイミングがハイレベルとなるので、ロック外れが検出される。この場合にクロック発生部12は、時刻t9で再生クロックの位相を180°進ませる遅れ回復処理を行う。遅れ回復処理で進める位相の量が180°と大きいため、時刻t10からのパルス信号に対する時刻t11からのパルス検出信号で示すように、この処理を行った直後のモードは常に進みモードになる。これはタイミングチャートからも確認することができる。そこでクロック再生部12は、遅れ回復処理を行った直後にモード保持部14に対して遅れ処理終了信号INCRxCを出力し、この信号を受けたモード保持部14は、DFF130〜136をクリアし、DFF138をクリアしてモード信号「進みモード」を示す0となるように書換える。
【0041】
図8の(1)から(2)は、「進みモード」のときにロック外れが検出される場合について、進み回復処理のタイミングチャートの例を示す。このような場合は、図3のパルス信号が波形4〜6よりもさらに右側にずれることによって生じる。すなわち、時刻t21,t23,t25からのパルス信号に対して、時刻t22,t24,t26からパルス検出信号が生成される。時刻t26で再生クロックタイミングがハイレベルとなり、時刻t27からのパルス信号のパルス検出時刻t28でも再生クロックタイミングがハイレベルとなるので、ロック外れが検出される。この場合には、クロック再生部12は時刻t30で再生クロックの位相を180°遅らせる進み回復処理を行う。進み回復処理を行った直後のモードは常に遅れモードになるので、時刻t29からのパルス信号に対する時刻t31からのパルス検出信号で示すように、クロック再生部12はモード保持部14に対して進み回復処理終了信号を出力する。この信号を受けたモード処理部14では、内部のDFF130〜136をクリアし、DFF138の出力Qからのモード信号「遅れモード」を示す位置に書換える。
【0042】
図9は、図4のクロック再生部12の構成を示す。図1の実施形態のクロック再生部12も基本的に同様の構成とすることができる。クロック再生部12は、ステートマシンであり、動作クロックの立下りエッジに同期して状態遷移を行う。動作クロックの立上りエッジでデータ入力Dを取込むDFF150は、出力Qから再生クロックタイミング信号RxCenを導出する。進み回復処理終了信号DECRxCおよび再生クロックタイミング信号はインバータ回路160,161を介してAND回路162に入力され、その論理積を表す出力と遅れ回復処理終了信号INCRxCがOR回路163に入力される。OR回路163の出力がDFF150のD入力に与えられる。再生クロックRxCを発生するAND回路164には、インバータ回路165を介して動作クロックが入力として与えられ、再生クロックタイミング信号も入力として与えられ、論理積が出力される。
【0043】
図10は、ステートマシンとしてのクロック再生部12に対応する状態遷移図を示す。遅れ過ぎのときにロック外れが検出される場合には、遅れ回復処理終了信号INCRxCが1クロック時間だけ1になり、その結果、再生クロックが1クロック時間分だけ進められる。また逆に、進み過ぎのときにロック外れが検出された場合には、進み回復処理終了信号DECRxCが1クロック時間だけ1になり、その結果、再生クロックが1クロック時間分だけ遅らされる。図10のステートマシンでは、PLL回路の動作クロックをインバータ回路165で反転した動作クロックに基づいて状態遷移を行う。
【0044】
以上説明した各実施形態のパルス信号としては、PPM変調されたパルス信号を効率的に検出することができる。PPM信号は、ビットレートを高めると、必要な動作クロックの周波数を高くしなければならないので、本実施形態を適用して動作クロックの周波数を低くすることができれば、光通信などでの通信速度の向上を図ることができる。しかしながら、本発明の考え方は、PPM変調されたパルス信号の復調以外にも広く適用することができる。たとえば、磁気ディスクからMFM方式で記録されたデータを読取るためのVFOなどにも用いることができる。
【0045】
【発明の効果】
以上のように本発明によれば、パルス信号中からのパルスの検出をノイズによる影響を少なくして行うことができるので、特に高精度の位相合わせを必要としないPPM復調方式においては、精度nを小さくし、すなわち動作クロック信号の周波数を低くすることができる。動作クロック信号の周波数が低くなるので、PLL復調回路などの消費電力が小さくなり、また搭載する機器のマスタクロックなどから動作クロックを容易に作成することが可能になる。
また本発明によれば、位相比較を適切なタイミングで行うことができる。
【0046】
また本発明によれば、復調すべきパルス信号から動作クロック信号との関係で予想されるパターンに従って検出したパルスと再生クロック信号のタイミングとの比較結果が、予め定める回数連続して一致するときに再生クロック信号を発生する位相制御を行うので、動作クロック信号の周波数が低くなってもノイズの影響を受けにくくすることができる。高精度の位相合わせを必要としない場合は、精度n=2まで小さくすることができる。すなわち、パルス信号中に存在するパルスのパルス幅の1/2の時間を周期とする動作クロック信号を用いれば、適切な再生クロック信号の位相制御を行うことができる。
【0047】
また本発明によれば、動作クロック信号のデューティ比が50%であるので、復調すべきパルス信号のサンプルを立上りエッジおよび立下りエッジで行い、パルス検出手段の構成を簡略化することができる。
【0048】
また本発明によれば、PPM変調されているパルス信号を復調するために必要な動作クロック信号の周波数を低くし、消費電力の低減とノイズによる誤動作の低減とを図ることができる。
【図面の簡単な説明】
【図1】本発明の実施の一形態の概略的な構成を示すブロック図である。
【図2】図1のパルス検出部10の論理的構成を示すブロック図である。
【図3】図2のパルス検出部10の動作を示すタイムチャートである。
【図4】本発明の実施の他の形態の概略的な構成を示すブロック図である。
【図5】図4のロック外れ検出部13の論理的構成を示すブロック図である。
【図6】図4のモード保持部14の論理的構成を示すブロック図である。
【図7】図4の実施形態で遅れモードでロック外れが検出された場合の遅れ回復処理を示すタイムチャートである。
【図8】図4の実施形態で進みモードでロック外れが検出された場合の進み回復処理を示すタイムチャートである。
【図9】図4の実施形態のクロック再生部12の論理的構成を示すブロック図である。
【図10】図9のクロック再生部12の状態遷移図である。
【図11】PPM変調信号の波形図である。
【図12】従来のPPM信号の復調装置の構成を示すブロック図である。
【図13】図12のPPM復調装置のタイミングチャートである。
【符号の説明】
9 動作クロック発生部
10 パルス検出部
11 位相比較部
12 クロック再生部
13 ロック外れ検出部
14 モード保持部
100〜113,120,121,130〜138,150 DFF
115 論理回路

Claims (5)

  1. パルス幅が一定範囲内のパルス信号を復調するための基準となるパルス幅で周期的に発生され、予め定める波形変化時点でパルスの有無を検出するための再生クロック信号の位相を制御するパルス信号復調用PLL装置において、
    予め定める複数の周期が前記基準となるパルス幅に対応するような周期を有する動作クロック信号を発生する動作クロック発生手段と、
    動作クロック発生手段からの動作クロック信号に基づいて復調すべきパルス信号をサンプルする結果に対し、パルス信号のパルス幅の変動が基準パルス幅に対して所定の比率以内に収っていると仮定し、動作クロック信号を基準にして復調すべきパルス信号中の相対的な位相を考える時、パルス信号のサンプル結果が取り得る全てのパターンをdelay とleadとに分類して予め記憶しておき、実際のサンプル結果と前記全てのパターンを比較し、一致するパターンが有ればパルス有を検出し、一致するパターンが無ければパルス無を検出するパルス検出手段と、
    前記再生クロック信号を発生する再生クロック発生手段と、
    パルス検出手段の検出結果に従って、前記一致するパターンがdelay に属するパターンのときには再生クロック信号の位相を進め、leadに属するパターンのときには再生クロック信号の位相を遅らせるように、再生クロック発生手段を位相制御する位相比較手段とを含むことを特徴とするパルス信号復調用PLL装置。
  2. 前記再生クロック発生手段は、前記再生信号に同期して予め定める波形変化時点より同一周期内で先行して波形変化が生じるタイミング信号を発生し、
    前記位相比較手段は、タイミング信号の波形変化時点での前記パルス検出手段によるパルス有無の検出結果に基づいて、再生クロック発生手段を位相制御することを特徴とする請求項1記載のパルス信号復調用PLL装置。
  3. 前記パルス検出手段は、前記パルス有を検出すると、パルス検出信号を出力し、
    前記位相比較手段は、
    パルス検出信号の位相と前記タイミング信号の位相とを比較する比較手段と、
    比較手段による比較結果を、予め定める回数分保持可能で、予め定める回数だけ同一の比較結果が続くとき、再生クロック発生手段を位相制御する保持手段とを備えることを特徴とする請求項2記載のパルス信号復調用PLL装置。
  4. 前記動作クロック発生手段は、デューティ比50%の矩形波として動作クロック信号を発生し、
    前記パルス検出手段は、動作クロック信号の立上がりエッジおよび立下がりエッジ毎にパルス信号のサンプルを行うことを特徴とする請求項1〜3のいずれかに記載のパルス信号復調用PLL装置。
  5. 前記パルス信号は、PPM変調されていることを特徴とする請求項1〜4のいずれかに記載のパルス信号復調用PLL装置。
JP01916297A 1997-01-31 1997-01-31 パルス信号復調用pll装置 Expired - Fee Related JP3553753B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP01916297A JP3553753B2 (ja) 1997-01-31 1997-01-31 パルス信号復調用pll装置
TW087101021A TW406475B (en) 1997-01-31 1998-01-26 Phase locked loop (PLL) apparatus for pulse signal demodulation
US09/015,944 US6066982A (en) 1997-01-31 1998-01-30 Phase locked loop apparatus for pulse signal demodulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01916297A JP3553753B2 (ja) 1997-01-31 1997-01-31 パルス信号復調用pll装置

Publications (2)

Publication Number Publication Date
JPH10224193A JPH10224193A (ja) 1998-08-21
JP3553753B2 true JP3553753B2 (ja) 2004-08-11

Family

ID=11991700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01916297A Expired - Fee Related JP3553753B2 (ja) 1997-01-31 1997-01-31 パルス信号復調用pll装置

Country Status (3)

Country Link
US (1) US6066982A (ja)
JP (1) JP3553753B2 (ja)
TW (1) TW406475B (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6223317B1 (en) * 1998-02-28 2001-04-24 Micron Technology, Inc. Bit synchronizers and methods of synchronizing and calculating error
US6700931B1 (en) * 2000-07-06 2004-03-02 Microchip Technology Incorporated Method, system and apparatus for initiating and maintaining synchronization of a pulse position modulation (PPM) decoder with a received PPM signal
DE50210589D1 (de) * 2001-03-06 2007-09-13 Siemens Ag Synchronisationsverfahren zur verwendung in einem ultra-breitband-kommunikationssystem
EP1239626A1 (de) * 2001-03-06 2002-09-11 Siemens Aktiengesellschaft Synchronisationsverfahren zur Verwendung in einem Ultra-Breitband-Kommunikationssystem
KR102342740B1 (ko) * 2014-09-15 2021-12-23 삼성전자주식회사 신호 송수신 방법 및 장치
US9641312B1 (en) * 2016-06-03 2017-05-02 Northrop Grumman Systems Corporation Method for symbol clock recovery in pulse position modulation (PPM) systems
CN110161916B (zh) * 2019-05-27 2022-05-17 西安电子工程研究所 一种多板卡采样同步方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078271B2 (ja) * 1985-11-08 1995-02-01 松下電器産業株式会社 自走式掃除機

Also Published As

Publication number Publication date
TW406475B (en) 2000-09-21
JPH10224193A (ja) 1998-08-21
US6066982A (en) 2000-05-23

Similar Documents

Publication Publication Date Title
JP4009338B2 (ja) 雑音性、断続性データ流デコーディング装置及び方法
EP0074793B1 (en) Phase-locked loop circuit
US5329559A (en) Phase detector for very high frequency clock and data recovery circuits
JP2003224471A (ja) Pll回路および光通信受信装置
US6064707A (en) Apparatus and method for data synchronizing and tracking
KR0132811B1 (ko) 디지탈 데이터 복구장치
JP2002198808A (ja) Pll回路および光通信受信装置
US6014276A (en) Servo mark detection device
US5208839A (en) Symbol synchronizer for sampled signals
KR950008461B1 (ko) Nrz 데이터 비트 동기 장치
JP3553753B2 (ja) パルス信号復調用pll装置
US5550878A (en) Phase comparator
US6868134B2 (en) Method and apparatus for recovering a clock signal from an asynchronous data signal
US6337650B1 (en) System and method for regenerating clock signal
JPH0575589A (ja) ビツト周期のためのアナログ及びデイジタル位相検出器
US6665359B1 (en) Digital data separator
US4882546A (en) Demodulation clock generator circuit
JP2002198807A (ja) Pll回路および光通信受信装置
US4760344A (en) Phase shift keying signal demodulation method and apparatus
JPS5923496B2 (ja) タイミング抽出方式
US5475715A (en) Sync data introduction method and system
JPS61127243A (ja) ビツト位相同期回路
US20010028693A1 (en) Method and circuit for glithch-free changing of clocks having different phases
US5293549A (en) Digital signal apparatus for correctly demodulating data despite a fluctuation in reading rate or variation in regenerated pulse duration due to abnormalities in a recording medium from which data is being read
US5311559A (en) Apparatus for correcting waveform distortion

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees