JP3553253B2 - Biological nitrification denitrification method - Google Patents

Biological nitrification denitrification method Download PDF

Info

Publication number
JP3553253B2
JP3553253B2 JP00999796A JP999796A JP3553253B2 JP 3553253 B2 JP3553253 B2 JP 3553253B2 JP 00999796 A JP00999796 A JP 00999796A JP 999796 A JP999796 A JP 999796A JP 3553253 B2 JP3553253 B2 JP 3553253B2
Authority
JP
Japan
Prior art keywords
ammonia
seawater
concentration
wastewater
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00999796A
Other languages
Japanese (ja)
Other versions
JPH09192690A (en
Inventor
雅之 田畑
中村  剛
宏 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP00999796A priority Critical patent/JP3553253B2/en
Publication of JPH09192690A publication Critical patent/JPH09192690A/en
Application granted granted Critical
Publication of JP3553253B2 publication Critical patent/JP3553253B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は排水・し尿処理及び発電所で発生する排水の処理など、高塩濃度排水の生物による硝化脱窒方法に関する。
【0002】
【従来の技術】
従来の排水処理設備、し尿処理設備または発電所から発生するアンモニアを大量に含有する排水の処理施設などでは、生物を利用した硝化脱窒方法が広く適用されている。排水中のアンモニアは硝化菌の働きにより、下記の式(1) 、式(2) の反応で硝酸イオンにまで酸化される。
【化1】
NH + 3/2O+NO +2e→NO +2HO……式(1)
NO + 1/2O →NO ……式(2)
通常、式(1) の反応はアンモニア硝化細菌によって行われ、式(2) の反応は亜硝酸酸化細菌によって行われている。
硝化菌の働きによって生成した硝酸イオンは、脱窒菌の働きにより下記の式(3) の反応で窒素ガスに還元され、排水中から除去される。
【化2】
NO + 6H→ N+3HO ……式(3)
【0003】
【発明が解決しようとする課題】
ところで、処理対象が海水、またはそれ以上の塩濃度の排水になった場合、生物硝化脱窒には、高塩濃度に馴養した淡水の硝化汚泥、及び脱窒汚泥が使用されているが、このような汚泥では耐塩性が低いため、硝化性能が低く、しかも不安定である。これまでのところ、海水レベル以上の高塩濃度排水の生物硝化脱窒方法については、ほとんど検討されていない。
また、海洋性硝化菌は淡水性硝化菌よりも高い耐塩性を有すると考えられるが、産業的に利用できるものはなかった。
本発明はこのような現状に鑑み、海水レベル以上の高塩濃度排水の生物硝化脱窒方法の提供を目的とするものである。
【0004】
【課題を解決するための手段】
本発明は上記課題を解決する手段として、排水またはし尿の処理において、高い塩濃度を有する排水を生物により硝化脱窒する工程において、該生物としてニトロソモナス属に属する耐塩性アンモニア酸化細菌FERM BP−4966を用いることを特徴とする生物硝化脱窒方法を提供する。
【0005】
【発明の実施の形態】
本発明は、海水またはその以上の塩濃度に耐性を有し、かつ高濃度の基質存在下でも生育可能なニトロソモナス属に属する海洋性の耐塩性アンモニア酸化細菌FERM BP−4966を利用することにより、硝化脱窒装置を高性能且つ安定に運転するものである。
【0006】
〔作用〕
上記式(1),(2) 及び(3) の硝化脱窒反応においては、アンモニア酸化細菌の働きで生成した亜硝酸イオンを基質として亜硝酸酸化細菌が増殖する。さらにこれによって生成した硝酸イオンを利用して脱窒菌が増殖する。従って、硝化脱窒が順調に行われるためには、第一にアンモニア酸化細菌によりアンモニアの酸化が安定して行われることが必要である。
本発明においては、塩分を含む排水を処理するときに、耐塩性を有する新規なアンモニア酸化細菌を利用する。これにより排水処理施設でのアンモニア酸化反応を高性能化且つ安定化できる。
【0007】
本発明者らは高塩濃度でも高い効率で且つ安定にアンモニアを酸化できる新規な菌の獲得を考え、海水魚蓄養装置の硝化槽の担体に付着させている硝化細菌に着目した。海水魚蓄養装置とは、水揚げされた活魚を生きたまま飼育しておく装置であり、魚自身の***するアンモニアが水中に数ppm蓄積すると魚を死滅させてしまうので、飼育水槽の水はアンモニア除去のための生物処理槽(硝化槽)に送られ、担体に付着保持された微生物(硝化細菌)によりアンモニアを亜硝酸イオンを経て無害な硝酸イオンに酸化させ、処理後の飼育水は再度水槽に戻し循環使用する。
【0008】
本発明者らは海水魚蓄養装置の硝化槽内担体を分離源として、高濃度の基質を含む培地を用いてスクリーニングを行い、海水、またはそれ以上の塩濃度に耐性を有し、かつ高濃度の基質存在下でも生育可能な海洋性アンモニア酸化細菌を単離するに至った。該アンモニア酸化細菌についての研究を重ね、Nitrosomonas SP.MA−6と命名し、通商産業省工業技術院生命工学工業技術研究所に「特許手続上の微生物の寄託の国際的承認に関するブダペスト条約」に基づく原寄託を行い、平成7年1月10日に(受託番号)FERM BP−4966 として受託された。
【0009】
なお、本発明にいう海水またはそれ以上の塩濃度とは、各種の塩分の総量が海水の塩分濃度またははそれ以上であることを意味し、具体的にはいわゆる標準海水(海水1kg中に35.0gの塩類を含むもの)である。
【0010】
さらに本発明にいう高濃度の基質とは、具体的には窒素として10〜1,000ppmを含有するものをいう。
【0011】
耐塩性アンモニア酸化細菌の単離
〔1〕スクリーニング方法
海水魚蓄養装置の硝化槽内より、微生物の付着担体である多孔質セラミックビーズ(5mmφ)を採取した。約1gのセラミックビーズを海水10mmの入った試験管に加えて激しく撹拌し、担体表面に付着した微生物を海水中に遊離、懸濁させた。 この懸濁海水の全量を、200mlのアンモニア酸化細菌用培地に接種し、28℃で集積培養を行った。使用した培地の組成を表1に示す。一般に、海洋性硝化菌の培地の基質量はアンモニア態窒素として10ppm程度であるのに対して、この培地は高濃度の基質(アンモニア態窒素200ppm)を含有している。なお、表1中のHEPESとはN−2−ヒドロキシエチルピペラジン−N’−2−エタンスルホン酸の略称であり、天然海水として神奈川県城ケ島で採取した海水を使用した。
【0012】
【表1】

Figure 0003553253
【0013】
3〜4週間に1度、集積培養液20mlを新鮮培地180mlに植え継ぎ、28℃で合計12ヵ月間集積培養を行った。集積培養の間、アンモニア酸化菌の増殖に伴う培養液中のアンモニアの減少をインドフェノール青吸光光度法〔JISK0102:アンモニウムイオンが次亜塩素酸イオンの共存のもとで、フェノールと反応して生じるインドフェノール青の吸光度(波長630nm付近)を測定してアンモニウムイオンを定量する方法〕により測定、確認した。
集積培養液を滅菌海水(表1の近年海水を滅菌したもの)を用いて適当な濃度に希釈し、平板培地に塗沫、培養した。平板培地は、表1の培地に Bull. Jpn. Soc. Microbiol. Ecol., (1989) p.101 に記載されたゲランガムを10g/リットル添加して作成し、培養は28℃で1ヵ月間行った。
平板培養後、出現したコロニーを釣菌して5mlの液体培地(表1の培地)に接種し、28℃で1ヵ月間培養した。培養液中のアンモニア濃度を測定し、アンモニア濃度の減少の認められた株を選択し、これを海洋性アンモニア酸化細菌MA−6株と命名した。
【0014】
〔II〕MA−6株の菌学的性質:
MA−6株の菌学的性質を調べた結果を、表2に示す。
【0015】
【表2】
Figure 0003553253
【0016】
上記したMA−6株の菌学的性質は、海水培地で生育可能である点を除きニトロソモナス属(Nitrosomonas sp.)の基準株であるニトモソモナス エウロパーエア(Nitrosomonas europaea)ATCC25978の菌学的性質とよく類似していたので、MA−6株の帰属をニトロソモナス属とした。
【0017】
MA−6株は、耐塩性を有し、高濃度の基質存在下でも生育能を有するため、高塩濃度排水の生物硝化脱窒法に利用すると多大な効果を発揮する。本菌株、Nitrosomonas sp.MA−6株は、前記のように平成7年1月10日付けで工業技術院生命工学技術研究所に受託番号:FERM BP−4966として国際寄託してある。
【0018】
〔MA−6株の耐塩性試験〕
MA−6株を表1の培地で培養集菌し、滅菌海水に懸濁した後、この懸濁液5ml(懸濁液中の菌濃度:10個/ml)を耐塩性試験用培地45mlに接種し、28℃で7日間培養した。耐塩性試験用培地には表1の培地組成の海水を蒸留水に代えたものを用い、塩濃度は人工海水粉末(ハイペット(株)製、商品名スウィングハイマリン)の添加量を変えることにより、海水同等,2倍,3倍及び4倍濃度になるように調整した。
【0019】
培養の後、菌の生育の有無を光学顕微鏡(500倍)を用いた直接計数法により確認し、インドフェノール青吸光光度法にて培養液のアンモニア濃度を測定した。この結果、表3に示すようにMA−6株は海水の3倍までの塩濃度の培地でも生育できることと、これに伴う培地中のアンモニアの減少が認められた。これにより、MA−6株は海水レベル以上の塩濃度に耐性を有し、高濃度の基質存在下で生育できて、アンモニアを酸化できる菌であることが確認できた。
【0020】
【表3】
Figure 0003553253
【0021】
このようにFERM BP−4966は、海水の3倍の塩濃度及び高濃度基質の存在下でも生育可能な耐塩性アンモニア酸化菌であり、高塩濃度排水の生物硝化に利用すると多大な効果を発揮することができる。本発明において硝化脱窒工程にいて本株を利用する詳細については、以下の実施例で説明する。
【0022】
【実施例】
〔実施例〕
図1は本発明の一実施例を示すものであって、処理対象水500mlを含む水槽1、耐塩性アンモニア酸化細菌FERM BP−4966を付着させた5mlφのセラミックビーズ50mlが充填してある硝化菌リアクタ2、処理対象水を循環させる送液ポンプ3及び酸素を供給するためのブロワ4より構成されている。
運転開始前の水槽1の処理対象水は200ppmのアンモニア態窒素が含まれており、塩濃度は人工海水粉末(ハイペット(株)製、商品名スウィングハイマリン)によって調整されている。水槽1内のの処理対象水は送液ポンプ3によって、硝化菌リアクタ2に送られ、アンモニアの処理が行われた後、再び水槽1に返送される。
時間t=t(運転開始日)からt=t(運転終了日)における処理対象水中のアンモニア態窒素濃度が、それぞれNからN(mg−N/リットル)に変化するとき、硝化菌リアクタ2の硝化性能は下記の式(4) で算出できる。
【数1】
Figure 0003553253
【0023】
本実施例においては、運転期間は1〜3日間の種々の期間で計3回行ったが、各回ともにt=0日、t=1日でのアンモニアの減少量で性能評価した。結果を表4に示す。表4から明らかなように、FERM BP−4966を利用した硝化菌リアクタは、海水の2倍の塩濃度でも、従来の淡水の処理と同等で、かつ安定した硝化性能を有することが確認された。
【0024】
【表4】
Figure 0003553253
【0025】
また上記におけるアンモニア濃度(N mg/リットル)の測定結果は表5に示す通りであった。表5から繰り返し使用しても処理速度が変わらず、また高塩濃度にさらしても処理速度が低下しないこと、つまり耐塩性にすぐれて安定した運転が可能であることがわかる。
【0026】
【表5】
Figure 0003553253
【0027】
【発明の効果】
本発明は、従来処理が困難であった高塩濃度排水の生物による硝化脱窒を、高効率でかつ安定に行うことができるので、産業上、環境保護上非常に有利であり、例えば排水・し尿処理、発電所で発生する排水の処理などに利用できる。
【図面の簡単な説明】
【図1】本発明の方法の概略説明図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for nitrifying and denitrifying wastewater with a high salt concentration, such as wastewater and human waste treatment and treatment of wastewater generated in a power plant.
[0002]
[Prior art]
BACKGROUND ART In a conventional wastewater treatment facility, a wastewater treatment facility, or a wastewater treatment facility containing a large amount of ammonia generated from a power plant, a nitrification and denitrification method using living organisms is widely applied. Ammonia in the wastewater is oxidized to nitrate ions by the reaction of the following equations (1) and (2) by the action of nitrifying bacteria.
Embedded image
NH 4 + + 3 / 2O 2 + NO 2 + 2e → NO 2 + 2H 2 O ... Formula (1)
NO 2 - + 1 / 2O 2 → NO 3 - ...... formula (2)
Usually, the reaction of the formula (1) is carried out by ammonium nitrifying bacteria, and the reaction of the formula (2) is carried out by nitrite-oxidizing bacteria.
Nitrate ions generated by the action of nitrifying bacteria are reduced to nitrogen gas by the reaction of the following formula (3) by the action of denitrifying bacteria, and are removed from the wastewater.
Embedded image
NO 3 + 6H + → N 2 + 3H 2 O Formula (3)
[0003]
[Problems to be solved by the invention]
By the way, when the treatment target is seawater or wastewater with a salt concentration higher than that, freshwater nitrification sludge that has been adjusted to a high salt concentration and denitrification sludge are used for biological nitrification denitrification. Such sludge has low salt resistance, so its nitrification performance is low and unstable. So far, there has been little study on a method of bionitrification and denitrification of wastewater with a high salt concentration above seawater level.
Further, marine nitrifying bacteria are considered to have higher salt tolerance than freshwater nitrifying bacteria, but none of them can be used industrially.
The present invention has been made in view of such circumstances, and has as its object to provide a method for biological nitrification and denitrification of wastewater having a high salt concentration higher than the level of seawater.
[0004]
[Means for Solving the Problems]
Means for Solving the Problems As a means for solving the above-mentioned problems, in the treatment of wastewater or night soil, in the step of nitrifying and denitrifying wastewater having a high salt concentration, the salt-tolerant ammonium oxidizing bacteria FERM BP- A biological nitrification denitrification method characterized by using 4966 is provided.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention utilizes the marine salt-tolerant ammonium oxidizing bacterium FERM BP-4966 belonging to the genus Nitrosomonas, which is resistant to seawater or higher salt concentration and can grow even in the presence of a high concentration of substrate. And a high-performance and stable operation of the nitrification and denitrification apparatus.
[0006]
[Action]
In the nitrification denitrification reaction of the above formulas (1), (2) and (3), nitrite-oxidizing bacteria grow using nitrite ions generated by the action of ammonia-oxidizing bacteria as substrates. Further, the denitrifying bacteria grow using the nitrate ions generated thereby. Therefore, in order for nitrification and denitrification to be performed smoothly, it is first necessary to oxidize ammonia stably by ammonia oxidizing bacteria.
In the present invention, when treating wastewater containing salt, a novel salt-tolerant ammonia-oxidizing bacterium is used. Thereby, the performance of the ammonia oxidation reaction in the wastewater treatment facility can be improved and stabilized.
[0007]
The present inventors considered obtaining a new bacterium capable of stably oxidizing ammonia with high efficiency even at a high salt concentration, and focused on nitrifying bacteria attached to a carrier of a nitrification tank of a saltwater fish farming apparatus. The saltwater fish cultivation device is a device that keeps the landed live fish alive and keeps the fish in the breeding aquarium because the ammonia excreted by the fish itself accumulates in a few ppm and kills the fish. It is sent to a biological treatment tank (nitrification tank) for removal, and ammonia is oxidized to harmless nitrate ions via nitrite ions by microorganisms (nitrifying bacteria) adhered and held on the carrier. Return to use for circulation.
[0008]
The present inventors performed screening using a medium containing a high concentration of a substrate, using a carrier in a nitrification tank of a saltwater fish farming apparatus as a separation source, and were resistant to seawater, or a higher salt concentration, and had a high concentration. Marine ammonia-oxidizing bacteria that can grow in the presence of a substrate. The research on the ammonia-oxidizing bacteria was repeated and Nitrosomonas SP. Named MA-6, and made an original deposit with the Institute of Biotechnology and Industrial Technology of the Ministry of International Trade and Industry based on the "Budapest Treaty on International Recognition of Deposit of Microorganisms for Patent Procedures" on January 10, 1995. (Accession No.) FERM BP-4966.
[0009]
The salt concentration of seawater or higher in the present invention means that the total amount of various salts is equal to or higher than the salt concentration of seawater, and specifically, so-called standard seawater (35 kg / kg of seawater). .0 g of salts).
[0010]
Furthermore, the high-concentration substrate referred to in the present invention specifically means a substrate containing 10 to 1,000 ppm as nitrogen.
[0011]
Isolation of Salt-Tolerant Ammonia-Oxidizing Bacteria [1] Screening Method Porous ceramic beads (5 mmφ) as a carrier for attaching microorganisms were collected from the nitrification tank of a saltwater fish cultivation apparatus. About 1 g of the ceramic beads was added to a test tube containing 10 mm of seawater, and the mixture was vigorously stirred to release and suspend microorganisms attached to the surface of the carrier in the seawater. The whole amount of the suspended seawater was inoculated into 200 ml of a medium for ammonia-oxidizing bacteria, and enrichment culture was performed at 28 ° C. Table 1 shows the composition of the medium used. Generally, the base mass of a medium for marine nitrifying bacteria is about 10 ppm as ammonia nitrogen, whereas this medium contains a high concentration of substrate (200 ppm of ammonia nitrogen). In addition, HEPES in Table 1 is an abbreviation for N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid, and seawater collected from Jogashima Island, Kanagawa Prefecture was used as natural seawater.
[0012]
[Table 1]
Figure 0003553253
[0013]
Once every 3 to 4 weeks, 20 ml of the enrichment culture was inoculated into 180 ml of fresh medium, and enrichment culture was performed at 28 ° C. for a total of 12 months. During the enrichment cultivation, the decrease in ammonia in the culture solution accompanying the growth of ammonia oxidizing bacteria is caused by indophenol blue spectrophotometry [JIS K0102: ammonium ion reacts with phenol in the presence of hypochlorite ion] Method for Quantifying Ammonium Ion by Measuring Absorbance of Indophenol Blue (wavelength: around 630 nm)].
The enriched culture solution was diluted to an appropriate concentration using sterilized seawater (recently sterilized seawater in Table 1), spread on a plate medium, and cultured. The plate medium was prepared by adding Bull. Jpn. Soc. Microbiol. Ecol. , 4 (1989) p. Gellan gum described in No. 101 was added at 10 g / liter, and the culture was performed at 28 ° C. for one month.
After the plate culture, the colonies that appeared were picked, inoculated into 5 ml of a liquid medium (medium in Table 1), and cultured at 28 ° C. for one month. The ammonia concentration in the culture solution was measured, and a strain showing a decrease in the ammonia concentration was selected. This strain was designated as marine ammonia-oxidizing bacterium MA-6 strain.
[0014]
[II] Mycological properties of MA-6 strain:
Table 2 shows the results of examination of the mycological properties of the MA-6 strain.
[0015]
[Table 2]
Figure 0003553253
[0016]
The bacteriological properties of the MA-6 strain described above are similar to those of Nitrosomonas europaea ATCC 25978, which is a reference strain of the genus Nitrosomonas sp. Except that it can grow on a seawater medium. Because they were similar, the MA-6 strain was assigned to the genus Nitrosomonas.
[0017]
The MA-6 strain is salt-tolerant and has a growth ability even in the presence of a high-concentration substrate. Therefore, the MA-6 strain exerts a tremendous effect when used in the biological nitrification and denitrification of wastewater with a high salt concentration. This strain, Nitrosomonas sp. The MA-6 strain has been internationally deposited as an accession number of FERM BP-4966 on January 10, 1995 with the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology as described above.
[0018]
[Salt tolerance test of MA-6 strain]
The MA-6 strain was cultured collecting bacteria in a medium of Table 1, was suspended in sterile seawater, (cell concentration in the suspension: 10 7 / ml) The suspension 5ml medium for salt tolerance test 45ml And cultured at 28 ° C. for 7 days. The medium for salt tolerance test was prepared by replacing the seawater of the medium composition in Table 1 with distilled water, and the salt concentration was changed by changing the amount of artificial seawater powder (Hypet Co., Ltd., trade name: Swing Himalin). Was adjusted so as to have the same, twice, three and four times the concentration of seawater.
[0019]
After the culture, the presence or absence of growth of the bacteria was confirmed by a direct counting method using an optical microscope (500 times), and the ammonia concentration of the culture solution was measured by an indophenol blue absorption spectrophotometry. As a result, as shown in Table 3, it was confirmed that the MA-6 strain could grow on a medium having a salt concentration up to three times as high as that of seawater, and the accompanying decrease in ammonia in the medium. This confirmed that the MA-6 strain is a bacterium that has resistance to salt concentrations higher than the level of seawater, can grow in the presence of a high concentration of substrate, and can oxidize ammonia.
[0020]
[Table 3]
Figure 0003553253
[0021]
As described above, FERM BP-4966 is a salt-tolerant ammonium oxidizing bacterium that can grow even in the presence of a substrate having a salt concentration three times higher than seawater and a high concentration of substrate, and exerts a great effect when used for biological nitrification of high salt concentration wastewater. can do. Details of the use of this strain in the nitrification denitrification step in the present invention will be described in the following examples.
[0022]
【Example】
〔Example〕
FIG. 1 shows an embodiment of the present invention, in which a water tank 1 containing 500 ml of water to be treated, a nitrifying bacterium filled with 50 ml of 5 mlφ ceramic beads to which salt-tolerant ammonia-oxidizing bacteria FERM BP-4966 is attached. It comprises a reactor 2, a liquid feed pump 3 for circulating the water to be treated, and a blower 4 for supplying oxygen.
The water to be treated in the water tank 1 before the start of operation contains 200 ppm of ammonia nitrogen, and the salt concentration is adjusted with artificial seawater powder (trade name: Swing Hymarine, manufactured by Hipet Co., Ltd.). The water to be treated in the water tank 1 is sent to the nitrifying bacteria reactor 2 by the liquid sending pump 3 and is returned to the water tank 1 again after the treatment of ammonia is performed.
When the concentration of ammonia nitrogen in the water to be treated from time t = t 1 (operation start date) to t = t 2 (operation end date) changes from N 1 to N 2 (mg-N / liter), nitrification occurs. The nitrification performance of the bacteria reactor 2 can be calculated by the following equation (4).
(Equation 1)
Figure 0003553253
[0023]
In the present example, the operation period was performed three times in various periods of 1 to 3 days, and in each case, the performance was evaluated based on the reduced amount of ammonia at t 1 = 0 days and t 2 = 1 day. Table 4 shows the results. As is clear from Table 4, it was confirmed that the nitrifying bacteria reactor using FERM BP-4966 has the same and stable nitrification performance as the conventional fresh water treatment even at twice the salt concentration of seawater. .
[0024]
[Table 4]
Figure 0003553253
[0025]
The measurement results of the ammonia concentration (N mg / liter) in the above were as shown in Table 5. It can be seen from Table 5 that the processing speed does not change even when repeatedly used, and that the processing speed does not decrease even when exposed to a high salt concentration, that is, stable operation with excellent salt resistance is possible.
[0026]
[Table 5]
Figure 0003553253
[0027]
【The invention's effect】
INDUSTRIAL APPLICABILITY The present invention can highly efficiently and stably perform nitrification and denitrification of living organisms of high salt concentration wastewater, which has been difficult to treat conventionally, and is very advantageous in industrial and environmental protection. It can be used to treat human waste and wastewater generated at power plants.
[Brief description of the drawings]
FIG. 1 is a schematic illustration of the method of the present invention.

Claims (1)

排水またはし尿の処理において、高い塩濃度を有する排水を生物により硝化脱窒する工程において、該生物としてニトロソモナス属に属する耐塩性アンモニア酸化細菌FERM BP−4966を用いることを特徴とする生物硝化脱窒方法。In the treatment of wastewater or night soil, the step of nitrifying and denitrifying wastewater having a high salt concentration with a living organism is characterized by using a salt-tolerant ammonium oxidizing bacterium FERM BP-4966 belonging to the genus Nitrosomonas as the living organism. Nitrogen method.
JP00999796A 1996-01-24 1996-01-24 Biological nitrification denitrification method Expired - Fee Related JP3553253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00999796A JP3553253B2 (en) 1996-01-24 1996-01-24 Biological nitrification denitrification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00999796A JP3553253B2 (en) 1996-01-24 1996-01-24 Biological nitrification denitrification method

Publications (2)

Publication Number Publication Date
JPH09192690A JPH09192690A (en) 1997-07-29
JP3553253B2 true JP3553253B2 (en) 2004-08-11

Family

ID=11735495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00999796A Expired - Fee Related JP3553253B2 (en) 1996-01-24 1996-01-24 Biological nitrification denitrification method

Country Status (1)

Country Link
JP (1) JP3553253B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077171A1 (en) * 1999-06-10 2000-12-21 Bicom Corporation Method of high-concentration culture of nitrifying bacteria or denitrifying bacteria contained in activated sludge, culture promoter to be used in high-concentration culture method of nitrifying bacteria, and mehtod of weight loss treatment of activated sludge
AT503083B1 (en) 2006-01-05 2014-06-15 Wolfgang Dipl Ing Mag Wesner PROCESS FOR THE PREPARATION OF SALT WATER AND APPARATUS FOR IMPLEMENTING THE PROCESS
JP5197229B2 (en) * 2008-08-20 2013-05-15 関東天然瓦斯開発株式会社 Treatment method of ammonia contained in underground brine
JP5039093B2 (en) * 2009-06-15 2012-10-03 株式会社栄電社 Manufacturing method of bioreactor element
CN104609536B (en) * 2013-11-05 2017-08-25 中蓝连海设计研究院 A kind of method for starting high-salt wastewater aerobic treatment system
JP6651298B2 (en) * 2015-04-14 2020-02-19 学校法人 東洋大学 Wastewater treatment method and wastewater treatment device for wastewater containing high salt concentration

Also Published As

Publication number Publication date
JPH09192690A (en) 1997-07-29

Similar Documents

Publication Publication Date Title
John et al. Treatment of ammonia and nitrite in aquaculture wastewater by an assembled bacterial consortium
JP4602615B2 (en) High concentration culture method of nitrifying bacteria contained in activated sludge
Strohl et al. Enumeration, isolation, and characterization of Beggiatoa from freshwater sediments
Avnimelech et al. Studies in circulated fish ponds: organic matter recycling and nitrogen transformation
JP2008017713A (en) Method for enrichment culture of ammonia-oxidizing bacterium community and denitrifying bacterium community
CN101712943B (en) Biological denitrogenation agent and application thereof
CN102701463B (en) Water purifying microbial ecosystem and application thereof
CN113699057B (en) Rhodococcus toonapus with heterotrophic nitrification-aerobic denitrification function and application thereof
Nguyen et al. Modification of expanded clay carrier for enhancing the immobilization and nitrogen removal capacity of nitrifying and denitrifying bacteria in the aquaculture system
JP3553253B2 (en) Biological nitrification denitrification method
JP4945742B2 (en) Bottom quality improving material and bottom quality improving method using the same
JP3553252B2 (en) Salt-tolerant ammonia-oxidizing bacteria
Paul et al. Influence of Nitrogen Cycle Bacteria on Nitrogen Mineralisation, Water Quality and Productivity of Freshwater Fish Pond: A Review.
JP2006211908A (en) New microorganism and method for nitration-treating ammonia-containing water by utilizing the same
CN113293111B (en) Bacillus marinus with denitrification function and application thereof
CN106434424B (en) Vibrios and application thereof with dirty seawater denitrification ability
Hodgson et al. Melbourne water's wastewater treatment lagoons: design modifications to reduce odours and enhance nutrient removal
JP3398760B2 (en) Water treatment method, water treatment agent and aerobic denitrifying bacteria
US20030201224A1 (en) Microbial consortium for the biodegradation of dithiocarbamates
CN112811607A (en) Method for constructing lake and reservoir water ecosystem
CN110184223A (en) A kind of Kayseri arthrobacterium that can efficiently remove ammonia nitrogen in aquaculture wastewater and its application
JP7345079B1 (en) Mixed microorganisms and wastewater treatment method
CN114231431B (en) Application of rhodococcus toonapus WM36 in denitrification of nitrogen-containing sewage in treatment of salt fresh water
CN116904349B (en) Adhesive sword bacteria with aerobic denitrification capability and application thereof
JP2974097B2 (en) How to maintain the aquatic environment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees