JP3553325B2 - Carbon material-containing resin composition, method for producing the same, and carbon material-containing resin molded article - Google Patents

Carbon material-containing resin composition, method for producing the same, and carbon material-containing resin molded article Download PDF

Info

Publication number
JP3553325B2
JP3553325B2 JP20365697A JP20365697A JP3553325B2 JP 3553325 B2 JP3553325 B2 JP 3553325B2 JP 20365697 A JP20365697 A JP 20365697A JP 20365697 A JP20365697 A JP 20365697A JP 3553325 B2 JP3553325 B2 JP 3553325B2
Authority
JP
Japan
Prior art keywords
resin
carbon material
wood chip
weight
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20365697A
Other languages
Japanese (ja)
Other versions
JPH1143611A (en
Inventor
義孝 河尻
俊弘 近藤
武史 五十嵐
養達 椙原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiren Co Ltd
Original Assignee
Seiren Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiren Co Ltd filed Critical Seiren Co Ltd
Priority to JP20365697A priority Critical patent/JP3553325B2/en
Publication of JPH1143611A publication Critical patent/JPH1143611A/en
Application granted granted Critical
Publication of JP3553325B2 publication Critical patent/JP3553325B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、炭材含有樹脂組成物、その製造方法、および、炭材含有樹脂成形品に関し、詳しくは、木炭粉などの炭材を含有させることで、吸放湿性などの特性を向上させた樹脂組成物とその製造方法、さらに、炭材含有樹脂組成物から得られる炭材含有樹脂成形品に関する。
【0002】
【従来の技術】
各種の合成樹脂製品を製造する際に、樹脂原料に各種の無機材料を含有させておくことで、樹脂製品の各種特性を向上させることが行われている。例えば、カーボンブラックを含有させることで、樹脂製品に導電性を与えることができる。多孔質セラミック材を含有させることで、吸放湿性を向上させることも行われている。これら無機材料を樹脂に含有させる場合、無機材料を粉粒化した状態で樹脂に分散混合させる方法が採用されることが多い。
【0003】
吸放湿性に優れた材料として、木炭が知られている。木炭は、吸放湿性のほか、脱臭性、防黴性、遠赤外線放射性、導電性、電磁波吸収性、イオン調整などの機能も有していることが知られている。特に、木材の細片を炭化させてなる木材チップ炭化物は、上記のような機能に特に優れた材料となる。特許第2561433号公報には、木材チップ炭化物の具体的製造方法が示されている。
【0004】
【発明が解決しようとする課題】
木材チップ炭化物を、前記した合成樹脂製品の樹脂原料に含有させておけば、従来の無機材料に比べて、さらに優れた諸特性が発揮できると考えられた。また、細かな木材チップ炭化物を樹脂とともに成形すれば、様々な形状を有する製品が容易に製造でき、木材チップ炭化物のままで取り扱うよりも使用し易いと考えられた。
【0005】
しかし、不定形の木材チップ炭化物は、そのままで樹脂に混合しても、成形が困難である。そのため、木材チップ炭化物を微粉化してから樹脂に含有させることが考えられた。微粉化された木材チップ炭化物すなわち木材チップ炭化物粉は、前記した吸放湿性などの特性についても向上する。
ところが、木材チップ炭化物粉を樹脂に混合しても、樹脂に均一に含有させることが難しいという問題が発生した。特に、粒子径の小さい微細な木材チップ炭化物粉ほど、樹脂への均一な配合が困難である。木材チップ炭化物粉は、凝集力が非常に大きいため、樹脂に混合したときに粒子同士が凝集を起こしてしまい、均一な分散が果たせないのである。
【0006】
樹脂への分散が不均一であると、樹脂組成物の特性にばらつきが生じ、成形などの製品製造工程が良好に行えなくなる。得られた樹脂製品についても、含有粒子が偏在していると外観が悪く、品質性能にも劣るものとなる。特に、木材チップ炭化物粉の機能である前記吸放湿性や導電性などの特性は、樹脂中に粒子が均一に分散していなければ、十分な性能を発揮できない。
【0007】
そこで、本発明の課題は、木材チップ炭化物粉が有する優れた機能を発揮できる炭材含有樹脂組成物を得ることである。
【0008】
【課題を解決するための手段】
本発明にかかる炭材含有樹脂組成物は、樹脂成形品の製造に用いられる炭材含有樹脂組成物であって、樹脂100重量部と、粒径30μm以下の木材チップ炭化物粉3〜50重量部と、界面活性剤0.5〜10重量部とを含む。
各構成要件について具体的に説明する。
【0009】
〔樹 脂〕
目的や要求性能に合わせて、通常の樹脂製品と同様の樹脂材料が用いられる。具体的には、ポリ塩化ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアクリル樹脂、ポリスチロール樹脂、ポリウレタン樹脂、および、これらの樹脂の共重合樹脂その他の熱可塑性樹脂が用いられる。尿素樹脂、メラミン樹脂、フェノール樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ジアリルフタレート樹脂、ウレタン樹脂、シリコン樹脂、および、これらの樹脂の共縮合樹脂などの熱硬化性樹脂も用いられる。
【0010】
樹脂は、着色樹脂あるいは透明樹脂の何れであってもよい。
〔木材チップ炭化物粉〕
木材の細片すなわちチップを炭化させてなる木材チップ炭化物を粉砕して粉体化したものである。
木材チップの原木としては、主に、杉材、ヒマラヤ杉材、赤松材等の針葉樹材が用いられ、特に赤松材が好ましい。木材製品として利用し難く安価な細い木材や廃材を利用することができる。パルプ製造やボード建材の原料として大量に工業生産されている木材チップ製品を用いることもできる。
【0011】
木材チップの炭化方法は、基本的には通常の木炭の製造方法と共通する技術が利用できる。具体的には、前記特許第2561433号公報に開示された方法が適用できる。
得られた木材チップ炭化物は、内部に微かな細孔を有する多孔質構造である。木材チップ炭化物を粉砕して、粒径30μm以下に調整する。粉砕は、通常の粉砕手段が採用される。より好ましくは、粒径10μm以下のものを用いる。粒径が小さいほど、単位重量当たりの表面積が大きくなり、表面性状に基づく諸特性が向上する。
【0012】
木材チップの原料、炭化処理、粉砕処理、あるいは、粒径などの条件によって、炭化物の多孔質構造に違いが生じ、吸放湿性等の特性にも違いが生じる。使用目的や要求性能に合わせて、所望の特性を有する木材チップ炭化物粉を選択したり、特性の異なる複数種類の木材チップ炭化物粉を組み合わせて用いることができる。
【0013】
例えば、木材チップ炭化物の焼成温度が高いほど、電気抵抗値が低下する。したがって、焼成温度の設定によって、製造される樹脂成形品の電気抵抗値を調整することができる。具体的な焼成温度としては、木材チップ炭化物自体は600℃程度以上でも焼成できるが、電気抵抗値を低下させるには、2000〜3500℃の範囲に設定するのが好ましい。
【0014】
樹脂100重量部に対して、粒径30μm以下の木材チップ炭化物粉が3〜50重量部の割合で配合される。木材チップ炭化物粉の割合が少な過ぎると、その特性が十分に発揮できない。木材チップ炭化物粉の割合が多過ぎると、樹脂の特性が十分に発揮できなかったり、成形加工などの処理が困難になる。
木炭チップ炭化物粉の表面に、カップリング剤による表面処理を施しておくことで、樹脂との接着性を向上させることができる。
【0015】
〔界面活性剤〕
樹脂との親和性に劣る木材チップ炭化物粉の表面に対して、樹脂との親和性を改善する作用があれば、通常の各種界面活性剤が用いられる。一般的には、親水性を示す木材チップ炭化物粉の表面を、界面活性剤の作用で親油性に変えて、樹脂との親和性を高めることができる。
【0016】
樹脂の種類によって、好ましい界面活性剤が異なる。
例えば、ポリエチレン樹脂またはポリプロピレン樹脂には、アルキルリン酸エステルが好ましい。ポリスチロール樹脂には、アルキルスルフォン酸塩またはアルキルベンゼンスルフォン酸塩が好ましい。ABS樹脂またはポリ塩化ビニル樹脂には、アルキルスルフォン酸塩が好ましい。一般的に、熱可塑性樹脂にはアニオン界面活性剤が好ましい。フェノール樹脂、エポキシ樹脂等の熱硬化性樹脂には、グリセリンモノステアレート、ポリオキシエチレンアルキルアミン等の非イオン界面活性剤が好ましい。
【0017】
樹脂100重量部に対して、0.5〜10重量部の界面活性剤が配合される。界面活性剤の配合量は、木材チップ炭化物粉の配合量にも合わせるのが好ましく、木材チップ炭化物粉と樹脂との間で互いの親和性を改善できるのに必要かつ十分な量で界面活性剤が存在していることが好ましい。
〔その他の材料〕
通常の樹脂製品の製造において、樹脂組成物に配合される各種の添加材料を用いることができる。
【0018】
例えば、無機充填材として、炭酸カルシウム、酸化カルシウム、タルク、クレー、カオリン、硫酸バリウム、水酸化アルミニウム、水酸化マグネシウム、酸化チタン、雲母、ウオラストナイト、珪藻土、ガラスビーズ、シリカ、金属類粉末、金属繊維、炭素繊維、ガラス繊維などが使用できる。
無機材料として、木材チップ炭化物粉と同様の木炭材料である、備長炭や松果炭を粉末化して用いたり、同じ炭素材料である活性炭やカーボンブラックを用いることもできる。但し、これらの材料は、木材チップ炭化物粉の機能を損なわない程度の割合で用いられる。同じ炭素材料であっても、活性炭やカーボンブラックと木材チップ炭化物粉とは、その特性に違いがある。そこで、木材チップ炭化物粉とその他の炭素材料とを組み合わせることで、樹脂組成物あるいは樹脂成形品の特性を変えることができる。例えば、木材チップ炭化物に他の炭素材料を組み合わせることで、電気抵抗率を広い範囲で調整することができる。
【0019】
有機材料として、木粉、パルプ、コルク粉、シルク粉、合成樹脂粉、合成繊維(ポリアクリルニトリル、ナイロン、ポリエステル、アラミド、ポリイミド、フッ素系繊維)などが使用できる。
これらの添加材料は、用途や要求性能に合わせて単独あるいは複数種を組み合わせて用いることができる。添加材料の配合によって、樹脂の機械的性質、電気的性質、熱的性質、加工性等を改善できる。増量(重量および容量)やコスト低減にも有効である。
【0020】
樹脂組成物に、揮発性発泡剤や分解性発泡剤を配合しておけば、発泡樹脂製品を製造することができる。
着色剤や可塑剤その他の添加剤も必要に応じて配合される。
〔炭材含有樹脂組成物の製造〕
樹脂組成物を構成する材料を、通常の混合手段で混合することで、樹脂組成物が得られるが、樹脂組成物の材料に大きな剪断力を与えて混練することが好ましい。
【0021】
剪断力を与えて混練する手段としては、ヘンシェルミキサー、ローラ混練機、高速ミキサー、その他の混合装置あるいは混練装置が用いられる。
樹脂組成物の材料は、全ての材料を同時に供給して混練してもよいし、タイミングをずらせて供給することもできる。例えば、樹脂に界面活性剤を混合した後で木材チップ炭化物粉を供給してもよいし、木材チップ炭化物粉と界面活性剤とを混合してから樹脂に混合することもできる。
【0022】
樹脂組成物を構成する材料のうち、木材チップ炭化物粉を除く材料は、液状で供給されるものであってもよいし、粉体などの固体で供給されるものであってもよい。
混練の際に加熱することができる。加熱によって樹脂を溶融させれば、木材チップ炭化物粉との混練が良好に行われる。この場合、樹脂を粉末状あるいはペレット状で供給することができる。
【0023】
製造された炭材含有樹脂組成物は、通常の樹脂組成物と同様に取り扱われ、各種樹脂製品の製造に供される。
〔炭材含有樹脂成形品の製造〕
通常の成形装置および成形方法を用いて樹脂成形品を製造することができる。押出成形、射出成形、発泡成形、シート成形などの通常の成形技術が適用される。
【0024】
成形品の形態は、シートやフィルム、板材、あるいは立体形状を有する成形品その他の任意の形態が採用できる。
成形品の具体的用途としては、遠赤外線放射特性に優れていることから農園芸用シート、マット材、保温シートなどに好適に使用される。調湿材料として、建築用、工業用、農業用に利用できる。防臭特性に優れていることから消臭用シートに利用できる。野菜、果物、切り花などの鮮度保持シート、鮮度保持用成形品に利用できる。帯電(静電気)防止用成形品として利用できる。電磁波遮蔽特性に優れていることから、電子機器の誤動作防止対策やテレビやラジオなどへの干渉予防対策、携帯電話からの電磁波の放出防止対策などに利用する電磁波シールド材に利用したり、半導体分野で利用したりすることができる。
【0025】
〔作 用〕
微細な木材チップ炭化物粉の表面と樹脂との間に界面活性剤が介在すると、木材チップ炭化物粉の樹脂に対する親和性が高まり、木材チップ炭化物粉は凝集を起こさずに均一な分散状態で樹脂に混合される。また、木材チップ炭化物粉と樹脂との界面における密着性が高まり、樹脂中に木材チップ炭化物粉が安定して含有されることになる。
【0026】
界面活性剤の存在は、樹脂組成物を射出成形、押出成形あるいはロール成形などで成形加工する際の流動性を高める機能もある。その結果、成形加工性が良くなり、成形品の表面肌が滑らかで高光沢を有するものとなり、表面硬度や衝撃強度、剛性などの物理的特性を向上させることもできる。
樹脂中に均一に分散された木材チップ炭化物粉は、樹脂組成物から得られる樹脂製品の、吸放湿性、脱臭性、防黴性、遠赤外線放射性、導電性、電磁波吸収性、イオン調整機能などを向上させる。
【0027】
木材チップ炭化物粉の表面には細孔を有している。より詳しくは、孔径の大きなマクロ孔や少し小さなメソ孔が開口していたり、マクロ孔の内壁にさらに孔径の小さなマクロ孔が開口していたりしていて、孔の奥に入るほど孔径が小さくなるような構造を有している。このような微細な多孔質構造を有していることで、木材チップ炭化物粉は前記のような特性が発揮される。
【0028】
木材チップ炭化物粉には、電磁波の反射を防ぐとともに、電磁波を熱エネルギー、すなわちジュール熱に変換する特性がある。木材チップ炭化物粉の焼成温度が高いほど、木材チップ炭化物粉に含まれるπ電子が発達してきて、電磁波遮蔽性が高まる。また、一般に、材料の電気抵抗が小さいほど電磁波遮蔽性は高くなり、木材チップ炭化物粉は電気抵抗が極めて小さいので、このことからも電磁波遮蔽性が高まる。
【0029】
木材チップ炭化物粉には吸脱着作用があるとともに、活性炭やカーボンブラックに比べて、環境条件の変化によって、ガス体および液体の吸脱着を繰り返す特性に優れている。環境中の異物質が一定量以下の状態に戻ると、いままで吸着していた物質を排出するという調整作用を自動的にかつ連続して繰り返すことができる。また、吸着した物質の一部を分解することで、吸着物質の量を減少される作用もある。このような作用は、いわゆる自然のリサイクル効果である。
【0030】
さらに、木材チップ炭化物粉は、プラスイオンの発生を抑制し、環境中のマイナスイオンの割合を増やす効果がある。その結果、物質の酸化を防いで還元作用を促進する。そのことにより、医療用途や環境汚染防止用途に有用である。
【0031】
【発明の実施の形態】
本発明にかかる炭材含有樹脂組成物を製造し、その性能を評価した。
〔樹脂粉末〕
マイクロサンテックL50PおよびS360P(商品名、旭化成工業社製、高密度ポリエチレン樹脂粉末)を用いた。その物性は以下のとおりである。
【0032】
【表1】

Figure 0003553325
〔木材チップ炭化物粉〕
木材チップ炭化物粉として、日の丸カーボテクノ社製の赤松木炭粉を用いた。その物性は以下のとおりである。
【0033】
比表面積 202.66m/g(BET法)
揮発分 17.8%(JIS−M8812に準拠)
水分 6.5%(同上)
固定炭素 74.9%(同上)
粒径 10μm以下(相当メッシュふるい通過)
焼成温度 2800℃
〔備長炭粉〕
下記の特性を有する備長炭粉(日の丸カーボテクノ社製)を用いた。
【0034】
比表面積 155.0m/g(BET法)
揮発分 12.1%(JIS−M8812に準拠)
固定炭素 86.1%(同上)
PH 8.6(JIS−K1474に準拠)
粒径 10μm以下(相当メッシュふるい通過)
〔実施例1〕
前記樹脂粉末▲1▼を100重量部に、前記木材チップ炭化物粉15重量部、ライトンBP220−10(備北粉化社製、炭酸カルシウム)20重量部、および、バイオニンA−73(竹本油脂社製、アルキルフォスファイト界面活性剤)3重量部からなる混合物を、ヘンシェルミキサー(三井三池化工機社製、FM150)にて、1380rpm で15分間、攪拌混合して、各材料を均一に混練した。その結果、顆粒状のコンパウンドからなる樹脂組成物が得られた。
【0035】
φ25押出成形機(神戸製鋼所製、圧縮比4.0、L/D25)に上記樹脂組成物を供給して、チューブ状成形品(内径φ4.5mm、外径φ5.5mm)を得た。チューブ状成形品を長さ5.5mmで切断して試料片を得た。
〔実施例2〕
樹脂▲3▼として、サンテックFE1730(旭化成工業社製、エチレン酢酸ビニル共重合樹脂ペレット)を用いた。
【0036】
上記樹脂▲3▼100重量部、セルマイクCAP(三協化成社製、アゾジカルボンアミド発泡剤)10重量部、サンベロッスDCP−98(三建化工社製、ジクミールパーオキサイド架橋剤)0.5重量部、ステアリン酸亜鉛(日本油脂社製)1重量部を混合し、100℃の熱ロールにより溶融混練した。ここに、5重量部のDOPにて湿潤化した前記木材チップ炭化物粉20重量部を加えて、さらに混練し、シート状の樹脂組成物を得た。
【0037】
上記シート状樹脂組成物を、テーパ付きの金型に仕込み、160〜170℃の熱盤中に挿入し、100kg/cmで加圧して、シート状樹脂組成物の架橋反応あるいは発泡剤の分解反応を進行させた後、除圧して一気に膨張せしめることにより、厚み50mm、発泡倍率12倍のブロック状成形品を得た。ブロック状成形品を裁断して、厚み3mm、500×500mmの大きさのカットシートを得た。
〔実施例3〕
樹脂▲4▼として、ポリエーテルポリオール樹脂(旭化成工業社製)を用いた。
【0038】
上記樹脂▲4▼100重量部に、前記木材チップ炭化物粉10重量部を攪拌混合しつつ、イオン水0.4重量部、変性シリコンオイル(信越化学工業社製、シリコン系界面滑性剤)1.0重量部、m−トルイレンジアミン(住友化学工業社製)0.1重量部、オクチル酸第一錫(三建化工社製)0.3重量部を添加し、さらにトリレンジイソアネート(三井化学社製)50重量部を加えて、混合機により短時間で混合して樹脂組成物を得た。樹脂組成物を、ノズルから成形型に連続的に注入したところ、活発に気泡が発生して連続発泡体からなるブロック状の成形品が得られた。成形品の密度は25kg/mであった。上記ブロック状成形品から、厚み3mm、500×500mmのカットシートを得た。
〔実施例4〕
樹脂▲5▼として、ショウノール(昭和高分子社製、フェノール樹脂レゾールタイプ)を用いた。
【0039】
上記樹脂▲5▼100重量部と前記木材チップ炭化物粉20.0重量部とを混合槽に投入して攪拌しながら、リボノックスNCE(ライオン油脂社製、ポリオキシエチレンアルキルアリルエーテル界面活性剤)1.5重量部、亜鉛末(堺化学社製)2.0重量部、フォスタフラムAP422(ヘキストインダストリー社製、ポリリン酸アンモニウム)3.0重量部、炭酸バチウム(堺化学社製)15.0重量部を加えて樹脂組成物を得た。樹脂組成物に空気を吹き込んで、内部に微細な気泡を充満させた。容積が約20%増加した。この気泡を含む樹脂組成物を、ポンプで別の槽に注入し蓋をして固定した。蓋に取り付けられた高速ミキサーで攪拌した。数秒後に、ナフタリンスルフォン酸(スガイ化学社製)20.0重量部を添加して約30秒間攪拌した。得られた樹脂組成物を、金型の上に供給して発泡させた。その結果、発泡倍率30倍の連続発泡体からなる樹脂成形品を得た。
〔実施例5〕
前記樹脂▲2▼を100重量部に、前記木材チップ炭化物粉3.5重量部、前記備長炭3.5重量部、バルカンP(キャボット社製)7.0重量部、ライトンBP220−10(備北粉化社製、炭酸カルシウム)20重量部、および、バイオニンA−73(竹本油脂社製、アルキルフォスファイト界面活性剤)3重量部を添加し、ヘンシェルミキサー(三井三池化工機社製、FM150)にて、1380rpm で15分間、攪拌混合した。得られた顆粒状のコンパウンドからなる樹脂組成物を、ロール温度160℃でロール成形を行い、厚み2mmのシート状樹脂成形品を得た。
【0040】
このシート状樹脂成形品は、導電シートとして使用できる。
〔木材チップ炭化物粉の分散度測定〕
樹脂組成物中に存在する、木材チップ炭化物粉の凝集塊を測定した。以下の測定法を採用した。
分散格付法:樹脂成形物の断面又は引き裂き面を、そのまま、または10倍程度の低い倍率で拡大した状態で、凝集塊を肉眼または写真で観察し、予め測定された標準試料と比較する。
【0041】
分散度法:樹脂成形物をミクロトームで切断して、2〜5μm程度の薄片試料を得る。50〜70倍に拡大表示し、凝集塊の数と総面積を求め、凝集塊のない場合を100として、%で表す。
測定は、実体顕微鏡(ニコン社製、SMZ−10A)を用い、判定はTV観察と写真撮影によって行った。上記両方法を総合的に判断して評価した。
【0042】
【表2】
Figure 0003553325
上記試験の結果、何れの実施例でも、樹脂組成物中に木材チップ炭化物粉が均一に分散していることが確認された。
〔調湿性能試験〕
試料を115℃の乾燥器に入れて乾燥させたもの3gを、ADVANTEC東洋社製の恒温・恒湿槽に入れ、温度25℃、湿度90%の状態で24時間静置する。乾燥状態と試験後との試料の重量を測定した。重量増加分が水蒸気の吸着量である。乾燥重量に対する水蒸気吸着量の割合%を求める。この段階の水蒸気吸着量%をW90で表す。つぎに、湿度を55%に低下させた状態でさらに24時間静置する。試験後の試料重量を測定し、前記乾燥重量に対する重量増加分から前記同様に水蒸気吸着量を求めた。この段階の水蒸気吸着量%をW55で表す。W90−W55が、環境の湿度変化に対する、湿気の吸収および放出性能すなわち調湿能力を表す。
【0043】
参考のために、前記木材チップ炭化粉および備長炭の単独試料についても、同様の試験を行った。
【0044】
【表3】
Figure 0003553325
上記試験の結果、木材チップ炭化物粉を含有する各実施例では、備長炭粉を単独で用いた場合よりも優れた調湿能力を有することが確認された。特に、発泡体成形品のほうが、非発泡成形品よりも優れた調湿能力を示すことが判る。また、木材チップ炭化物粉と備長炭粉を比べると、W90で表される吸湿量の最大量はそれほど違いがないの対して、W90からW55へと環境が乾燥したときに、放出される湿気の量W90−W55すなわち調湿能力には格段の違いがあることが判る。
〔脱臭性能試験〕
内容積11.4リットルのガラス製容器を用いた。容器底部には攪拌装置が設けられている。ガス濃度の測定にガステック社製ガス検知管を用いた。
【0045】
脱臭性能試験は、試験容器内部を清浄にした後、容器内に試料3gを入れ、ついで、高濃度のガスを適当な量だけ注入して、ガス濃度が所定濃度になるようにした。その後、攪拌しながら、所定の時間毎に内部のガス濃度を測定した。開始時と試験終了時との濃度の差を吸着量とした。ガスとして、アンモニア、硫化水素を用いた。各実施例に加えて、木材チップ炭化物粉および備長炭粉とを単独で用いた場合についても同様の試験を行った。表5において、吸着量/%は、吸着量ppm と当初濃度に対する吸着量の百分率%とを併記している。
【0046】
【表4】
Figure 0003553325
【0047】
【表5】
Figure 0003553325
上記試験の結果、各実施例では、優れた脱臭能力を発揮できることが確認された。また、木材チップ炭化物粉は備長炭粉に比べて、格段に優れた脱臭能力を有することも確認された。樹脂成形品が、発泡体であるものと非発泡体であるものとでは、発泡体のほうが脱臭能力に優れ、特に連続発泡体が高い性能を有している。
〔導電性シート〕
前記樹脂▲1▼を100重量部に、前記木材チップ炭化物粉、備長炭粉およびカーボンブラック(キャボット社製、BP2000)10〜32重量部、前記バイオニンA−73(界面活性剤)1〜5重量部を添加し、前記ヘンシェルミキサー(1380rpm )で攪拌混合し、顆粒状のコンパウンドからなり、配合の異なる複数の樹脂組成物を得た。これらの樹脂組成物からロール成形機で厚み2mmの導電性シートを製造した。
【0048】
得られた導電性シートの特性を、表面抵抗値と前記調湿性能について評価した。
表面抵抗値:
JIS−K6911に準拠し、φ100mm、厚み2mmの試料を、20℃、65%RHで90時間の前処理を行った後、表面抵抗測定機(タケダ理研工業社製、デジタルマルチメータ)を用いて表面抵抗値を測定した。
【0049】
【表6】
Figure 0003553325
上記測定の結果、各実施例は、十分に低い表面抵抗値を示し、導電性シートとして有用であることが確認された。また、調湿性能についても優れている。
【0050】
また、木材チップ炭化物粉と備長炭粉およびカーボンブラックとの配合を変えることで、表面抵抗値が10〜10Ωにわたる広い範囲で変わっており、目的に合わせて、必要な電気抵抗特性を備えた樹脂成形品を得ることができる。
〔赤外線放射特性試験〕
実施例1の樹脂組成物から、厚み1mmのシートを製造した。このシートの赤外線放射率および放射輝度を測定し、その結果を図1(a) および(b) に示している。
【0051】
上記測定の結果、本発明の実施品は、80%程度の放射率を有しているとともに、放射率に波長依存性が少なく、いわゆる黒体の放射特性と相似していることが判る。人間が最も暖かく感じる波長域は、2μmを超えた領域の遠赤外線であることが知られている。遠赤外線領域における放射輝度が十分に高い本発明の実施品は、保温効果や輻射熱効果に優れていることになる。
【0052】
〔電磁波遮蔽特性試験〕
実施例8で得られたシート状の樹脂成形品を用いて、常法により、電磁波遮蔽特性を測定した。その結果を図2に示している。
図2によれば、100〜500MHz の周波数範囲で良好な電界遮蔽性を示すことが判る。
【0053】
同じ試料を用いて、常法により、磁気遮蔽特性を測定し、その結果を図3に示している。
図3によれば、本発明の実施品は、磁気遮蔽特性にも優れていることが判る。なお、磁気遮蔽特性のピーク周波数は、電界遮蔽特性のピーク周波数よりも高周波数領域にある。
【0054】
〔イオン調整機能試験〕
試験環境中におけるイオン量をイオンカウンター(神戸電波社製)を用いて測定した。試験環境中に、前記実施例3のシート状樹脂成形品を一定時間配置しておき、その前後にわたって測定を行った。その結果を図4に示している。
図4によれば、試験環境の空気中には、プラスに帯電したイオン粒子とマイナスに帯電したイオン粒子が、ほぼ同数で存在して平衡を保っており、環境全体は電気的に中性になっている。イオン粒子の大きさは、約0.5〜1.0nm程度であると考えられる。
【0055】
試験環境に実施例3のシート状樹脂成形品を配置すると、プラスイオンの数が急激に減少してほぼ0になってしまう。マイナスイオンについては、あまり変化していない。その結果、環境全体はマイナスイオンの多い状態になっている。このようなマイナスイオンの多い環境は、人体に好影響を与える医療効果があるとされている。
【0056】
シート状樹脂成形品が存在する間は常に、マイナスイオンが多い状態であるが、シート状樹脂成形品を環境から取り去ると、再びプラスイオンが増加して、大気全体は中性状態に戻る。
【0057】
【発明の効果】
本発明の炭材含有樹脂組成物は、界面活性剤の作用で木材チップ炭化物粉が樹脂に均一に分散されているため、木材チップ炭化物粉が有する種々の優れた特性を有効に発揮することができる。その結果、炭材含有樹脂組成物から製造される炭材含有樹脂成形品などの製品の調湿機能や脱臭機能、遠赤外線放射機能、導電機能、電磁波吸収機能、イオン調整機能などを向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施形態を表す樹脂成形品の放射率(a) および放射輝度(b) を示す線図
【図2】同上の電磁波遮蔽特性を示す線図
【図3】同上の磁気遮蔽特性を示す線図
【図4】樹脂成形品によるイオン調整機能を示す線図[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a carbonaceous material-containing resin composition, a method for producing the same, and a carbonaceous material-containing resin molded product. More specifically, by incorporating a carbonaceous material such as charcoal powder, characteristics such as moisture absorption / release properties are improved. The present invention relates to a resin composition and a method for producing the same, and further relates to a carbon material-containing resin molded product obtained from the carbon material-containing resin composition.
[0002]
[Prior art]
2. Description of the Related Art When various synthetic resin products are manufactured, various characteristics of resin products are improved by adding various inorganic materials to resin raw materials. For example, by including carbon black, it is possible to impart conductivity to a resin product. It has also been practiced to improve the moisture absorption / release properties by including a porous ceramic material. When such an inorganic material is contained in a resin, a method of dispersing and mixing the inorganic material in a resin in a state of being granulated is often adopted.
[0003]
Charcoal is known as a material having excellent moisture absorption and desorption properties. It is known that charcoal has functions such as deodorization, antifungal properties, far-infrared radiation, conductivity, electromagnetic wave absorption, and ion adjustment, in addition to moisture absorption and desorption. In particular, a wood chip carbide obtained by carbonizing a piece of wood is a material having particularly excellent functions as described above. Japanese Patent No. 2,561,433 discloses a specific method for producing a wood chip carbide.
[0004]
[Problems to be solved by the invention]
It was thought that if wood chip carbides were included in the resin raw material of the above-mentioned synthetic resin products, various properties more excellent than conventional inorganic materials could be exhibited. In addition, it was thought that if the fine wood chip carbides were molded together with the resin, products having various shapes could be easily manufactured, and it would be easier to use than handling the wood chip carbides as they were.
[0005]
However, even if the amorphous wood chip carbide is mixed with the resin as it is, it is difficult to mold it. For this reason, it has been considered that the wood chip carbide is pulverized and then contained in the resin. The finely divided wood chip carbide, that is, the wood chip carbide powder, is also improved in the above-mentioned properties such as moisture absorption / release properties.
However, even if the wood chip carbide powder is mixed with the resin, there is a problem that it is difficult to make the resin uniformly contained in the resin. In particular, the finer the wood chip carbide powder having a smaller particle size, the more difficult it is to uniformly mix it with the resin. Since the wood chip carbide powder has a very high cohesive force, the particles coagulate when mixed with the resin, and uniform dispersion cannot be achieved.
[0006]
When the dispersion in the resin is non-uniform, the characteristics of the resin composition vary, and a product manufacturing process such as molding cannot be performed well. The obtained resin product also has poor appearance and poor quality performance if the contained particles are unevenly distributed. In particular, the characteristics of the wood chip carbide powder, such as the moisture absorption / release properties and the conductivity, cannot exhibit sufficient performance unless the particles are uniformly dispersed in the resin.
[0007]
Therefore, an object of the present invention is to obtain a carbon material-containing resin composition that can exhibit excellent functions of wood chip carbide powder.
[0008]
[Means for Solving the Problems]
The carbon material-containing resin composition according to the present invention, A carbon material-containing resin composition used for manufacturing a resin molded product, It contains 100 parts by weight of resin, 3 to 50 parts by weight of wood chip carbide powder having a particle size of 30 μm or less, and 0.5 to 10 parts by weight of a surfactant.
Each component requirement will be specifically described.
[0009]
(Resin)
Resin materials similar to ordinary resin products are used according to the purpose and required performance. Specifically, polyvinyl chloride resin, polyethylene resin, polypropylene resin, polyacryl resin, polystyrene resin, polyurethane resin, and copolymer resins of these resins and other thermoplastic resins are used. Thermosetting resins such as urea resins, melamine resins, phenol resins, unsaturated polyester resins, epoxy resins, diallyl phthalate resins, urethane resins, silicone resins, and co-condensation resins of these resins are also used.
[0010]
The resin may be either a colored resin or a transparent resin.
[Wood chip carbide powder]
It is obtained by grinding and pulverizing wood chips obtained by carbonizing wood chips, that is, chips.
As the raw wood for the wood chips, coniferous materials such as cedar, Himalayan cedar, and red pine are mainly used, and red pine is particularly preferable. Inexpensive thin wood and waste materials that are difficult to use as wood products can be used. Wood chip products industrially produced in large quantities can also be used as raw materials for pulp production and board building materials.
[0011]
As a method for carbonizing wood chips, basically, a technique common to a method for producing ordinary charcoal can be used. Specifically, the method disclosed in the above-mentioned Japanese Patent No. 25614433 can be applied.
The obtained wood chip carbide has a porous structure having fine pores inside. The wood chip carbide is ground to adjust the particle size to 30 μm or less. For the pulverization, ordinary pulverization means is employed. More preferably, those having a particle size of 10 μm or less are used. The smaller the particle size, the larger the surface area per unit weight, and the various properties based on the surface properties are improved.
[0012]
Depending on the raw material of the wood chips, the carbonization treatment, the pulverization treatment, or the conditions such as the particle size, the porous structure of the carbide differs, and the characteristics such as moisture absorption / release properties also differ. Wood chip carbide powder having desired characteristics can be selected according to the purpose of use and required performance, or a plurality of types of wood chip carbide powder having different characteristics can be used in combination.
[0013]
For example, the higher the firing temperature of the wood chip carbide, the lower the electrical resistance value. Therefore, the electric resistance value of the manufactured resin molded product can be adjusted by setting the firing temperature. As a specific firing temperature, the wood chip carbide itself can be fired even at about 600 ° C. or more, but it is preferable to set the temperature in the range of 2000 to 3500 ° C. in order to reduce the electric resistance value.
[0014]
Wood chip carbide powder having a particle size of 30 μm or less is blended in an amount of 3 to 50 parts by weight with respect to 100 parts by weight of the resin. If the proportion of the wood chip carbide powder is too small, its properties cannot be fully exhibited. If the proportion of the wood chip carbide powder is too large, the properties of the resin cannot be sufficiently exhibited, or processing such as molding becomes difficult.
By subjecting the surface of the charcoal chip carbide powder to a surface treatment with a coupling agent, the adhesiveness to the resin can be improved.
[0015]
(Surfactant)
As long as the function of improving the affinity with the resin is exerted on the surface of the wood chip carbide powder having poor affinity with the resin, various ordinary surfactants are used. Generally, the surface of wood chip carbide powder showing hydrophilicity can be changed to lipophilic by the action of a surfactant to increase the affinity with the resin.
[0016]
The preferred surfactant differs depending on the type of the resin.
For example, an alkyl phosphate ester is preferable for a polyethylene resin or a polypropylene resin. As the polystyrene resin, an alkyl sulfonate or an alkylbenzene sulfonate is preferable. Alkyl sulfonates are preferred for ABS resin or polyvinyl chloride resin. Generally, anionic surfactants are preferred for thermoplastic resins. Non-ionic surfactants such as glycerin monostearate and polyoxyethylene alkylamine are preferred for thermosetting resins such as phenolic resins and epoxy resins.
[0017]
0.5 to 10 parts by weight of a surfactant is blended with respect to 100 parts by weight of the resin. The amount of the surfactant is preferably adjusted to the amount of the wood chip carbide powder, and the surfactant is used in a necessary and sufficient amount to improve the affinity between the wood chip carbide powder and the resin. Is preferably present.
[Other materials]
In the production of ordinary resin products, various additive materials blended in the resin composition can be used.
[0018]
For example, as an inorganic filler, calcium carbonate, calcium oxide, talc, clay, kaolin, barium sulfate, aluminum hydroxide, magnesium hydroxide, titanium oxide, mica, wollastonite, diatomaceous earth, glass beads, silica, metal powder, Metal fibers, carbon fibers, glass fibers and the like can be used.
As the inorganic material, bincho charcoal or pineal charcoal, which is a charcoal material similar to wood chip carbide powder, may be used in powder form, or activated carbon or carbon black, which is the same carbon material, may be used. However, these materials are used in such a ratio as not to impair the function of the wood chip carbide powder. Even with the same carbon material, activated carbon or carbon black and wood chip carbide powder have different characteristics. Therefore, the characteristics of the resin composition or the resin molded product can be changed by combining the wood chip carbide powder with another carbon material. For example, by combining a wood chip carbide with another carbon material, the electrical resistivity can be adjusted in a wide range.
[0019]
As the organic material, wood powder, pulp, cork powder, silk powder, synthetic resin powder, synthetic fiber (polyacrylonitrile, nylon, polyester, aramid, polyimide, fluorine-based fiber) and the like can be used.
These additive materials can be used alone or in combination of two or more according to the application and required performance. By blending the additive material, the mechanical properties, electrical properties, thermal properties, processability, and the like of the resin can be improved. It is also effective for increasing the amount (weight and capacity) and reducing the cost.
[0020]
If a volatile foaming agent or a decomposable foaming agent is added to the resin composition, a foamed resin product can be manufactured.
Coloring agents, plasticizers and other additives are also added as needed.
(Production of carbon material-containing resin composition)
The resin composition can be obtained by mixing the materials constituting the resin composition by ordinary mixing means, but it is preferable to knead the resin composition by applying a large shearing force to the material.
[0021]
As a means for kneading by applying a shearing force, a Henschel mixer, a roller kneader, a high-speed mixer, other mixing devices or kneading devices are used.
As for the materials of the resin composition, all the materials may be supplied and kneaded at the same time, or they may be supplied at a shifted timing. For example, the wood chip carbide powder may be supplied after the surfactant is mixed with the resin, or the wood chip carbide powder and the surfactant may be mixed and then mixed with the resin.
[0022]
Among the materials constituting the resin composition, the materials other than the wood chip carbide powder may be supplied in liquid form or may be supplied in solid form such as powder.
It can be heated during kneading. If the resin is melted by heating, kneading with the wood chip carbide powder is performed well. In this case, the resin can be supplied in powder or pellet form.
[0023]
The manufactured carbon material-containing resin composition is handled in the same manner as a normal resin composition, and is used for the production of various resin products.
[Manufacture of carbon material-containing resin molded products]
A resin molded product can be manufactured by using a usual molding apparatus and molding method. Normal molding techniques such as extrusion molding, injection molding, foam molding and sheet molding are applied.
[0024]
As the form of the molded article, a sheet, a film, a plate material, a molded article having a three-dimensional shape, or any other form can be adopted.
As a specific application of the molded article, it is suitably used for agricultural and horticultural sheets, mat materials, heat insulation sheets, etc. because of its excellent far-infrared radiation characteristics. As a humidity control material, it can be used for construction, industry, and agriculture. Since it has excellent deodorizing properties, it can be used for deodorizing sheets. It can be used as a sheet for keeping freshness of vegetables, fruits, cut flowers, etc., and a molded product for keeping freshness. It can be used as an antistatic (static) molded product. Because of its excellent electromagnetic wave shielding properties, it can be used as an electromagnetic wave shielding material used to prevent malfunctions of electronic devices, prevent interference with televisions and radios, prevent electromagnetic waves from being released from mobile phones, etc. And can be used.
[0025]
(Operation)
When a surfactant is interposed between the surface of the fine wood chip carbide powder and the resin, the affinity of the wood chip carbide powder for the resin is increased, and the wood chip carbide powder is dispersed uniformly in the resin without causing aggregation. Mixed. Further, the adhesion at the interface between the wood chip carbide powder and the resin is enhanced, and the wood chip carbide powder is stably contained in the resin.
[0026]
The presence of the surfactant also has a function of increasing the fluidity when the resin composition is molded by injection molding, extrusion molding, roll molding, or the like. As a result, the molding processability is improved, the surface of the molded product becomes smooth and has high gloss, and physical properties such as surface hardness, impact strength, and rigidity can be improved.
Wood chip carbide powder evenly dispersed in the resin is a resin product obtained from the resin composition, moisture absorption / desorption, deodorization, antifungal properties, far infrared radiation, conductivity, electromagnetic wave absorption, ion adjustment function, etc. Improve.
[0027]
Wood chip carbide powder has pores on the surface. More specifically, a macro hole with a large diameter or a slightly small meso hole is opened, or a macro hole with a smaller diameter is opened on the inner wall of the macro hole, and the hole diameter becomes smaller as it goes deeper into the hole It has such a structure. By having such a fine porous structure, the wood chip carbide powder exhibits the above characteristics.
[0028]
The wood chip carbide powder has characteristics of preventing reflection of electromagnetic waves and converting the electromagnetic waves into thermal energy, that is, Joule heat. The higher the firing temperature of the wood chip carbide powder, the more π electrons contained in the wood chip carbide powder develop, and the higher the electromagnetic wave shielding property. In general, the smaller the electric resistance of the material is, the higher the electromagnetic wave shielding property is. Since the electric resistance of the wood chip carbide powder is extremely small, the electromagnetic wave shielding property is also enhanced from this.
[0029]
Wood chip carbide powder has an adsorbing and desorbing action, and is superior to activated carbon and carbon black in characteristics of repeating adsorption and desorption of gas and liquid due to changes in environmental conditions. When the amount of foreign substances in the environment returns to a state of a certain amount or less, the adjusting action of discharging the substances that have been adsorbed so far can be automatically and continuously repeated. In addition, by decomposing a part of the adsorbed substance, the amount of the adsorbed substance can be reduced. Such an effect is a so-called natural recycling effect.
[0030]
Further, the wood chip carbide powder has an effect of suppressing the generation of positive ions and increasing the ratio of negative ions in the environment. As a result, oxidation of the substance is prevented and the reduction action is promoted. This is useful for medical applications and environmental pollution prevention applications.
[0031]
BEST MODE FOR CARRYING OUT THE INVENTION
The carbon material-containing resin composition according to the present invention was manufactured, and its performance was evaluated.
(Resin powder)
Micro Suntech L50P and S360P (trade name, manufactured by Asahi Kasei Corporation, high-density polyethylene resin powder) were used. Its physical properties are as follows.
[0032]
[Table 1]
Figure 0003553325
[Wood chip carbide powder]
Akamatsu wood charcoal powder manufactured by Hinomaru Carbo Techno Co., Ltd. was used as the wood chip carbide powder. Its physical properties are as follows.
[0033]
Specific surface area 202.66m 2 / G (BET method)
Volatile content 17.8% (based on JIS-M8812)
6.5% moisture (same as above)
Fixed carbon 74.9% (same as above)
Particle size 10μm or less (Equivalent mesh sieve passed)
Firing temperature 2800 ° C
(Bincho charcoal powder)
Bincho charcoal powder (manufactured by Hinomaru Carbo Techno) having the following characteristics was used.
[0034]
Specific surface area 155.0m 2 / G (BET method)
Volatile content 12.1% (based on JIS-M8812)
Fixed carbon 86.1% (same as above)
PH 8.6 (based on JIS-K1474)
Particle size 10μm or less (Equivalent mesh sieve passed)
[Example 1]
100 parts by weight of the resin powder (1), 15 parts by weight of the wood chip carbide powder, 20 parts by weight of Ryton BP220-10 (manufactured by Bihoku Powder Chemical Co., Ltd., calcium carbonate), and Bionin A-73 (manufactured by Takemoto Yushi Co., Ltd.) , An alkyl phosphite surfactant) was stirred and mixed with a Henschel mixer (FM150, manufactured by Mitsui Miike Kakoki Co., Ltd.) at 1380 rpm for 15 minutes to uniformly knead each material. As a result, a resin composition consisting of a granular compound was obtained.
[0035]
The above resin composition was supplied to a φ25 extrusion molding machine (manufactured by Kobe Steel, compression ratio 4.0, L / D25) to obtain a tubular molded product (inner diameter φ4.5 mm, outer diameter φ5.5 mm). The tubular molded product was cut at a length of 5.5 mm to obtain a sample piece.
[Example 2]
As the resin (3), Suntech FE1730 (ethylene-vinyl acetate copolymer resin pellet manufactured by Asahi Kasei Corporation) was used.
[0036]
100 parts by weight of the above resin (3), 10 parts by weight of CellMike CAP (Azodicarbonamide foaming agent manufactured by Sankyo Kasei Co., Ltd.), 0.5 part by weight of Sambelos DCP-98 (Dicumyl peroxide crosslinking agent manufactured by Sanken Kako Co., Ltd.) And 1 part by weight of zinc stearate (manufactured by NOF CORPORATION) were mixed and melt-kneaded with a hot roll at 100 ° C. To this, 20 parts by weight of the wood chip carbide powder moistened with 5 parts by weight of DOP was added and further kneaded to obtain a sheet-shaped resin composition.
[0037]
The above-mentioned sheet-shaped resin composition is charged into a tapered mold, and inserted into a hot plate at 160 to 170 ° C. to obtain 100 kg / cm. 2 After the cross-linking reaction of the sheet-shaped resin composition or the decomposition reaction of the foaming agent was allowed to proceed, the pressure was released to expand at a stretch, thereby obtaining a block-shaped molded product having a thickness of 50 mm and an expansion ratio of 12 times. The block-shaped molded product was cut to obtain a cut sheet having a thickness of 3 mm and a size of 500 × 500 mm.
[Example 3]
As the resin (4), a polyether polyol resin (manufactured by Asahi Kasei Corporation) was used.
[0038]
While stirring and mixing 10 parts by weight of the wood chip carbide powder with 100 parts by weight of the resin (4), 0.4 parts by weight of ionic water and a modified silicone oil (a silicon-based interfacial lubricant made by Shin-Etsu Chemical Co., Ltd.) 0.0 parts by weight, 0.1 parts by weight of m-toluylenediamine (manufactured by Sumitomo Chemical Co., Ltd.) and 0.3 parts by weight of stannous octoate (manufactured by Sanken Kako Co., Ltd.). 50 parts by weight (manufactured by Mitsui Chemicals, Inc.) were added and mixed in a short time with a mixer to obtain a resin composition. When the resin composition was continuously injected into the molding die from the nozzle, bubbles were actively generated, and a block-shaped molded product composed of a continuous foam was obtained. Molded product density is 25kg / m 3 Met. A cut sheet having a thickness of 3 mm and a size of 500 × 500 mm was obtained from the block-shaped molded product.
[Example 4]
As the resin (5), Shaunol (a phenolic resin resol type, manufactured by Showa Polymer Co., Ltd.) was used.
[0039]
100 parts by weight of the above resin (5) and 20.0 parts by weight of the wood chip carbide powder were put into a mixing tank and stirred, and ribonox NCE (a polyoxyethylene alkyl allyl ether surfactant, manufactured by Lion Oil & Fat Co., Ltd.) 1 was added. 0.5 parts by weight, zinc powder (manufactured by Sakai Chemical Co., Ltd.) 2.0 parts by weight, Fostaflam AP422 (manufactured by Hoechst Industry Co., Ltd., ammonium polyphosphate) 3.0 parts by weight, and batium carbonate (manufactured by Sakai Chemical Company) 15.0 parts by weight And a resin composition was obtained. Air was blown into the resin composition to fill the inside with fine bubbles. The volume increased by about 20%. The resin composition containing the air bubbles was injected into another tank by a pump, and was fixed with a lid. The mixture was stirred with a high-speed mixer attached to the lid. A few seconds later, 20.0 parts by weight of naphthalenesulfonic acid (manufactured by Sugai Chemical Co., Ltd.) was added and stirred for about 30 seconds. The obtained resin composition was supplied onto a mold and foamed. As a result, a resin molded product composed of a continuous foam having an expansion ratio of 30 was obtained.
[Example 5]
100 parts by weight of the resin (2), 3.5 parts by weight of the wood chip carbide powder, 3.5 parts by weight of Bincho charcoal, 7.0 parts by weight of Vulcan P (manufactured by Cabot), Ryton BP220-10 (Bibihoku) 20 parts by weight of Calcium carbonate (manufactured by Powder Chemical) and 3 parts by weight of Bionin A-73 (alkyl phosphite surfactant, manufactured by Takemoto Yushi Co., Ltd.) were added, and a Henschel mixer (FM150, manufactured by Mitsui Miike Koki Co., Ltd.) was added. At 1380 rpm for 15 minutes. The obtained resin composition comprising the granular compound was subjected to roll forming at a roll temperature of 160 ° C. to obtain a sheet-shaped resin molded product having a thickness of 2 mm.
[0040]
This sheet-shaped resin molded product can be used as a conductive sheet.
(Dispersion measurement of wood chip carbide powder)
The agglomerates of the wood chip carbide powder present in the resin composition were measured. The following measurement method was adopted.
Dispersion grading method: The agglomerate is visually observed or photographed with the cross section or the tear surface of the resin molded product as it is or at a magnification as low as about 10 times, and is compared with a standard sample measured in advance.
[0041]
Dispersion method: A resin molded product is cut with a microtome to obtain a thin sample of about 2 to 5 μm. The number of the aggregates and the total area are obtained by magnifying 50 to 70 times and expressed as% with 100 without aggregates.
The measurement was performed using a stereomicroscope (manufactured by Nikon Corporation, SMZ-10A), and the judgment was made by TV observation and photography. The above two methods were comprehensively evaluated.
[0042]
[Table 2]
Figure 0003553325
As a result of the above test, it was confirmed that in all the examples, the wood chip carbide powder was uniformly dispersed in the resin composition.
(Humidity control performance test)
3 g of the sample dried in a dryer at 115 ° C. is placed in a constant temperature / humidity bath manufactured by ADVANTEC Toyo Co., Ltd., and left standing at a temperature of 25 ° C. and a humidity of 90% for 24 hours. The weight of the sample in the dry state and after the test was measured. The weight increase is the adsorption amount of water vapor. The ratio% of the water vapor adsorption amount to the dry weight is determined. The water vapor adsorption amount% at this stage is represented by W90. Next, it is left still for 24 hours with the humidity reduced to 55%. The weight of the sample after the test was measured, and the amount of water vapor adsorption was determined in the same manner as described above from the weight increase relative to the dry weight. The water vapor adsorption% at this stage is represented by W55. W90-W55 represent the performance of absorbing and releasing moisture, that is, the ability to control humidity, with respect to changes in environmental humidity.
[0043]
For reference, a similar test was also performed on a single sample of the wood chip carbonized powder and Bincho charcoal.
[0044]
[Table 3]
Figure 0003553325
As a result of the above test, it was confirmed that each of the examples containing the wood chip carbide powder had better humidity control ability than the case of using Bincho charcoal powder alone. In particular, it can be seen that the foam molded article shows a better humidity control ability than the non-foam molded article. Also, when comparing wood chip carbide powder and bincho charcoal powder, the maximum amount of moisture absorption represented by W90 is not so different, whereas the moisture released when the environment dries from W90 to W55. It can be seen that there is a marked difference in the amount W90-W55, that is, the humidity control ability.
(Deodorization performance test)
A glass container having an inner volume of 11.4 liters was used. A stirring device is provided at the bottom of the container. A gas detection tube manufactured by Gastech Co., Ltd. was used for measuring the gas concentration.
[0045]
In the deodorizing performance test, after cleaning the inside of the test container, 3 g of a sample was put into the container, and then a high-concentration gas was injected in an appropriate amount to adjust the gas concentration to a predetermined concentration. Thereafter, the internal gas concentration was measured at predetermined time intervals while stirring. The difference in concentration between the start and the end of the test was taken as the amount of adsorption. Ammonia and hydrogen sulfide were used as the gas. In addition to each of the examples, the same test was performed when using wood chip carbide powder and bincho charcoal powder alone. In Table 5, the amount of adsorption /% indicates both the amount of adsorption ppm and the percentage of the amount of adsorption relative to the initial concentration.
[0046]
[Table 4]
Figure 0003553325
[0047]
[Table 5]
Figure 0003553325
As a result of the above test, it was confirmed that excellent deodorizing ability can be exhibited in each example. It was also confirmed that the wood chip carbide powder had much better deodorizing ability than the Bincho charcoal powder. Regarding the resin molded article which is a foam and a non-foamed article, the foam is superior in deodorizing ability, and particularly, the continuous foam has high performance.
[Conductive sheet]
100 parts by weight of the resin (1), 10 to 32 parts by weight of the wood chip carbide powder, Bincho charcoal powder and carbon black (BP2000, BP2000), and 1 to 5 parts by weight of the Bionin A-73 (surfactant) Were added and stirred and mixed with the above-mentioned Henschel mixer (1380 rpm) to obtain a plurality of resin compositions composed of granular compounds and having different compositions. A conductive sheet having a thickness of 2 mm was manufactured from these resin compositions using a roll forming machine.
[0048]
The properties of the obtained conductive sheet were evaluated with respect to the surface resistance value and the humidity control performance.
Surface resistance value:
According to JIS-K6911, a sample having a diameter of 100 mm and a thickness of 2 mm was subjected to a pretreatment for 90 hours at 20 ° C. and 65% RH, and then using a surface resistance measuring device (manufactured by Takeda Riken Kogyo Co., Ltd., digital multimeter). The surface resistance was measured.
[0049]
[Table 6]
Figure 0003553325
As a result of the above measurement, each example exhibited a sufficiently low surface resistance value, and was confirmed to be useful as a conductive sheet. It is also excellent in humidity control performance.
[0050]
In addition, by changing the blending of wood chip carbide powder with Bincho charcoal powder and carbon black, the surface resistance value becomes 10 5 -10 1 It varies over a wide range of Ω, and it is possible to obtain a resin molded product having necessary electric resistance characteristics according to the purpose.
(Infrared radiation characteristic test)
From the resin composition of Example 1, a sheet having a thickness of 1 mm was produced. The infrared emissivity and radiance of this sheet were measured, and the results are shown in FIGS. 1 (a) and (b).
[0051]
As a result of the above measurement, it can be seen that the product of the present invention has an emissivity of about 80%, has little wavelength dependence in the emissivity, and is similar to the so-called blackbody radiation characteristics. It is known that the wavelength region that humans feel the warmest is far infrared rays in a region exceeding 2 μm. The product of the present invention having sufficiently high radiance in the far-infrared region is excellent in the heat retaining effect and the radiant heat effect.
[0052]
(Electromagnetic wave shielding characteristic test)
Using the sheet-shaped resin molded product obtained in Example 8, the electromagnetic wave shielding characteristics were measured by a conventional method. The result is shown in FIG.
According to FIG. 2, it can be seen that a good electric field shielding property is exhibited in a frequency range of 100 to 500 MHz.
[0053]
Magnetic shielding characteristics were measured by the same method using the same sample, and the results are shown in FIG.
According to FIG. 3, it can be seen that the embodiment of the present invention has excellent magnetic shielding characteristics. Note that the peak frequency of the magnetic shielding characteristic is in a higher frequency region than the peak frequency of the electric field shielding characteristic.
[0054]
[Ion adjustment function test]
The amount of ions in the test environment was measured using an ion counter (Kobe Denpasha). In the test environment, the sheet-shaped resin molded product of Example 3 was placed for a certain period of time, and measurements were made before and after that. The result is shown in FIG.
According to FIG. 4, in the air of the test environment, positively charged ion particles and negatively charged ion particles are present in approximately the same number and are in equilibrium, and the entire environment is electrically neutral. Has become. The size of the ionic particles is considered to be about 0.5 to 1.0 nm.
[0055]
When the sheet-shaped resin molded product of Example 3 is arranged in the test environment, the number of positive ions rapidly decreases to almost zero. As for the negative ion, it has not changed much. As a result, the entire environment is in a state of being rich in negative ions. Such an environment with a large amount of negative ions is said to have a medical effect that has a favorable effect on the human body.
[0056]
While the sheet-shaped resin molded product is present, the state of the negative ions is always large, but when the sheet-shaped resin molded product is removed from the environment, the positive ions increase again, and the whole atmosphere returns to a neutral state.
[0057]
【The invention's effect】
The carbon material-containing resin composition of the present invention, since the wood chip carbide powder is uniformly dispersed in the resin by the action of a surfactant, can effectively exhibit various excellent properties of the wood chip carbide powder. it can. As a result, to improve the humidity control function, deodorization function, far-infrared radiation function, conductive function, electromagnetic wave absorption function, ion adjustment function, etc. of products such as carbon material-containing resin molded products manufactured from the carbon material-containing resin composition Can be.
[Brief description of the drawings]
FIG. 1 is a diagram showing emissivity (a) and radiance (b) of a resin molded product representing an embodiment of the present invention.
FIG. 2 is a diagram showing electromagnetic wave shielding characteristics of the above.
FIG. 3 is a diagram showing magnetic shielding characteristics of the above.
FIG. 4 is a diagram showing an ion adjustment function of a resin molded product.

Claims (6)

樹脂成形品の製造に用いられる炭材含有樹脂組成物であって、
樹脂100重量部と、
粒径30μm以下の木材チップ炭化物粉3〜50重量部と、
界面活性剤0.5〜10重量部と
を含む炭材含有樹脂組成物。
A carbon material-containing resin composition used for manufacturing a resin molded product,
100 parts by weight of resin,
3 to 50 parts by weight of wood chip carbide powder having a particle size of 30 μm or less,
A carbon material-containing resin composition comprising 0.5 to 10 parts by weight of a surfactant.
前記樹脂と前記界面活性剤とが、
ポリエチレン樹脂またはポリプロピレン樹脂とアルキルリン酸エステルとの組み合わせ、
ポリスチロール樹脂とアルキルスルフォン酸塩またはアルキルベンゼンスルフォン酸塩との組み合わせ、
ABS樹脂またはポリ塩化ビニル樹脂とアルキルスルフォン酸塩との組み合わせ、
熱硬化性樹脂と非イオン界面活性剤との組み合わせ
のうちの何れか1種の組み合わせである
請求項1に記載の炭材含有樹脂組成物。
The resin and the surfactant,
A combination of a polyethylene resin or a polypropylene resin and an alkyl phosphate,
A combination of a polystyrene resin and an alkyl sulfonate or an alkylbenzene sulfonate,
A combination of an ABS resin or a polyvinyl chloride resin and an alkyl sulfonate,
The carbon material-containing resin composition according to claim 1, wherein the carbon material-containing resin composition is a combination of any one of a combination of a thermosetting resin and a nonionic surfactant.
樹脂100重量部に対して、
粒径30μm以下の木材チップ炭化物粉3〜50重量部を、
界面活性剤0.5〜10重量部の存在下で、
混練する
炭材含有樹脂組成物の製造方法。
For 100 parts by weight of resin,
3 to 50 parts by weight of wood chip carbide powder having a particle size of 30 μm or less,
In the presence of 0.5 to 10 parts by weight of a surfactant,
A method for producing a carbon material-containing resin composition to be kneaded.
請求項1または2に記載の炭材含有樹脂組成物から成形された炭材含有樹脂成形品。A carbon material-containing resin molded article molded from the carbon material-containing resin composition according to claim 1. シート状をなす
請求項4に記載の炭材含有樹脂成形品。
The carbon material-containing resin molded product according to claim 4, which is in the form of a sheet.
発泡体からなる
請求項4または5に記載の炭材含有樹脂成形品。
The carbonaceous material-containing resin molded product according to claim 4 or 5, which is made of a foam.
JP20365697A 1997-07-29 1997-07-29 Carbon material-containing resin composition, method for producing the same, and carbon material-containing resin molded article Expired - Fee Related JP3553325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20365697A JP3553325B2 (en) 1997-07-29 1997-07-29 Carbon material-containing resin composition, method for producing the same, and carbon material-containing resin molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20365697A JP3553325B2 (en) 1997-07-29 1997-07-29 Carbon material-containing resin composition, method for producing the same, and carbon material-containing resin molded article

Publications (2)

Publication Number Publication Date
JPH1143611A JPH1143611A (en) 1999-02-16
JP3553325B2 true JP3553325B2 (en) 2004-08-11

Family

ID=16477679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20365697A Expired - Fee Related JP3553325B2 (en) 1997-07-29 1997-07-29 Carbon material-containing resin composition, method for producing the same, and carbon material-containing resin molded article

Country Status (1)

Country Link
JP (1) JP3553325B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4571723B2 (en) * 1999-12-28 2010-10-27 日の丸カーボテクノ株式会社 Method for producing charcoal-supported molded body
JP4548922B2 (en) * 2000-10-19 2010-09-22 株式会社クレハ Semiconductive resin composition
JP2002179868A (en) * 2000-12-13 2002-06-26 Shin Etsu Polymer Co Ltd Vinyl chloride resin composition compounded with far infrared radiation element and electric wire covered with the same
JP4537715B2 (en) * 2004-01-09 2010-09-08 日の丸カーボテクノ株式会社 Cold thawing promoting material and cold thawing method
KR100975894B1 (en) 2010-02-01 2010-08-17 주식회사 엔투하이텍 Appratus for manufacturing synthetic wood using charcoal
JP4869449B1 (en) * 2011-07-13 2012-02-08 三菱電機株式会社 Pulp composite reinforced resin and method for producing the same
JP5412010B1 (en) * 2012-09-13 2014-02-12 電気化学工業株式会社 Rubber composition, vulcanized product and molded product thereof
WO2014041649A1 (en) * 2012-09-13 2014-03-20 電気化学工業株式会社 Rubber composition, and vulcanizate and molded article thereof
US20180002478A1 (en) * 2016-06-29 2018-01-04 Proprietect L.P. Foamed isocyanate-based polymer
WO2020136734A1 (en) * 2018-12-26 2020-07-02 株式会社大木工藝 Resin molded article and method for producing resin molded article

Also Published As

Publication number Publication date
JPH1143611A (en) 1999-02-16

Similar Documents

Publication Publication Date Title
Mather et al. Carbon black/high density polyethylene conducting composite materials: Part I Structural modification of a carbon black by gasification in carbon dioxide and the effect on the electrical and mechanical properties of the composite
JP3553325B2 (en) Carbon material-containing resin composition, method for producing the same, and carbon material-containing resin molded article
EP2791947B1 (en) Use of carbon black to produce compounds of defined volume resistivity
CN107603004A (en) It is electromagnetically shielded polymeric foamable material and preparation method thereof
EP3703479A1 (en) Composite material for shielding electromagnetic radiation, raw material for additive manufacturing methods and a product comprising the composite material as well as a method of manufacturing the product
KR102249686B1 (en) Conductive sheet, method for manufacturing same, carbon composite paste, carbon composite filler, conductive resin material, and conductive rubber material
AU4115193A (en) Improved composition of expanded polytetrafluoroethylene and similar polymers and method for producing same
EP1829933B1 (en) Method of controlling specific inductive capacity, dielectric material, mobile phone and human phantom model
US20110300388A1 (en) Functional molded article and method for producing same
EP0109824B1 (en) Electrically conductive plastic complex material
DE3539509A1 (en) EMI screening compositions
CN111761751A (en) Preparation method and application of carbon-containing polyolefin master batch
JPS5840326A (en) Foamable polyolefin resin composition
US7132155B2 (en) RBC or CRBC fine powder dispersing foam-molded synthetic resin material, method for preparing same and uses thereof
Zhang et al. Selective location of the filler and double percolation of Ketjenblack filled high density polyethylene/isotactic polypropylene blends
EP2075291B1 (en) Granular acetylene black, process for production thereof, and composition
JPS6314733B2 (en)
JPH0987418A (en) Synthetic resin composition and synthetic resin molding
JPH06211994A (en) Molding material containing active carbon fiber, its molded article, and its production
JP2007131529A (en) Method for producing activated charcoal
KR101662546B1 (en) manufacturing method of expandable polystyrene having improved insulation property
JP4571723B2 (en) Method for producing charcoal-supported molded body
Huang et al. Polymeric positive-temperature-coefficient materials: dynamic curing effect
JP4412807B2 (en) Plastics molding material
JP3263235B2 (en) Method for producing granulated powder of polytetrafluoroethylene

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees