JP3553579B2 - Catalyst reduction device - Google Patents

Catalyst reduction device Download PDF

Info

Publication number
JP3553579B2
JP3553579B2 JP23304998A JP23304998A JP3553579B2 JP 3553579 B2 JP3553579 B2 JP 3553579B2 JP 23304998 A JP23304998 A JP 23304998A JP 23304998 A JP23304998 A JP 23304998A JP 3553579 B2 JP3553579 B2 JP 3553579B2
Authority
JP
Japan
Prior art keywords
catalyst
concentration
gas
reduction
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23304998A
Other languages
Japanese (ja)
Other versions
JP2000061318A (en
Inventor
進 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP23304998A priority Critical patent/JP3553579B2/en
Publication of JP2000061318A publication Critical patent/JP2000061318A/en
Application granted granted Critical
Publication of JP3553579B2 publication Critical patent/JP3553579B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、触媒還元装置に関し、さらに詳しくは、メタノールの水蒸気改質、メタノール合成、水性ガスシフト反応、酸化反応、酸素除去、メタン化反応、CO水素化反応(炭化水素合成反応)等に用いられる酸化物を主成分とする触媒を、使用に先立って還元するための装置として好適な触媒還元装置に関するものである。
【0002】
【従来の技術】
多くの化学工業プロセス、例えば、メタノールの水蒸気改質、メタノール合成、水性ガスシフト反応、酸化反応、酸素除去、メタン化反応、CO水素化反応(炭化水素合成反応)等においては、反応速度を速くしたり、特定の物質を選択的に生成又は除去するために、金属あるいは合金の酸化物を主成分とする種々の触媒が用いられている。
【0003】
これらの酸化物触媒は、一般に、使用前の段階では酸化物の状態で装置に組み込まれるが、使用を開始する前段工程において還元処理し、触媒を活性化することが行われている。また、触媒の還元処理には、通常、水素ガスあるいは水素ガスと不活性ガスとの混合ガスが用いられている。
【0004】
例えば、改質ガス燃料電池は、水素と酸素から水が生成する際の自由エネルギー変化を直接電気エネルギーとして取り出すための装置であり、燃料源としてメタノールの水蒸気改質により得られる改質ガスを使用する。
【0005】
メタノールの水蒸気改質は、反応温度が200〜300℃と低いこと、脱硫装置が不要であること、比較的容易に水素を主成分とするガスに改質されるために一酸化炭素の変成工程が不要、又は一酸化炭素の除去工程が軽減されること等の利点があることから、自動車用の低公害動力源等、小出力の燃料電池システムに用いられる水素ガスの供給方法として注目されているものである。
【0006】
メタノールの水蒸気改質は、周知のように、メタノールを水蒸気の存在下で改質触媒と接触反応させ、水素を主成分とする改質ガスを製造する方法である。改質触媒としては、一般に、CuO−ZnO系、CuO−ZnO−Cr系、CuO−ZnO−Al系等、CuO−ZnOを主成分とする触媒が用いられる。
【0007】
Cu系の改質触媒は、酸化物状態のまま改質反応に使用することもできるが、酸化物状態のままで改質反応に使用すると、生成した改質ガスに含まれる大量の水素によりCu系触媒の還元反応が急激に進行するという問題がある。Cu系触媒の還元反応は大きな発熱を伴うので、還元反応を急激に進行させると、触媒が耐熱限界を超えて触媒機能を喪失したり、触媒を収容している容器、配管等が損傷するおそれがある。そのため、Cu系の改質触媒は、改質反応に使用する前に還元処理してCu−ZnOの形態とすることが行われている。
【0008】
Cu系の改質触媒の還元処理は、通常、以下の手順により行われる。すなわち、触媒を175〜180℃に加熱した状態で、水素ガス濃度が1〜2%となるように窒素ガス等の不活性ガスで十分に希釈した還元ガスを触媒に流し、触媒の温度が過度に上昇しないように十分注意しながら、約12時間程度の時間をかけてゆっくりと還元反応を行わせる。その後、触媒を200〜210℃程度に昇温し、さらに水素ガス濃度を高めた状態でも触媒の温度が上昇しないことを確認して還元処理を終了させる。
【0009】
また、上述のようなCu系の改質触媒の還元方法では、水素ガスを希釈するための大量の窒素ガスを必要とするという問題がある。そのため、特開昭63ー44934号公報には、反応管の出口に還流ラインを設け、反応管の出口から流出した窒素ガスをそのまま系外に放出することなく、還流ラインを介して再び反応管に戻し、還流させた窒素ガスを用いて水素ガスを希釈することにより、窒素ガスの消費量を大幅に低減した改質触媒の還元手段を備えたメタノール改質装置が開示されている。
【0010】
酸化物触媒が用いられるその他の例としては、例えば、フィッシャー・トロプシュ法がある。フィッシャー・トロプシュ法は、一酸化炭素の水素化反応により、直鎖のオレフィンやパラフィン、アルコール、アルデヒド、ケトン、カルボン酸などを合成する方法であり、合成反応には、Fe系、Co系、Ni系、Ru系等の酸化物触媒が用いられている。
【0011】
フィッシャー・トロプシュ法に用いられるCo系の触媒の場合、同様に酸化物の状態で担体に担持させた後、還元処理して使用されるが、100%金属に還元すると、シンタリング、炭化などのために速やかに活性が低下することが知られている。そのため、Co系の酸化物触媒は、還元ガスとして水素ガスを用い、350〜400℃において、還元率が60〜70%となるように還元して使用されている。
【0012】
【発明が解決しようとする課題】
上述のような水素ガスあるいは水素ガスと不活性ガスとの混合ガスを用いて酸化物触媒の還元処理を行う場合、還元反応の終了は、水素濃度の変化や触媒の温度変化で確認する方法が採られている。
【0013】
しかしながら、水素濃度や触媒温度の変化は、還元量や還元時間に比例しないという性質がある。そのため、酸化物触媒の確実な還元を行うためには、相当の余裕時間を見る必要があり、効率が悪いという問題があった。また、所定の還元率を有する触媒を得ようとする場合には、還元率の正確な把握が困難であり、精度に欠けるという問題があった。
【0014】
さらに、担体に触媒を担持させた触媒体を還元処理する場合、水素濃度や触媒温度の変化が還元量に比例しないことから、これらを測定しても担体に担持された触媒の質量を推定することができない。そのため、担体に触媒が設定通りに担持されたか否か、すなわち触媒の脱落や偏在の有無は、他の手段を用いて評価しなければならないという問題があった。
【0015】
本発明が解決しようとする課題は、酸化物を主成分とする触媒の還元終了時期や還元率を確実に把握し、過不足なく酸化物を主成分とする触媒を還元することができ、しかも、担体に担持された触媒の質量を判定することが可能な触媒還元装置を提供することにある。
【0016】
【課題を解決するための手段】
上記課題を解決するために本発明に係る触媒還元装置は、酸化物を主成分とする触媒を収容すると共に、該触媒の還元反応を行わせる還元手段と、該還元手段に、一酸化炭素を含有する還元ガスを供給する還元ガス供給手段と、前記還元手段から排出されるガス中に含まれる一酸化炭素及び二酸化炭素の内、少なくとも一方の濃度を測定する濃度測定手段とを備えていることを要旨とするものである。
【0017】
上記構成を有する本発明に係る触媒還元装置によれば、還元手段内に収容されている酸化物を主成分とする触媒に対し、還元ガス供給手段を介して一酸化炭素を含有する還元ガスが供給される。還元ガスが供給されると、還元ガス中に含まれる一酸化炭素の一部は、酸化物を主成分とする触媒の還元反応に消費されて二酸化炭素となり、還元反応に消費されなかった一酸化炭素は、そのまま還元手段から排出される。
【0018】
次いで、還元手段から排出されたガス中に含まれる一酸化炭素及び二酸化炭素の内、少なくとも一方の濃度が濃度測定手段により測定される。その際、還元手段から排出されるガス中の一酸化炭素濃度又は二酸化炭素濃度は、酸化物触媒の還元量に比例して変化する性質を有しているので、濃度測定手段を用いて一酸化炭素濃度又は二酸化炭素濃度の変化量を測定すれば、還元反応の終了時期、還元率、担体に担持された触媒質量等を容易に判定することが可能となる。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しながら詳細に説明する。図1は、本発明の一実施の形態に係る触媒還元装置の概略構成図を示したものである。図1において、触媒還元装置10は、還元手段20と、還元ガス供給手段30と、濃度測定手段40とを備えている。
【0020】
還元手段20は、酸化物を主成分とする触媒26を収容すると共に、触媒26の還元反応を行わせるための還元部22からなり、還元部22の入口側及び出口側には、それぞれ、還元ガス供給手段30及び濃度測定手段40が接続されている。
【0021】
この場合、還元手段20には、還元部22に収容された触媒26の温度を一定に保つための温度制御手段24を備えていることが好ましい。温度制御手段24により触媒26の温度を一定に保ったまま還元を行うと、触媒26の還元量や触媒26の還元終了時間、還元率等の判定精度が向上するという利点がある。なお、還元部22の材質や形状等は、特に限定されるものではなく、還元される触媒26の形状、還元温度等に応じて最適なものを選択すればよい。
【0022】
また、還元部22に収容される触媒26は、金属あるいは合金の酸化物を主成分とし、還元して使用するものであれば良く、その用途や組成、形状等は、特に限定されるものではない。
【0023】
還元して使用する触媒26の例としては、例えば、メタノールの水蒸気改質、メタノール合成、水性ガスシフト反応、酸化反応、酸素除去、メタン化反応、CO水素化反応(炭化水素合成反応)等に用いられる各種の触媒が挙げられる。
【0024】
具体的には、Ta、La、Cu、Ni、Co、Fe、Ti、Mo、Sr、V、Sn、Bi、Zn、W、U、Mn、Cr、K、Mg、Ce、Al、Mg、Ag、Pt、Pd、Ru、Rh、Ir、Nb、Si、Zr等の酸化物、及びこれらの中から選ばれる2種以上の金属元素を含む合金の酸化物を主成分とする触媒が挙げられる。
【0025】
すなわち、MnO、V、MoO、Nb、ZnO、Al、SiO、TiO、MgO、ZrO、TaO、CuO、NiO、Co、Fe、SnO、Bi、WO、V、MnO、Cr、AgO、PtO、PdO、RuO、SrO、KO、CeO、La等の単一の金属酸化物を触媒26として用いても良く、あるいは、これらの2種以上の金属酸化物からなるものを触媒26としても良い。
【0026】
特に、CuO−ZnO、CuO−ZnO−Cr、CuO−ZnO−Al等、メタノールの水蒸気改質に用いられるCu系触媒は、還元時に多量の発熱を伴うことに加え、Cu系触媒を用いて燃料電池システムを構築した場合、触媒性能の良否が燃料電池システムの性能の良否に直結する。そのため、本発明に係る触媒還元装置10を用いてCu系触媒を還元すれば、還元反応の厳密な制御が可能となり、品質の高いCu系触媒を安定して製造できるという利点がある。
【0027】
また、触媒26の形状の具体例としては、上述したような金属あるいは合金の酸化物を主成分とする材料そのものを用いて球状、ペレット状、リング状等に成形したものや、あるいはハニカム等の構造体に成形したものが挙げられる。また、メタル、コージェライト等からなる担体に上述した触媒26を担持させた触媒体としても良い。さらに、流動床で使用される触媒26の場合には、成形することなく微粉体のまま還元部22に収容しても良い。
【0028】
還元ガス供給手段30は、還元部22に収容されている触媒26に還元ガスを供給するための装置である。ここで、還元ガス供給手段30から供給される還元ガス中には、少なくとも一酸化炭素が含まれていることが必要である。
【0029】
還元ガス中に含まれる一酸化炭素濃度は、還元される触媒26の用途、性質等に応じて最適な濃度とすればよい。例えば、メタノールの水蒸気改質に用いられるCuO−ZnO系触媒を還元する場合には、還元ガス中の一酸化炭素濃度は、0.001〜10vol%の範囲が好適である。
【0030】
一酸化炭素濃度が0.001vol%未満では、還元部22から排出されるガス中に含まれる一酸化炭素濃度の経時変化を精度良く計測することが困難となるので、好ましくない。また、一酸化炭素濃度が10vol%を超えると、CuO−ZnO系触媒の還元反応が急激に進行して発熱し、触媒26の耐熱限界を超えるおそれがあるので、好ましくない。
【0031】
なお、還元ガス中には、一酸化炭素に加えて水素ガス等の他の還元性ガスが含まれていても良い。また、一酸化炭素や水素ガスの他に、窒素、アルゴン等の不活性ガスや水蒸気等が含まれていても良い。
【0032】
また、還元ガス供給手段30は、所定の組成を有する還元ガスを供給可能なものであれば良く、その具体的構成については、特に限定されるものではないが、図1に示す例では、還元ガス供給手段30としてメタノールやメタンの水蒸気改質装置が用いられている。
【0033】
図1において、還元ガス供給手段30は、原料タンク31と、蒸発部32と、改質部33と、酸化部34と、空気注入手段35と、水蒸気凝縮部36とを備えている。
【0034】
原料タンク31は、メタノール、メタン等の炭化水素と水を蓄えておく部分であり、図示しないポンプを介してメタノール等と水とを蒸発部32に供給するようになっている。また、蒸発部32は、原料タンク31から送られてきたメタノール等と水とを蒸発させ改質部33に供給するためのものである。
【0035】
また、改質部33は、蒸発部32から供給されるメタノール等の炭化水素ガスを水蒸気の存在下で改質触媒と接触反応させることにより、水素を主成分とし、一酸化炭素、二酸化炭素、及び水蒸気を含む改質ガスを生成させる部分である。改質触媒としては、Cu−Zn系の触媒を用いるのが好ましい。
【0036】
また、空気注入手段35は、改質部33で生成した改質ガスに所定量の空気を注入するものである。さらに、酸化部34は、改質ガス中に含まれる水素及び一酸化炭素と、空気注入手段35を介して注入された空気中に含まれる酸素とを触媒存在下で反応させ、少量の水素と一酸化炭素を含有する還元ガスを製造する部分である。酸化触媒としては、白金、ルテニウム及びこれらの合金を用いるのが好ましい。
【0037】
このように、還元ガス供給手段30として、メタノール等の水蒸気改質装置を用いると、改質ガスに注入する空気量や、酸化部34で行われる改質ガスの酸化反応を制御することにより、所望の一酸化炭素濃度を有する還元ガスを容易に製造できるという利点がある。
【0038】
さらに、水蒸気凝縮部36は、酸化部34で組成が調整された還元ガスに含まれる水蒸気を凝縮除去させる部分である。そして、水蒸気凝縮部36で水蒸気が凝縮除去された還元ガスは、還元手段20に供給されるようになっている。
【0039】
改質部33から得られる改質ガス中には5〜30%の水蒸気が含まれているので、酸化部34から排出される還元ガスをそのまま還元手段20に供給すると、配管中で結露し、還元ガスの組成を変動させるおそれがある。これに対し、還元ガス供給手段30に水蒸気凝縮部36を設けると、還元ガスの組成変動が抑制され、触媒担持量や還元終了時期等の判定精度が向上するという利点がある。
【0040】
なお、還元ガス供給手段30としては、空気注入部35、酸化部34及び水蒸気凝縮部36を設けることなく、改質部33で発生した改質ガスを直接、還元手段20に供給するようにしたものでもよい。また、改質部33で得られた改質ガスを窒素、アルゴン等の不活性ガスで希釈して還元ガスとしてもよい。さらに、還元ガス供給手段30として、メタノール等の水蒸気改質装置を用いる代わりに、所定の組成を有する還元ガスが充填されたガスボンベを用いても良い。
【0041】
濃度測定手段40は、還元手段20から排出されるガス中に含まれる一酸化炭素濃度又は二酸化炭素濃度を測定するための装置である。具体的には、熱伝導度型検出器を備えたガスクロマトグラフが用いられるが、連続して一酸化炭素又は二酸化炭素を測定するには、非分散型赤外線吸収式検出器を備えたガス分析計が好適な一例として挙げられる。
【0042】
なお、濃度測定手段40においては、一酸化炭素濃度又は二酸化炭素濃度のいずれか一方を測定すれば足りる。これは、一酸化炭素が触媒26の還元に消費されて二酸化炭素が生成し、一酸化炭素の消費量と二酸化炭素の生成量が1:1に対応しているためである。また、濃度測定手段40から排出されるガスをそのまま排気しても良いが、図1の点線で示すように、排出されるガスの一部を、空気注入手段35に還流させるようにしても良い。
【0043】
次に、図1に示す触媒還元装置10の作用について説明する。原料タンク31からメタノール等の炭化水素及び水を蒸発部32に供給し、蒸発部32でメタノール等の蒸気と水蒸気とを発生させ、これを改質部33に供給すると、一般的には、次の化1の式に示す反応が生じて、水素と、一酸化炭素と、二酸化炭素と水蒸気からなる改質ガスが生成するといわれている。
【0044】
【化1】
CHOH+HO → 2.5H+0.5CO+0.5CO+0.5H
【0045】
得られた改質ガスに空気注入手段35を介して所定量の空気を注入し、改質ガスと空気との混合ガスを酸化部34で反応させる。例えば、メタノールの7倍に相当する空気を注入したとすると、酸化部34で生じる反応は、次の化2の式のように表せる。
【0046】
【化2】
2.5H+0.5CO+0.5CO+0.5HO+5.6N+1.4O →0.1H+0.9CO+0.1CO+2.9HO+5.6N
【0047】
酸化部34から排出されるガスの組成は、化2の式の右辺で表されるので、この組成を有するガスを水蒸気凝縮部36に送り、水蒸気を凝縮除去すると、水素1.5vol%、一酸化炭素1.5vol%を含有する還元ガスが得られる。
【0048】
得られた還元ガスを触媒26が収容された還元部22に送り、温度制御手段24により触媒26の温度を一定に保ちながら還元反応を行わせる。この場合、還元ガス中には、一酸化炭素と水素の双方が含まれているので、触媒26は、双方のガスによって還元される。この内、還元ガス中に含まれる一酸化炭素の一部は、次の化3の式に従い、酸化物状態にある触媒26と反応して二酸化炭素を生成させる。
【0049】
【化3】
CO+MeO → Me+CO (Meは金属元素)
【0050】
還元部22から排出されるガス中の一酸化炭素濃度又は二酸化炭素濃度は、触媒26の還元量に比例して変動するという性質を有しているので、これを濃度制御手段40を用いて連続的に測定すれば、触媒26の還元終了時期や還元量を容易に判定することが可能となる。
【0051】
図2に、一酸化炭素と水素の双方を含む還元ガスを用いて酸化物触媒を還元した場合における、還元部22から排出されるガス(以下、単に「出ガス」という)中の一酸化炭素濃度、二酸化炭素濃度及び水素濃度の経時変化の一例を示す。なお、図2において、縦軸は、還元反応開始時と還元反応終了時の濃度差を表している。
【0052】
図2に示すように、水素濃度の場合、還元開始直後は還元部22に導入される還元ガス(以下、単に「入りガス」という)中に含まれる水素のほとんどが触媒26の還元反応に消費されるために、出ガス中の水素濃度は極めて低い。しかし、還元開始から短時間で出ガス中の水素濃度は入りガス濃度に達し、それ以後は、触媒26の還元量とは無関係に推移する。そのため、出ガス中の水素濃度の経時変化を測定しても、触媒26の還元終了時期や還元量を特定することは困難である。
【0053】
一方、出ガス中の一酸化炭素濃度は、触媒26の還元量に比例して変動するという性質を有している。そのため、図2に示すように、還元反応が進行するに伴い、還元反応に消費されずにそのまま排出される一酸化炭素が多くなるので、一酸化炭素濃度は徐々に増加し、還元反応が終了した時点では、出ガス中の一酸化炭素濃度は、入りガス中の一酸化炭素濃度で飽和する。
【0054】
また、二酸化炭素は、化3の式に示すように、触媒26を構成する金属酸化物が一酸化炭素により還元されることにより生成するものであり、一酸化炭素の消費量と二酸化炭素の生成量は、1:1に対応する。そのため、出ガス中の二酸化炭素濃度は、一酸化炭素濃度と全く逆の傾向を示し、触媒26の還元量に比例して徐々に減少し、還元終了時点では、入りガス中の二酸化炭素濃度で飽和する。
【0055】
従って、出ガス中の一酸化炭素濃度及び二酸化炭素濃度の内、少なくとも一方の経時変化を測定すれば、出ガス中の一酸化炭素濃度が飽和した時刻をもって、触媒26の還元が終了したと判定することができる。また、還元部22に収容されている触媒26の量が既知である場合には、出ガス中の一酸化炭素濃度を測定することにより、触媒26の還元量や還元率を容易に逆算することができる。
【0056】
さらに、出ガス中に含まれる一酸化炭素濃度又は二酸化炭素濃度が触媒26の還元量にほぼ比例して変化することを利用すると、例えば、担体に触媒26を担持させた触媒体の触媒担持量を推定することも可能となる。図3は、触媒担持量が異なる触媒体を一酸化炭素を含む還元ガスで還元したときの、一酸化炭素濃度の経時変化を示したものである。
【0057】
還元条件を一定とした場合、触媒担持量が少ない触媒体の場合には、図3のA線に示すように、短時間で還元が終了するが、触媒担持量が多くなるにつれて、図3のB線、C線に示すように、還元終了までに長時間を要するようになる。
【0058】
従って、担体に担持されている触媒担持量が未知である場合には、所定の時間が経過した後の出ガス中の一酸化炭素濃度を測定すれば、担体に担持されている触媒26の担持量を推定することができる。
【0059】
(実施例1)
東洋CCI製の銅−亜鉛系メタノール改質用触媒MDC−4を平均粒径3μmに粉砕した粉砕粉後、スラリーを調整し、これを内径18mm、長さ120mm、体積30cc、600セル/平方センチのメタル担体に塗布することにより、触媒体を得た。触媒担持量は、11.3g/l、103.0g/l、172.3g/l及び247.0g/lの4種類とした。得られた触媒体の触媒担持量、触媒層厚さ及び担持用スラリーの物性を表1に示す。
【0060】
【表1】

Figure 0003553579
【0061】
また、得られた触媒体の断面図を図4に示す。触媒体28は、平板27aと波板27bが積層された担体27上に触媒26が所定の厚さで担持されており、触媒層の厚さは、触媒担持量が多くなるほど厚くなっている。
【0062】
すなわち、平板27aと波板27bの接合部から離れた位置での触媒層の厚さ(以下、これを「薄層触媒層厚さ」という)は、触媒担持量が11.3g/lの場合は、0.1μm未満であった。また、触媒担持量が103.0g/l、172.3g/l、及び247.0g/lと順次増大するに伴い、薄層触媒層厚さは、それぞれ、約15μm、約25μm、及び約35μmに増大した。
【0063】
また、平板27aと波板27bの接合部から触媒層の表面までの厚さ(以下、これを「コーナー部触媒層厚さ」という)も同様に、触媒担持量が増大するに伴って厚くなった。すなわち、触媒担持量が11.3g/l及び103g/lの場合、コーナー部触媒層厚さは100μmであり、触媒担持量が172.3g/l、及び247.0g/lと順次増加するに伴い、コーナー部触媒層厚さも200μm、、及び300μmに増大した。
【0064】
次に、触媒26を担持させた触媒体28を触媒還元装置10の還元部22に収容し、H=2%、CH=1%、CO=1%、残Nの組成を有する還元ガスを用い、触媒体28の平均温度を約200℃、ガス空間速度約2000h−1の条件で4時間の還元を行った。また、熱伝導度型検出器(TCD)を備えたガスクロマトグラフを用いて、還元部22から排出されるガス中の水素濃度、一酸化炭素濃度、及び二酸化炭素濃度を20〜30分毎に測定した。また、一酸化炭素濃度及び二酸化炭素濃度を非分散型赤外線吸収検出器(NDIR)を備えたガス分析計で連続測定した。
【0065】
なお、この場合、還元ガス供給手段30として、H=10%、CH=5%、CO=5%、残Nの組成を有する混合ボンベガスが充填されたガスボンベと、Nガスが充填されたガスボンベを用い、混合ボンベガスをNガスで5倍に希釈して還元ガスとし、これを直接、還元部22に供給した。
【0066】
出ガス中の水素濃度、一酸化炭素濃度、及び二酸化炭素濃度の経時変化を図5〜図8に示す。触媒担持量が11.3g/lの場合、図5に示すように、出ガス中の水素濃度は、還元開始から5分後で既に入りガス濃度の2%を示し、それ以後、水素濃度に経時変化は認められなかった。
【0067】
これに対し、出ガス中の一酸化炭素濃度は、還元開始から5分後に0.8%を示し、30分経過後には0.9%に達した。また、60分経過以降は、入りガス濃度(約1%)で安定した。また、これに対応して、出ガス中の二酸化炭素濃度は、還元開始から5分後に1.3%、30分後に1.1%を示し、60分経過以降は、入りガス濃度(約1%)で安定した。
【0068】
また、触媒担持量を103.0g/lとした場合、図6に示すように、出ガス中の水素濃度は、還元開始から5分後に2%を示し、30分経過後には2.1%に達した。また、それ以降の水素濃度の経時変化は僅かであった。なお、30分経過以降の水素濃度が入りガス濃度を若干超えているが、これは実験誤差と考えられる。
【0069】
これに対し、出ガス中の一酸化炭素濃度は、還元開始から5分後で0.5%を示し、30分経過後には0.7%を示した。一酸化炭素濃度は、その後も徐々に増加し続け、約90分経過後に入りガス濃度で安定した。また、これに対応して、二酸化炭素濃度は、還元開始から5分後で1.5%、30分経過後で1.3%を示し、還元開始から約90分経過後に入りガス濃度で安定した。
【0070】
また、触媒担持量を172.3g/lとした場合、図7に示すように、出ガス中の水素濃度は、還元から5分後には1.2%を示し、30分経過後には2.2%に急増した。しかし、その後は、逆に減少して2%で安定した。
【0071】
これに対し、出ガス中の一酸化炭素濃度は、還元開始から5分後では0%を示し、30分経過後には0.5%を示した。一酸化炭素濃度は、その後も徐々に増加し続け、約60分経過後には入りガス濃度で安定した。また、これに対応して、二酸化炭素濃度は、還元開始から5分後で2.3%、30分経過後で1.5%を示し、約60分経過後に入りガス濃度で安定した。
【0072】
さらに、触媒担持量を247.0g/lとした場合、図8に示すように、出ガス中の水素濃度は、還元開始から5分後には1%を示し、30分経過後には1.7%まで増加した。さらに、60分経過後には2.6%に達したが、その後は若干減少し、90分経過以降は、2.5%で安定した。
【0073】
これに対し、出ガス中の一酸化炭素濃度は還元開始から5分後では0%を示し、30分経過後には0.2%を示した。一酸化炭素濃度は、その後も徐々に増加し続け、約60分経過以降は、入りガス濃度で安定した。また、これに対応して、二酸化炭素濃度は、還元開始から5分後で2.5%、30分経過後で2.3%を示し、約60分経過以降は、入りガス濃度で安定した。
【0074】
図5〜図8から明らかなように、水素濃度は、経時変化がほとんど認められないか、あるいは時間の経過に伴い逆に減少する場合があり、触媒26の還元量に比例して水素濃度が変動していないことがわかる。そのため、水素濃度の経時変化から、還元終了時期や還元量を判定することは困難である。
【0075】
これに対し、一酸化炭素濃度又は二酸化炭素濃度は、還元終了時点で入りガス濃度で飽和するので、濃度の経時変化から還元終了時刻を特定できることがわかる。
【0076】
また、触媒担持量が多くなるほど、すなわち触媒層の厚さが厚くなるほど、還元開始直後の一酸化炭素濃度が低く、かつ二酸化炭素濃度が高くなっており、還元が触媒層全体に及ぶまでに時間を要していることがわかる。従って、担体上に触媒が偏在している場合には、還元開始直後の一酸化炭素濃度やその増加率、あるいは二酸化炭素濃度やその減少率の変化となって表れることになる。
【0077】
さらに、触媒26中に多量の酸化銅が存在する場合には、還元初期の出ガス中の一酸化炭素濃度は低く、還元が進行して酸化銅の含有量が減少するに伴い、出ガス中の一酸化炭素濃度が高くなっている。また、二酸化炭素濃度は、一酸化炭素濃度と全く逆の傾向を示している。そのため、予め還元量(還元率)と一酸化炭素濃度又は二酸化炭素濃度との関係を求めておけば、一酸化炭素濃度又は二酸化炭素濃度から還元量(還元率)を逆算することができる。
【0078】
また、図9に、入りガス中の一酸化炭素濃度に対する還元開始から5分後及び30分後の出ガス中の一酸化炭素濃度の比と、触媒担持量の関係を示す。図9より、入りガス中の一酸化炭素濃度に対する出ガス中の一酸化炭素濃度の比と、触媒担持量との間に直線関係が認められることがわかる。従って、触媒体の触媒担持量が未知である場合において、入りガス濃度及び還元温度が一定の条件下で一酸化炭素濃度を測定すれば、図9に示す結果を用いて触媒担持量や触媒の脱落の有無を判定することができる。二酸化炭素濃度の場合も同様である。
【0079】
以上、本発明の実施の形態について詳細に説明したが、本発明は、上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。例えば、上記実施例では、ハニカム状のメタル担体にメタノール改質用触媒を担持させた触媒体を還元しているが、本発明に係る触媒還元装置は、CuO−ZnO系のペレット触媒の還元にも適用できる。
【0080】
また、上記実施例では、本発明に係る触媒還元装置をメタノール改質用触媒の還元処理に用いた例について示したが、メタノール合成、水性ガスシフト反応、酸化反応、酸素除去、メタン化反応、CO水素化反応等に用いられる各種の酸化物触媒の還元処理にも利用することができ、これにより上記実施の形態と同様の効果を得ることができる。
【0081】
【発明の効果】
本発明に係る触媒還元装置は、酸化物を主成分とする触媒を収容すると共に、該触媒の還元反応を行わせる還元手段と、該還元手段に、一酸化炭素を含有する還元ガスを供給する還元ガス供給手段と、前記還元手段から排出されるガス中に含まれる一酸化炭素及び二酸化炭素の内、少なくとも一方の濃度を測定する濃度測定手段とを備えており、触媒の還元量に比例して排出される一酸化炭素濃度又は二酸化炭素濃度を連続的に測定しながら還元処理を行うので、触媒の還元終了時期、還元量、還元率等を確実に判定することができるという効果がある。
【0082】
また、本発明に係る触媒還元装置によれば、担体に触媒を担持させた触媒体を還元処理する場合、所定の還元条件下における触媒担持量と排出されるガス中の一酸化炭素濃度又は二酸化炭素濃度との関係を予め求めておけば、担体に担持されている触媒の質量を容易に推定することができるという効果がある。
【0083】
そのため、これを例えば、改質ガス燃料電池システムに用いられるメタノール改質装置に組み込まれる改質触媒の還元処理に応用すれば、品質の高い改質触媒が安定して製造可能となるものであり、産業上その効果の極めて大きい発明である。
【図面の簡単な説明】
【図1】本発明に係る触媒還元装置の概略構成図である。
【図2】触媒収容手段から排出されるガス中の水素濃度、一酸化炭素濃度、及び二酸化炭素濃度の経時変化を示す模式図である。
【図3】触媒担持量の異なる触媒体を同一条件下で還元した場合における、出ガス中の一酸化炭素濃度の経時変化を示す模式図である。
【図4】触媒担持量の異なる触媒体の拡大断面図である。
【図5】触媒担持量が11.3g/lである触媒体を還元した場合における出ガス中の水素濃度、一酸化炭素濃度、及び二酸化炭素濃度の経時変化を示す図である。
【図6】触媒担持量が103.0g/lである触媒体を還元した場合における出ガス中の水素濃度、一酸化炭素濃度、及び二酸化炭素濃度の経時変化を示す図である。
【図7】触媒担持量が172.3g/lである触媒体を還元した場合における出ガス中の水素濃度、一酸化炭素濃度、及び二酸化炭素濃度の経時変化を示す図である。
【図8】触媒担持量が247.0g/lである触媒体を還元した場合における出ガス中の水素濃度、一酸化炭素濃度、及び二酸化炭素濃度の経時変化を示す図である。
【図9】入りガス中の一酸化炭素濃度に対する出ガス中の二酸化炭素濃度の比と、触媒担持量との関係を示す図である。
【符号の説明】
10 触媒還元装置
20 還元手段
26 触媒
30 還元ガス供給手段
40 濃度測定手段[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a catalytic reduction device, and more particularly, to a catalyst for methanol steam reforming, methanol synthesis, water gas shift reaction, oxidation reaction, oxygen removal, methanation reaction, CO hydrogenation reaction (hydrocarbon synthesis reaction) and the like. The present invention relates to a catalyst reduction device suitable as a device for reducing a catalyst containing an oxide as a main component prior to use.
[0002]
[Prior art]
In many chemical industrial processes such as steam reforming of methanol, methanol synthesis, water gas shift reaction, oxidation reaction, oxygen removal, methanation reaction, CO hydrogenation reaction (hydrocarbon synthesis reaction), etc., the reaction rate is increased. In order to selectively generate or remove a specific substance, various catalysts containing a metal or alloy oxide as a main component have been used.
[0003]
These oxide catalysts are generally incorporated into the apparatus in an oxide state before use, but are subjected to a reduction treatment in a step prior to the start of use to activate the catalyst. In addition, hydrogen gas or a mixed gas of hydrogen gas and an inert gas is usually used for the reduction treatment of the catalyst.
[0004]
For example, a reformed gas fuel cell is a device for directly extracting a change in free energy when water is generated from hydrogen and oxygen as electric energy, and uses a reformed gas obtained by steam reforming of methanol as a fuel source. I do.
[0005]
Methanol steam reforming involves a low reaction temperature of 200 to 300 ° C., no need for a desulfurization unit, and a relatively easy reforming process to a gas containing hydrogen as a main component. Is required as a method for supplying hydrogen gas used in low-output fuel cell systems, such as a low-pollution power source for automobiles, because of its advantages such as unnecessary or reduced carbon monoxide removal process. Is what it is.
[0006]
As is well known, steam reforming of methanol is a method for producing a reformed gas containing hydrogen as a main component by causing methanol to react with a reforming catalyst in the presence of steam. As the reforming catalyst, generally, CuO-ZnO-based, CuO-ZnO-Cr2O3System, CuO-ZnO-Al2O3A catalyst having CuO-ZnO as a main component, such as a system, is used.
[0007]
Although the Cu-based reforming catalyst can be used for the reforming reaction in the oxide state, if it is used for the reforming reaction in the oxide state, a large amount of hydrogen contained in the generated reformed gas causes Cu There is a problem that the reduction reaction of the system catalyst proceeds rapidly. Since the reduction reaction of the Cu-based catalyst involves a large amount of heat, if the reduction reaction proceeds rapidly, the catalyst may exceed its heat resistance limit and lose its catalytic function, or the container or pipe containing the catalyst may be damaged. There is. For this reason, Cu-based reforming catalysts are reduced to Cu-ZnO form before being used in a reforming reaction.
[0008]
The reduction treatment of the Cu-based reforming catalyst is generally performed according to the following procedure. That is, while the catalyst is heated to 175 to 180 ° C., a reducing gas sufficiently diluted with an inert gas such as nitrogen gas is supplied to the catalyst so that the hydrogen gas concentration becomes 1 to 2%. The reduction reaction is allowed to take place slowly over about 12 hours, taking care not to raise the temperature. Thereafter, the temperature of the catalyst is raised to about 200 to 210 ° C., and it is confirmed that the temperature of the catalyst does not increase even in a state where the hydrogen gas concentration is further increased, and then the reduction treatment is terminated.
[0009]
Further, the above-described method for reducing the Cu-based reforming catalyst has a problem that a large amount of nitrogen gas for diluting hydrogen gas is required. For this reason, Japanese Patent Application Laid-Open No. 63-44934 discloses a method in which a reflux line is provided at the outlet of a reaction tube, and the nitrogen gas flowing out of the outlet of the reaction tube is not discharged to the outside of the system as it is, but the reaction tube is returned again through the reflux line. A methanol reforming apparatus having a reforming catalyst reducing means that greatly reduces the consumption of nitrogen gas by diluting hydrogen gas with the refluxed nitrogen gas is disclosed.
[0010]
Other examples in which an oxide catalyst is used include, for example, the Fischer-Tropsch method. The Fischer-Tropsch method is a method of synthesizing linear olefins, paraffins, alcohols, aldehydes, ketones, carboxylic acids, and the like by a hydrogenation reaction of carbon monoxide. And Ru-based oxide catalysts are used.
[0011]
In the case of the Co-based catalyst used in the Fischer-Tropsch method, the catalyst is similarly used after being supported on a carrier in the form of an oxide and then subjected to a reduction treatment. Therefore, it is known that the activity quickly decreases. For this reason, the Co-based oxide catalyst is used by using hydrogen gas as a reducing gas and reducing it at 350 to 400 ° C. so that the reduction ratio becomes 60 to 70%.
[0012]
[Problems to be solved by the invention]
When the reduction treatment of the oxide catalyst is performed using the hydrogen gas or the mixed gas of the hydrogen gas and the inert gas as described above, a method of confirming the completion of the reduction reaction by confirming a change in the hydrogen concentration or a change in the temperature of the catalyst. Has been adopted.
[0013]
However, there is a property that changes in the hydrogen concentration and the catalyst temperature are not proportional to the reduction amount and the reduction time. Therefore, in order to reliably reduce the oxide catalyst, it is necessary to look at a considerable margin time, and there is a problem that efficiency is poor. Further, when trying to obtain a catalyst having a predetermined reduction rate, it is difficult to accurately grasp the reduction rate, and there is a problem that accuracy is lacking.
[0014]
Furthermore, when a catalyst body having a catalyst supported on a carrier is subjected to a reduction treatment, changes in hydrogen concentration and catalyst temperature are not proportional to the amount of reduction, so that even when these are measured, the mass of the catalyst supported on the carrier is estimated. I can't. Therefore, there is a problem that whether or not the catalyst is supported on the carrier as set, that is, whether or not the catalyst has fallen out or is unevenly distributed, must be evaluated using other means.
[0015]
The problem to be solved by the present invention is to reliably grasp the reduction end time and reduction rate of a catalyst containing oxide as a main component, and to reduce a catalyst containing oxide as a main component without excess and deficiency. Another object of the present invention is to provide a catalyst reduction device capable of determining the mass of a catalyst supported on a carrier.
[0016]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a catalyst reduction device according to the present invention accommodates a catalyst containing an oxide as a main component, and a reducing means for performing a reduction reaction of the catalyst; and carbon monoxide for the reducing means. A reducing gas supply unit for supplying a reducing gas to be contained, and a concentration measuring unit for measuring at least one of carbon monoxide and carbon dioxide contained in the gas discharged from the reducing unit. It is the gist.
[0017]
According to the catalyst reduction device according to the present invention having the above-described configuration, the reducing gas containing carbon monoxide is reduced via the reducing gas supply unit with respect to the catalyst mainly containing the oxide housed in the reducing unit. Supplied. When the reducing gas is supplied, a portion of the carbon monoxide contained in the reducing gas is consumed by the reduction reaction of the catalyst containing oxides as a main component to become carbon dioxide, and the monoxide not consumed in the reduction reaction is consumed. Carbon is directly discharged from the reducing means.
[0018]
Next, the concentration of at least one of carbon monoxide and carbon dioxide contained in the gas discharged from the reducing means is measured by the concentration measuring means. At that time, the concentration of carbon monoxide or carbon dioxide in the gas discharged from the reducing means has a property that changes in proportion to the amount of reduction of the oxide catalyst. If the amount of change in the carbon concentration or the carbon dioxide concentration is measured, the end time of the reduction reaction, the reduction rate, the mass of the catalyst carried on the carrier, and the like can be easily determined.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of a catalyst reduction device according to an embodiment of the present invention. 1, the catalyst reduction device 10 includes a reduction unit 20, a reducing gas supply unit 30, and a concentration measurement unit 40.
[0020]
The reducing means 20 contains a catalyst 26 containing an oxide as a main component and includes a reducing unit 22 for causing a reduction reaction of the catalyst 26. The gas supply means 30 and the concentration measurement means 40 are connected.
[0021]
In this case, it is preferable that the reduction means 20 includes a temperature control means 24 for keeping the temperature of the catalyst 26 accommodated in the reduction unit 22 constant. When the reduction is performed while the temperature of the catalyst 26 is kept constant by the temperature control means 24, there is an advantage that the determination accuracy of the reduction amount of the catalyst 26, the reduction end time of the catalyst 26, the reduction rate, etc. is improved. The material, shape and the like of the reducing unit 22 are not particularly limited, and an optimum material may be selected according to the shape of the catalyst 26 to be reduced, the reducing temperature, and the like.
[0022]
Further, the catalyst 26 contained in the reducing section 22 may be any one that contains a metal or alloy oxide as a main component and is used after being reduced, and its use, composition, shape, and the like are not particularly limited. Absent.
[0023]
Examples of the reduced catalyst 26 include, for example, those used for steam reforming of methanol, methanol synthesis, water gas shift reaction, oxidation reaction, oxygen removal, methanation reaction, CO hydrogenation reaction (hydrocarbon synthesis reaction), and the like. Various catalysts.
[0024]
Specifically, Ta, La, Cu, Ni, Co, Fe, Ti, Mo, Sr, V, Sn, Bi, Zn, W, U, Mn, Cr, K, Mg, Ce, Al, Mg, Ag , Pt, Pd, Ru, Rh, Ir, Nb, Si, Zr, and the like; and a catalyst mainly containing an oxide of an alloy containing two or more metal elements selected from these.
[0025]
That is, MnO, V2O5, MoO3, Nb2O5, ZnO, Al2O3, SiO2, TiO2, MgO, ZrO2, TaO2, CuO, NiO, Co3O4, Fe2O3, SnO2, Bi2O3, WO3, V3O8, MnO2, Cr2O3, Ag2O, PtO2, PdO, RuO2, Sr2O, K2O, CeO2, La2O3Such a single metal oxide may be used as the catalyst 26, or a catalyst composed of two or more of these metal oxides may be used as the catalyst 26.
[0026]
In particular, CuO-ZnO, CuO-ZnO-Cr2O3, CuO-ZnO-Al2O3In addition to the fact that Cu-based catalysts used for steam reforming of methanol generate a large amount of heat during reduction, when a fuel cell system is constructed using a Cu-based catalyst, the performance of the fuel cell system depends on the performance of the fuel cell system. Directly connected to the quality of Therefore, if the Cu-based catalyst is reduced using the catalyst reduction device 10 according to the present invention, the reduction reaction can be strictly controlled, and there is an advantage that a high-quality Cu-based catalyst can be stably manufactured.
[0027]
Further, specific examples of the shape of the catalyst 26 include, for example, those formed into a spherical shape, a pellet shape, a ring shape, or the like using the material itself mainly containing an oxide of a metal or an alloy as described above, or a honeycomb or the like. What was shape | molded in the structure is mentioned. Alternatively, a catalyst body in which the above-described catalyst 26 is supported on a carrier made of metal, cordierite, or the like may be used. Further, in the case of the catalyst 26 used in a fluidized bed, the fine powder may be stored in the reducing unit 22 as it is without being formed.
[0028]
The reducing gas supply unit 30 is a device for supplying a reducing gas to the catalyst 26 housed in the reducing unit 22. Here, the reducing gas supplied from the reducing gas supply means 30 needs to contain at least carbon monoxide.
[0029]
The concentration of carbon monoxide contained in the reducing gas may be set to an optimum concentration according to the use and properties of the catalyst 26 to be reduced. For example, when reducing a CuO-ZnO-based catalyst used for steam reforming of methanol, the concentration of carbon monoxide in the reducing gas is preferably in the range of 0.001 to 10 vol%.
[0030]
If the concentration of carbon monoxide is less than 0.001 vol%, it is difficult to accurately measure the change over time in the concentration of carbon monoxide contained in the gas discharged from the reducing unit 22, which is not preferable. On the other hand, if the concentration of carbon monoxide exceeds 10 vol%, the reduction reaction of the CuO—ZnO-based catalyst proceeds rapidly and generates heat, possibly exceeding the heat resistance limit of the catalyst 26, which is not preferable.
[0031]
The reducing gas may contain other reducing gas such as hydrogen gas in addition to carbon monoxide. Further, in addition to carbon monoxide and hydrogen gas, an inert gas such as nitrogen or argon, water vapor, or the like may be contained.
[0032]
Further, the reducing gas supply means 30 may be any as long as it can supply a reducing gas having a predetermined composition, and its specific configuration is not particularly limited. In the example shown in FIG. As the gas supply means 30, a steam reformer for methanol or methane is used.
[0033]
1, the reducing gas supply unit 30 includes a raw material tank 31, an evaporating unit 32, a reforming unit 33, an oxidizing unit 34, an air injection unit 35, and a steam condensing unit 36.
[0034]
The raw material tank 31 is a part for storing hydrocarbons such as methanol and methane and water, and supplies methanol and water and the like to the evaporator 32 via a pump (not shown). The evaporating section 32 is for evaporating methanol and the like and water sent from the raw material tank 31 and supplying the water to the reforming section 33.
[0035]
Further, the reforming section 33 has a hydrogen as a main component, by causing a hydrocarbon gas such as methanol supplied from the evaporating section 32 to contact and react with a reforming catalyst in the presence of water vapor, carbon monoxide, carbon dioxide, And a reformed gas containing steam. It is preferable to use a Cu-Zn-based catalyst as the reforming catalyst.
[0036]
The air injection means 35 is for injecting a predetermined amount of air into the reformed gas generated in the reforming section 33. Further, the oxidizing unit 34 reacts hydrogen and carbon monoxide contained in the reformed gas with oxygen contained in the air injected through the air injection means 35 in the presence of a catalyst, and reacts with a small amount of hydrogen. This is a part for producing a reducing gas containing carbon monoxide. Platinum, ruthenium and their alloys are preferably used as the oxidation catalyst.
[0037]
As described above, when a steam reforming device such as methanol is used as the reducing gas supply unit 30, by controlling the amount of air injected into the reformed gas and the oxidation reaction of the reformed gas performed in the oxidizing unit 34, There is an advantage that a reducing gas having a desired carbon monoxide concentration can be easily produced.
[0038]
Further, the steam condensing section 36 is a section for condensing and removing steam contained in the reducing gas whose composition has been adjusted in the oxidizing section 34. The reducing gas from which the steam is condensed and removed in the steam condensing section 36 is supplied to the reducing means 20.
[0039]
Since the reformed gas obtained from the reforming section 33 contains 5 to 30% of water vapor, if the reducing gas discharged from the oxidizing section 34 is supplied to the reducing means 20 as it is, dew condensation occurs in the piping, The composition of the reducing gas may be changed. On the other hand, when the steam condensing section 36 is provided in the reducing gas supply means 30, there is an advantage that the composition fluctuation of the reducing gas is suppressed, and the accuracy of determination of the amount of catalyst carried and the end time of the reduction is improved.
[0040]
As the reducing gas supply means 30, the reformed gas generated in the reforming section 33 is directly supplied to the reducing means 20 without providing the air injection section 35, the oxidizing section 34, and the steam condensing section 36. It may be something. Further, the reformed gas obtained in the reforming section 33 may be diluted with an inert gas such as nitrogen or argon to be used as a reducing gas. Further, instead of using a steam reformer such as methanol as the reducing gas supply means 30, a gas cylinder filled with a reducing gas having a predetermined composition may be used.
[0041]
The concentration measuring means 40 is a device for measuring the concentration of carbon monoxide or carbon dioxide contained in the gas discharged from the reducing means 20. Specifically, a gas chromatograph equipped with a thermal conductivity type detector is used.To measure carbon monoxide or carbon dioxide continuously, a gas analyzer equipped with a non-dispersive infrared absorption type detector is used. Is a preferred example.
[0042]
It is sufficient for the concentration measuring means 40 to measure either the concentration of carbon monoxide or the concentration of carbon dioxide. This is because carbon monoxide is consumed in the reduction of the catalyst 26 to produce carbon dioxide, and the consumption of carbon monoxide and the production of carbon dioxide correspond to 1: 1. Further, the gas discharged from the concentration measuring means 40 may be exhausted as it is, but a part of the discharged gas may be returned to the air injection means 35 as shown by a dotted line in FIG. .
[0043]
Next, the operation of the catalyst reduction device 10 shown in FIG. 1 will be described. When hydrocarbons such as methanol and water are supplied from the raw material tank 31 to the evaporator 32, steam and water vapor such as methanol are generated in the evaporator 32, and supplied to the reformer 33. It is said that a reaction represented by the following chemical formula 1 occurs to generate a reformed gas composed of hydrogen, carbon monoxide, carbon dioxide, and steam.
[0044]
Embedded image
CH3OH + H2O → 2.5H2+ 0.5CO2+ 0.5CO + 0.5H2O
[0045]
A predetermined amount of air is injected into the obtained reformed gas via the air injection means 35, and a mixed gas of the reformed gas and the air is reacted in the oxidizing section 34. For example, assuming that air equivalent to seven times the amount of methanol is injected, the reaction occurring in the oxidizing section 34 can be represented by the following chemical formula 2.
[0046]
Embedded image
2.5H2+ 0.5CO2+ 0.5CO + 0.5H2O + 5.6N2+ 1.4O2  → 0.1H2+ 0.9CO2+ 0.1CO + 2.9H2O + 5.6N2
[0047]
The composition of the gas discharged from the oxidizing unit 34 is represented by the right side of the formula (2). When the gas having this composition is sent to the steam condensing unit 36 to condense and remove the water vapor, 1.5 vol% of hydrogen and 1 vol. A reducing gas containing 1.5 vol% of carbon oxide is obtained.
[0048]
The obtained reducing gas is sent to the reducing section 22 in which the catalyst 26 is accommodated, and the temperature control means 24 causes the reduction reaction to be performed while keeping the temperature of the catalyst 26 constant. In this case, since both the carbon monoxide and the hydrogen are contained in the reducing gas, the catalyst 26 is reduced by both gases. Among them, a part of the carbon monoxide contained in the reducing gas reacts with the catalyst 26 in an oxide state according to the following formula 3 to generate carbon dioxide.
[0049]
Embedded image
CO + MeO → Me + CO2  (Me is a metal element)
[0050]
Since the concentration of carbon monoxide or the concentration of carbon dioxide in the gas discharged from the reducing unit 22 has a property of varying in proportion to the amount of reduction of the catalyst 26, the concentration is continuously controlled by the concentration control unit 40. If the measurement is carried out, it is possible to easily determine the reduction end time and the reduction amount of the catalyst 26.
[0051]
FIG. 2 shows carbon monoxide in a gas (hereinafter simply referred to as “outgas”) discharged from the reduction unit 22 when the oxide catalyst is reduced using a reducing gas containing both carbon monoxide and hydrogen. 6 shows an example of changes over time in the concentration, carbon dioxide concentration, and hydrogen concentration. In FIG. 2, the vertical axis represents the concentration difference between when the reduction reaction starts and when the reduction reaction ends.
[0052]
As shown in FIG. 2, in the case of the hydrogen concentration, most of the hydrogen contained in the reducing gas (hereinafter, simply referred to as “inlet gas”) introduced into the reducing unit 22 is consumed for the reduction reaction of the catalyst 26 immediately after the start of the reduction. Therefore, the hydrogen concentration in the outgas is very low. However, the hydrogen concentration in the outgoing gas reaches the incoming gas concentration in a short time from the start of the reduction, and thereafter changes regardless of the reduction amount of the catalyst 26. Therefore, it is difficult to specify the time when the reduction of the catalyst 26 is completed and the amount of the reduction even if the change with time in the hydrogen concentration in the gas output is measured.
[0053]
On the other hand, the concentration of carbon monoxide in the output gas has a property of varying in proportion to the amount of reduction of the catalyst 26. Therefore, as shown in FIG. 2, as the reduction reaction proceeds, the amount of carbon monoxide that is discharged without being consumed in the reduction reaction increases, so that the concentration of carbon monoxide gradually increases, and the reduction reaction ends. At this point, the concentration of carbon monoxide in the outgoing gas is saturated with the concentration of carbon monoxide in the incoming gas.
[0054]
Carbon dioxide is produced by reducing the metal oxide constituting the catalyst 26 with carbon monoxide, as shown in the chemical formula (3). The amount corresponds to 1: 1. Therefore, the concentration of carbon dioxide in the outgoing gas shows a tendency completely opposite to the concentration of carbon monoxide, and gradually decreases in proportion to the amount of reduction of the catalyst 26. Saturates.
[0055]
Therefore, if at least one of the carbon monoxide concentration and the carbon dioxide concentration in the outgas is measured over time, it is determined that the reduction of the catalyst 26 is completed at the time when the carbon monoxide concentration in the outgas is saturated. can do. When the amount of the catalyst 26 accommodated in the reducing unit 22 is known, the amount of reduction of the catalyst 26 and the reduction rate can be easily calculated by measuring the concentration of carbon monoxide in the output gas. Can be.
[0056]
Further, utilizing the fact that the concentration of carbon monoxide or carbon dioxide contained in the output gas changes substantially in proportion to the amount of reduction of the catalyst 26, for example, the amount of catalyst carried by the catalyst body having the catalyst 26 supported on a carrier Can also be estimated. FIG. 3 shows a change with time of the concentration of carbon monoxide when the catalyst bodies having different amounts of supported catalyst are reduced with a reducing gas containing carbon monoxide.
[0057]
When the reduction conditions are fixed, in the case of a catalyst body with a small amount of supported catalyst, the reduction is completed in a short time as shown by line A in FIG. 3, but as the amount of supported catalyst increases, the reduction of FIG. As shown in lines B and C, it takes a long time to finish the reduction.
[0058]
Therefore, when the amount of the catalyst supported on the carrier is unknown, the concentration of the carbon monoxide in the outgas after a predetermined time has elapsed can be measured. The amount can be estimated.
[0059]
(Example 1)
After pulverized powder obtained by pulverizing Toyo CCI's copper-zinc methanol reforming catalyst MDC-4 to an average particle size of 3 μm, a slurry was prepared, and the slurry was adjusted to an inner diameter of 18 mm, a length of 120 mm, a volume of 30 cc, and 600 cells / cm 2. By applying the composition to a metal carrier, a catalyst body was obtained. The catalyst loading amount was four types: 11.3 g / l, 103.0 g / l, 172.3 g / l, and 247.0 g / l. Table 1 shows the amount of the supported catalyst, the thickness of the catalyst layer, and the physical properties of the supporting slurry of the obtained catalyst.
[0060]
[Table 1]
Figure 0003553579
[0061]
FIG. 4 shows a cross-sectional view of the obtained catalyst body. In the catalyst body 28, a catalyst 26 is supported at a predetermined thickness on a carrier 27 on which a flat plate 27a and a corrugated plate 27b are stacked, and the thickness of the catalyst layer increases as the amount of supported catalyst increases.
[0062]
That is, the thickness of the catalyst layer at a position away from the joint between the flat plate 27a and the corrugated plate 27b (hereinafter referred to as “thin catalyst layer thickness”) is determined when the catalyst loading is 11.3 g / l. Was less than 0.1 μm. Further, as the amount of supported catalyst increases sequentially to 103.0 g / l, 172.3 g / l, and 247.0 g / l, the thickness of the thin catalyst layer becomes about 15 μm, about 25 μm, and about 35 μm, respectively. Has increased.
[0063]
Similarly, the thickness from the junction between the flat plate 27a and the corrugated plate 27b to the surface of the catalyst layer (hereinafter, referred to as “corner catalyst layer thickness”) also increases as the amount of supported catalyst increases. Was. That is, when the supported catalyst amount is 11.3 g / l and 103 g / l, the corner catalyst layer thickness is 100 μm, and the supported catalyst amount increases sequentially to 172.3 g / l and 247.0 g / l. Accordingly, the thickness of the corner portion catalyst layer also increased to 200 μm and 300 μm.
[0064]
Next, the catalyst body 28 supporting the catalyst 26 is accommodated in the reduction unit 22 of the catalyst reduction device 10,2= 2%, CH4= 1%, CO2= 1%, remaining N2Using a reducing gas having the following composition, the average temperature of the catalyst body 28 is about 200 ° C., and the gas space velocity is about 2000 h.-1For 4 hours. Further, using a gas chromatograph equipped with a thermal conductivity type detector (TCD), the hydrogen concentration, carbon monoxide concentration, and carbon dioxide concentration in the gas discharged from the reduction unit 22 are measured every 20 to 30 minutes. did. Further, the concentrations of carbon monoxide and carbon dioxide were continuously measured by a gas analyzer equipped with a non-dispersive infrared absorption detector (NDIR).
[0065]
In this case, as the reducing gas supply means 30, H2= 10%, CH4= 5%, CO2= 5%, remaining N2A gas cylinder filled with a mixed cylinder gas having a composition of2Using a gas cylinder filled with gas, the mixed2The gas was diluted 5-fold with a gas to obtain a reducing gas, which was directly supplied to the reducing unit 22.
[0066]
The changes over time of the hydrogen concentration, carbon monoxide concentration, and carbon dioxide concentration in the outgas are shown in FIGS. In the case where the catalyst carrying amount is 11.3 g / l, as shown in FIG. 5, the hydrogen concentration in the outlet gas already shows 2% of the inlet gas concentration 5 minutes after the start of the reduction, and thereafter, the hydrogen concentration decreases. No change over time was observed.
[0067]
On the other hand, the concentration of carbon monoxide in the gas output showed 0.8% 5 minutes after the start of reduction, and reached 0.9% 30 minutes later. After 60 minutes, the gas concentration was stable at the gas concentration (about 1%). Correspondingly, the concentration of carbon dioxide in the outgoing gas shows 1.3% after 5 minutes from the start of the reduction and 1.1% after 30 minutes, and after 60 minutes, the incoming gas concentration (about 1%). %).
[0068]
When the amount of supported catalyst was 103.0 g / l, as shown in FIG. 6, the hydrogen concentration in the outgas showed 2% after 5 minutes from the start of reduction, and 2.1% after 30 minutes. Reached. Further, the change with time of the hydrogen concentration after that was slight. The hydrogen concentration after 30 minutes slightly exceeds the gas concentration, which is considered to be an experimental error.
[0069]
On the other hand, the concentration of carbon monoxide in the outgas showed 0.5% after 5 minutes from the start of the reduction, and 0.7% after 30 minutes. The carbon monoxide concentration continued to increase gradually thereafter, and after about 90 minutes had passed, the gas concentration was stabilized. Correspondingly, the carbon dioxide concentration shows 1.5% after 5 minutes from the start of the reduction and 1.3% after 30 minutes, and is stable at the gas concentration after about 90 minutes from the start of the reduction. did.
[0070]
In addition, when the catalyst carrying amount is 172.3 g / l, as shown in FIG. 7, the hydrogen concentration in the outgas shows 1.2% after 5 minutes from the reduction, and becomes 2.% after 30 minutes. It jumped to 2%. After that, however, it decreased and stabilized at 2%.
[0071]
On the other hand, the concentration of carbon monoxide in the outgas showed 0% after 5 minutes from the start of the reduction and 0.5% after 30 minutes. The carbon monoxide concentration continued to increase gradually thereafter, and after about 60 minutes had passed, the concentration of the incoming gas became stable. Correspondingly, the carbon dioxide concentration was 2.3% 5 minutes after the start of reduction, 1.5% after 30 minutes, and was stable after about 60 minutes.
[0072]
Further, when the catalyst carrying amount is 247.0 g / l, as shown in FIG. 8, the hydrogen concentration in the outgas shows 1% after 5 minutes from the start of the reduction, and 1.7 after 30 minutes. %. Furthermore, it reached 2.6% after 60 minutes, but then decreased slightly, and became stable at 2.5% after 90 minutes.
[0073]
On the other hand, the carbon monoxide concentration in the outgas showed 0% after 5 minutes from the start of the reduction, and 0.2% after 30 minutes. The carbon monoxide concentration continued to increase gradually thereafter, and became stable at the incoming gas concentration after about 60 minutes. Corresponding to this, the carbon dioxide concentration showed 2.5% after 5 minutes from the start of the reduction and 2.3% after 30 minutes, and was stable at the gas concentration after about 60 minutes. .
[0074]
As is clear from FIGS. 5 to 8, the hydrogen concentration may hardly change with time or may decrease with time, and the hydrogen concentration may decrease in proportion to the reduction amount of the catalyst 26. It can be seen that it has not fluctuated. For this reason, it is difficult to determine the end time of reduction and the amount of reduction based on the temporal change of the hydrogen concentration.
[0075]
On the other hand, the concentration of carbon monoxide or the concentration of carbon dioxide saturates with the concentration of the incoming gas at the end of the reduction, and thus it can be seen that the end time of the reduction can be specified from the change over time in the concentration.
[0076]
In addition, as the amount of supported catalyst increases, that is, as the thickness of the catalyst layer increases, the concentration of carbon monoxide immediately after the reduction starts and the concentration of carbon dioxide increase, and it takes time until the reduction reaches the entire catalyst layer. It turns out that it requires. Therefore, when the catalyst is unevenly distributed on the carrier, it appears as a change in the concentration of carbon monoxide immediately after the start of the reduction, its increase rate, or the concentration of carbon dioxide or its decrease rate.
[0077]
Furthermore, when a large amount of copper oxide is present in the catalyst 26, the concentration of carbon monoxide in the outgas at the initial stage of reduction is low, and as the reduction proceeds and the content of copper oxide decreases, Carbon monoxide concentration is high. In addition, the carbon dioxide concentration shows a tendency completely opposite to the carbon monoxide concentration. Therefore, if the relationship between the amount of reduction (reduction rate) and the concentration of carbon monoxide or carbon dioxide is determined in advance, the amount of reduction (reduction rate) can be calculated back from the concentration of carbon monoxide or carbon dioxide.
[0078]
FIG. 9 shows the relationship between the ratio of the concentration of carbon monoxide in the outgoing gas 5 minutes and 30 minutes after the start of reduction to the concentration of carbon monoxide in the incoming gas, and the amount of catalyst carried. FIG. 9 shows that a linear relationship is observed between the ratio of the concentration of carbon monoxide in the outgoing gas to the concentration of carbon monoxide in the incoming gas, and the amount of catalyst carried. Therefore, in the case where the amount of supported catalyst of the catalyst body is unknown, if the concentration of carbon monoxide is measured under the condition that the input gas concentration and the reduction temperature are constant, the results shown in FIG. The presence / absence of dropout can be determined. The same applies to the case of carbon dioxide concentration.
[0079]
As described above, the embodiments of the present invention have been described in detail. However, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention. For example, in the above embodiment, the catalyst body in which the catalyst for methanol reforming is supported on the honeycomb-shaped metal carrier is reduced, but the catalyst reduction device according to the present invention is used for reducing the CuO-ZnO-based pellet catalyst. Is also applicable.
[0080]
Further, in the above embodiment, an example in which the catalytic reduction device according to the present invention is used for the reduction treatment of the methanol reforming catalyst is shown. However, methanol synthesis, water gas shift reaction, oxidation reaction, oxygen removal, methanation reaction, CO It can also be used for reduction treatment of various oxide catalysts used for hydrogenation reaction and the like, whereby the same effect as in the above embodiment can be obtained.
[0081]
【The invention's effect】
A catalyst reduction device according to the present invention accommodates a catalyst containing an oxide as a main component, and supplies a reducing means for performing a reduction reaction of the catalyst, and supplies a reducing gas containing carbon monoxide to the reducing means. Reducing gas supply means, and a concentration measuring means for measuring at least one of carbon monoxide and carbon dioxide contained in the gas discharged from the reducing means, wherein the concentration measuring means is in proportion to the reduction amount of the catalyst. Since the reduction treatment is performed while continuously measuring the concentration of carbon monoxide or the concentration of carbon dioxide discharged by the exhaust gas, there is an effect that the end time of the reduction of the catalyst, the reduction amount, the reduction ratio, and the like can be reliably determined.
[0082]
Further, according to the catalyst reduction device of the present invention, when a catalyst having a catalyst carried on a carrier is subjected to a reduction treatment, the amount of the catalyst carried under a predetermined reduction condition and the concentration of carbon monoxide or the concentration of carbon dioxide in the discharged gas are reduced. If the relationship with the carbon concentration is determined in advance, there is an effect that the mass of the catalyst supported on the carrier can be easily estimated.
[0083]
Therefore, if this is applied to, for example, the reduction treatment of a reforming catalyst incorporated in a methanol reformer used in a reformed gas fuel cell system, a high-quality reforming catalyst can be stably manufactured. It is an invention which has an extremely large effect in industry.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a catalyst reduction device according to the present invention.
FIG. 2 is a schematic diagram showing changes over time of a hydrogen concentration, a carbon monoxide concentration, and a carbon dioxide concentration in a gas discharged from a catalyst accommodating means.
FIG. 3 is a schematic diagram showing a change over time in the concentration of carbon monoxide in an outgas when a catalyst body having a different amount of supported catalyst is reduced under the same conditions.
FIG. 4 is an enlarged sectional view of catalyst bodies having different amounts of supported catalyst.
FIG. 5 is a diagram showing changes over time in the hydrogen concentration, carbon monoxide concentration, and carbon dioxide concentration in the outgas when a catalyst having a catalyst loading of 11.3 g / l is reduced.
FIG. 6 is a graph showing changes over time in the hydrogen concentration, carbon monoxide concentration, and carbon dioxide concentration in the outgas when a catalyst having a catalyst loading of 103.0 g / l is reduced.
FIG. 7 is a graph showing changes over time in the hydrogen concentration, carbon monoxide concentration, and carbon dioxide concentration in the outgas when a catalyst having a catalyst loading of 172.3 g / l is reduced.
FIG. 8 is a graph showing changes over time in the hydrogen concentration, carbon monoxide concentration, and carbon dioxide concentration in outgas when a catalyst having a catalyst loading of 247.0 g / l is reduced.
FIG. 9 is a diagram showing the relationship between the ratio of the concentration of carbon dioxide in the outgoing gas to the concentration of carbon monoxide in the incoming gas and the amount of catalyst carried.
[Explanation of symbols]
10. Catalyst reduction device
20 Reducing means
26 catalyst
30 Reducing gas supply means
40 Concentration measuring means

Claims (1)

酸化物を主成分とする触媒を収容すると共に、該触媒の還元反応を行わせる還元手段と、
該還元手段に、一酸化炭素を含有する還元ガスを供給する還元ガス供給手段と、
前記還元手段から排出されるガス中に含まれる一酸化炭素及び二酸化炭素の内、少なくとも一方の濃度を測定する濃度測定手段とを備えていることを特徴とする触媒還元装置。
A reduction means for containing a catalyst containing an oxide as a main component and for performing a reduction reaction of the catalyst,
A reducing gas supply unit that supplies a reducing gas containing carbon monoxide to the reducing unit;
A catalytic reduction device comprising: a concentration measuring means for measuring at least one of carbon monoxide and carbon dioxide contained in the gas discharged from the reducing means.
JP23304998A 1998-08-19 1998-08-19 Catalyst reduction device Expired - Fee Related JP3553579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23304998A JP3553579B2 (en) 1998-08-19 1998-08-19 Catalyst reduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23304998A JP3553579B2 (en) 1998-08-19 1998-08-19 Catalyst reduction device

Publications (2)

Publication Number Publication Date
JP2000061318A JP2000061318A (en) 2000-02-29
JP3553579B2 true JP3553579B2 (en) 2004-08-11

Family

ID=16949005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23304998A Expired - Fee Related JP3553579B2 (en) 1998-08-19 1998-08-19 Catalyst reduction device

Country Status (1)

Country Link
JP (1) JP3553579B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6451464B1 (en) * 2000-01-03 2002-09-17 Idatech, Llc System and method for early detection of contaminants in a fuel processing system
JP4490717B2 (en) * 2004-03-26 2010-06-30 アイシン精機株式会社 Reformer
KR100649737B1 (en) * 2005-10-17 2006-11-27 삼성전기주식회사 Hydrogen fuel cells having thin film multi-layers
EP1955979B1 (en) * 2007-02-12 2012-04-04 Samsung SDI Co., Ltd. Reformer and Fuel Cell System Comprising the Same
JP5662044B2 (en) * 2010-03-31 2015-01-28 大阪瓦斯株式会社 Method for determining the degree of activation of a catalyst
JP2013161662A (en) * 2012-02-06 2013-08-19 Nippon Telegr & Teleph Corp <Ntt> Evaluation method of fuel electrode
JP5866713B2 (en) * 2012-12-27 2016-02-17 新コスモス電機株式会社 Gas detector
CN104138758B (en) * 2013-05-08 2017-02-08 中国科学院大连化学物理研究所 High selectivity carbon dioxide methanation catalyst and preparation method and application thereof
CN104148065B (en) * 2013-05-14 2017-02-08 中国科学院大连化学物理研究所 Catalyst used for methanation of carbon dioxide, preparation method therefor and applications thereof

Also Published As

Publication number Publication date
JP2000061318A (en) 2000-02-29

Similar Documents

Publication Publication Date Title
JP3743995B2 (en) Methanol reforming catalyst
Pérez-Hernández et al. Hydrogen production by oxidative steam reforming of methanol over Ni/CeO2–ZrO2 catalysts
KR100386435B1 (en) Catalyst for water gas shift reaction, method for removing carbon monoxide in hydrogen gas and electric power-generating system of fuel cell
EP1046612A1 (en) Hydrogen refinement apparatus
JP3759406B2 (en) Methanol reforming catalyst, methanol reforming apparatus and methanol reforming method
JP2004525047A (en) Non-ignitable water-gas conversion catalyst
JP4185952B2 (en) Carbon monoxide removal catalyst, production method thereof, and carbon monoxide removal apparatus
KR20070114118A (en) Durable catalyst for processing carbonaceous fuel, and the method of making
JP3553579B2 (en) Catalyst reduction device
TWI294413B (en) Method for converting co and hydrogen into methane and water
Salazar-Villalpando et al. Hydrogen production by methane decomposition and catalytic partial oxidation of methane over Pt/CexGd1− xO2 and Pt/CexZr1− xO2
JP3473896B2 (en) Hydrogen purification equipment
WO2007043571A1 (en) Catalyst for partial oxidation of hydrocarbon
JP2008194667A (en) Method for manufacturing catalyst where manganese oxide/cerium oxide are loaded on nano gold and application of the same
JP2003144925A (en) Method for manufacturing catalyst for shift reaction of carbon monoxide
JPH05201702A (en) Selective removing method of carbon monoxide and its device
JP4240787B2 (en) Method for activating carbon monoxide removal catalyst, method for operating carbon monoxide remover, and method for operating fuel cell system
US20040258598A1 (en) Process for selective oxidation of carbon monoxide in a hydrogen containing stream
Pérez-Hernández et al. Oxidative steam reforming of methanol for hydrogen production over Cu/CeO2-ZrO2 catalysts
JP2003519067A (en) Method for the selective oxidation of carbon monoxide in hydrogen-containing streams
TWI304360B (en) Preparation of copper-containing catalyst supported on cerium-zirconium mixed oxide and its use in the reaction of selective oxidation of carbon monoxide
Chen et al. Evidence of redox cycling as a sub-mechanism in hydrogen production during ethanol steam reforming over La0. 7Sr0. 3MnO3-x perovskite oxide catalysts
JP4663095B2 (en) Hydrogen purification equipment
TWI398298B (en) Preparation of copper oxide-titania-supported nano-gold catalysts and its application in preferential oxidation of carbon monoxide in hydrogen stream
JP2002056874A (en) Device and method for controlling reform of fuel for fuel cell

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040429

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees