JP3552961B2 - Pressure detector - Google Patents

Pressure detector Download PDF

Info

Publication number
JP3552961B2
JP3552961B2 JP25626499A JP25626499A JP3552961B2 JP 3552961 B2 JP3552961 B2 JP 3552961B2 JP 25626499 A JP25626499 A JP 25626499A JP 25626499 A JP25626499 A JP 25626499A JP 3552961 B2 JP3552961 B2 JP 3552961B2
Authority
JP
Japan
Prior art keywords
pressure
substrate
frame
surface side
shaped protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25626499A
Other languages
Japanese (ja)
Other versions
JP2001083029A (en
Inventor
幸一 楠山
正夫 塚田
Original Assignee
株式会社日立ユニシアオートモティブ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ユニシアオートモティブ filed Critical 株式会社日立ユニシアオートモティブ
Priority to JP25626499A priority Critical patent/JP3552961B2/en
Publication of JP2001083029A publication Critical patent/JP2001083029A/en
Application granted granted Critical
Publication of JP3552961B2 publication Critical patent/JP3552961B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えばエッチング加工等の手段によってシリコン基板に形成され、ダイヤフラム部の撓み変形を利用して圧力を検出するのに好適に用いられる圧力検出装置に関する。
【0002】
【従来の技術】
一般に、圧力検出装置としては、シリコン材料からなる基板と、該基板の裏面側に受圧凹溝を形成することにより該基板の表面側に設けられた薄肉部と、該薄肉部の一部を枠状に取囲んで前記基板の表面側に設けられ取囲まれた内側をダイヤフラム部とする枠状突部と、該枠状突部上に接合して設けられ前記ダイヤフラム部を閉塞して基準圧力を与える圧力室を画成する閉塞板と、前記ダイヤフラム部に位置して前記薄肉部に設けられ前記受圧凹溝と圧力室との間の差圧によって前記ダイヤフラム部が変形するときの撓みを検出する撓み検出素子とから構成されたものが知られている(例えば、特開平11−118642号公報等)。
【0003】
この種の従来技術による圧力検出装置は、例えばガラス板等からなる閉塞板が圧力室を挟んで薄肉部の表面側に接合されている。このため、薄肉部の表面側には、例えば多結晶シリコン等からなる枠状突部が薄肉部の中央寄り部位(内側部位)を取囲んで突設され、閉塞板は、この枠状突部上に接合されている。
【0004】
ここで、枠状突部は、薄肉部の内側部位を取囲むことによってダイヤフラム部の位置および形状を定めるものである。この場合、従来技術では、薄肉部の外形寸法をある程度大きく形成し、この薄肉部のうち所定の部位を枠状突部によって取囲むことにより、基板の裏面側から形成する受圧凹溝(薄肉部)が加工誤差等によって位置ずれした場合でも、ダイヤフラム部を予め定められた位置に形成し、ダイヤフラム部と撓み検出素子とを位置合わせする構成としている。
【0005】
また、枠状突部は、薄肉部よりも大きな外形寸法を有する太幅の枠体として形成されている。そして、枠状突部は、薄肉部のうちダイヤフラムの外側に配置された外縁側部位に対して重なり合うように固着されることにより、この外縁側部位を閉塞板と共に補強している。
【0006】
このように構成される圧力検出装置は、ケーシング等によりパッケージ化された状態で用いられる。この場合、基板の表面側はケーシング内で大気圧等の通常圧力に保持され、基板の裏面側(受圧凹溝)には、例えば空気圧、油圧等の被測定圧が加えられる。そして、圧力検出装置は、受圧凹溝内の被測定圧と圧力室内の圧力(基準圧)との間の差圧に応じてダイヤフラム部が撓み変形し、その撓みを例えばピエゾ抵抗体等からなる撓み検出素子によって検出することにより、被測定圧に応じた検出信号を撓み検出素子から外部に出力するものである。
【0007】
【発明が解決しようとする課題】
ところで、上述した従来技術では、枠状突部の外形寸法を薄肉部よりも大きく形成し、この枠状突部と閉塞板とを薄肉部の外縁側部位に対して重ね合わせるように固着することにより、この外縁側部位を補強する構成としている。
【0008】
この場合、枠状突部の外形寸法が薄肉部よりも小さいと、薄肉部の外縁側部位が受圧凹溝側から加わる圧力によって損傷される虞れがある。このため、従来技術では、枠状突部等を薄肉部の外側に張出すように大きく形成せざるを得ず、撓み検出素子に付設される信号処理回路、電極パッド等は、この大きな枠状突部の外側で基板上に配置されることになるため、基板上の実装面積が大きくなって装置全体の小型化を図るのが難しいという問題がある。
【0009】
特に、従来技術では、薄肉部の一部を用いてダイヤフラム部を形成することにより、薄肉部の外形寸法を予めある程度大きく形成しているため、枠状突部が薄肉部の外側に張出すことによって基板の外形寸法がさらに大型化し易くなる。
【0010】
本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、薄肉部の強度を保持しつつ基板上の実装面積を小型化でき、装置全体をコンパクトに形成できるようにした圧力検出装置を提供することにある。
【0011】
【課題を解決するための手段】
上述した課題を解決するために請求項1の発明は、シリコン材料からなる基板と、該基板の裏面側に受圧凹溝を形成することにより該基板の表面側に設けられた薄肉部と、該薄肉部の一部を枠状に取囲んで前記基板の表面側に設けられ取囲まれた内側をダイヤフラム部とする枠状突部と、該枠状突部上に接合して設けられ前記ダイヤフラム部を閉塞して基準圧力を与える圧力室を画成する閉塞板と、前記ダイヤフラム部に位置して前記薄肉部に設けられ前記受圧凹溝と圧力室との間の差圧によって前記ダイヤフラム部が変形するときの撓みを検出する撓み検出素子とからなる圧力検出装置において、前記薄肉部には、前記枠状突部によって取囲まれた部位よりも外側を外縁部として当該外縁部の表面側に前記受圧凹溝内と等しい圧力を加える構成としたことを特徴としている。
【0012】
このように構成することにより、枠状突部を用いてダイヤフラム部の位置および形状を定めることができる。そして、受圧凹溝内に被測定圧が加わるときには、ダイヤフラム部を受圧凹溝内の被測定圧と圧力室内の基準圧との間の差圧に応じて撓み変形させ、この撓みを撓み検出素子によって検出できる。また、このとき外縁部の表面側には、受圧凹溝内とほぼ等しい圧力を加えることができ、外縁部の両面側に加わる圧力を常に釣合わせることができる。
【0013】
また、請求項2の発明によると、基板は開口部に可撓性の受圧膜が設けられたケーシング内に収容し、該ケーシング内には前記受圧膜に加わる圧力を前記基板の両面側に伝える液体を封入している。
【0014】
これにより、外部から受圧膜に加わる圧力をケーシング内の液体を介して基板の両面側に伝えることができる。この結果、薄肉部のうち外縁部の両面側をほぼ等圧に保持できると共に、ダイヤフラム部を受圧凹溝内に加わる圧力によって撓み変形させることができる。
【0015】
一方、請求項3の発明は、シリコン材料からなる基板と、該基板の裏面側に受圧凹溝を形成することにより該基板の表面側に設けられた薄肉部と、該薄肉部の一部を枠状に取囲んで基板の表面側に設けられ取囲まれた内側をダイヤフラム部とする枠状突部と、該枠状突部上に接合して設けられダイヤフラム部を閉塞して圧力室を画成すると共に前記圧力室内に外部から被測定圧を導く圧力導入孔が形成された閉塞板と、前記ダイヤフラム部に位置して前記薄肉部に設けられ前記受圧凹溝と圧力室との間の差圧によってダイヤフラム部が変形するときの撓みを検出する撓み検出素子とからなる圧力検出装置において、前記薄肉部には、前記枠状突部によって取囲まれた部位よりも外側を外縁部として当該外縁部の表面側に受圧凹溝内と等しい圧力を加える構成としたことを特徴としている。
【0016】
これにより、被測定圧を閉塞板の圧力導入孔から圧力室内に導入できると共に、例えば外縁部の表面側と裏面側(受圧凹溝内)には、被測定圧に対して基準となる一定の圧力(基準圧)を均等に加えることができる。そして、ダイヤフラム部は、圧力室内の被測定圧と受圧凹溝内の基準圧との間の差圧に応じて撓み変形することができる。
【0017】
また、請求項4の発明によると、基板上には前記枠状突部の外側に位置して前記閉塞板を支持する閉塞板支持突部を設けている。
【0018】
これにより、例えば閉塞板が枠状突部よりも外側に大きく張出している場合でも、閉塞板の外縁側部位等を閉塞板支持突部によって支持でき、閉塞板と薄肉部とを加工時の外力等に対して保護することができる。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態による圧力検出装置を、添付図面を参照して詳細に説明する。
【0020】
ここで、図1ないし図3は本発明による第1の実施の形態を示し、図中、1は圧力検出装置の外殻をなす金属製のケーシングで、該ケーシング1は、ベース2と、該ベース2上に溶接等の手段を用いて固着されたカバー3とからなり、該カバー3に形成された開口部3Aには、例えば金属材料、樹脂材料等からなる可撓性の受圧膜4が設けられている。また、ケーシング1内には、例えば油等からなる絶縁性の液体5が密閉状態で封入され、この液体5は、図1中に示す矢示Aの如く受圧膜4に加わる圧力を後述する基板12の両面側に伝えるものである。
【0021】
11はケーシング1内に収容されたセンサ部で、該センサ部11は、図1、図2に示す如く、後述の基板12、薄肉部15、枠状突部16、閉塞板17、撓み検出素子19等を含んで構成されている。
【0022】
12は例えばSOI基板等を用いて形成された基板で、該基板12は、それぞれ単結晶のシリコン材料等によって形成された母材部12A、表層部12Bと、これらの母材部12A、表層部12B間に介在した酸化シリコン等からなる絶縁膜12Cとから一体形成されている。
【0023】
ここで、母材部12Aの裏面側には、例えば特定のシリコン結晶面に沿って結晶異方性のエッチング加工を施すことにより絶縁膜12Cに達する略四角錐状の受圧凹溝13が穿設されている。また、基板12は、四角形の枠状をなす取付板14を用いてケーシング1のベース2に固着され、該取付板14には、ケーシング1内の液体5を受圧凹溝13内に導く通液路14Aが設けられている。
【0024】
15は受圧凹溝13を用いて基板12の表面側中央寄りに設けられた薄肉部で、該薄肉部15は、図2、図3に示す如く、受圧凹溝13の底部側に位置する表層部12Bおよび絶縁膜12Cの一部を用いて四角形状に形成されている。
【0025】
ここで、薄肉部15は、枠状突部16に取囲まれた内側に位置して閉塞板17との間に圧力室18を画成するダイヤフラム部15Aと、枠状突部16の外側に位置して圧力室18外に配設された外縁部15Bとから構成されている。そして、ダイヤフラム部15Aは、枠状突部16の内周側の四辺によって規定される四角形状に形成され、受圧凹溝13内に加わる被測定圧と圧力室18内に保持された基準圧との間の差圧に応じて撓み変形するものである。
【0026】
また、外縁部15Bの表面側と裏面側(受圧凹溝13内)には、図2中に示す矢示B,Cの如く、ケーシング1内の液体5を介してほぼ等しい圧力(被測定圧)が加わる構成となっている。
【0027】
16はダイヤフラム部15Aを枠状に取囲んで基板12の表面側に突設された枠状突部で、該枠状突部16は、図2、図3に示す如く、例えば酸化シリコン、窒化シリコン等の絶縁膜からなる台座16Aと、多結晶のシリコン材料等を用いて該台座16A上に設けられ、閉塞板17に固着された接合材16Bとからなり、これらは基板12上に形成した絶縁膜と多結晶シリコン膜(図示せず)に対しそれぞれエッチング加工を施すことによって形成されている。
【0028】
ここで、枠状突部16は、図2に示す如く、その外形が四辺からなる四角形状の枠体として形成され、これらの各辺の長さ寸法は薄肉部15(外縁部15B)の各辺よりも小さく形成されている。そして、枠状突部16は、薄肉部15のうちダイヤフラム部15Aの位置および形状を定めるものである。
【0029】
17はガラス板等を用いて略四角形状に形成された閉塞板で、該閉塞板17は、陽極接合等の手段によって枠状突部16の先端側に接合され、ダイヤフラム部15Aを閉塞して圧力室18を画成している。そして、圧力室18は、被測定圧に対して基準圧となる常圧または一定の負圧状態で密閉されている。
【0030】
19,19,…はダイヤフラム部15Aに埋設された例えば4個の撓み検出素子で、該各撓み検出素子19は、図2、図3に示す如く、ホウ素等の不純物イオンを基板12の表層部12Bに注入することにより、太幅の配線部19A,19A,…と一緒に形成された細幅のピエゾ抵抗体によって構成されている。
【0031】
そして、各撓み検出素子19は、ダイヤフラム部15Aが撓み変形するときの撓みを検出し、図3中の配線部19A、信号処理回路20、電極パッド21等を介して検出信号を出力すると共に、この検出信号は、図1中のボンディングワイヤ22、ピン端子23等を介して外部に導出される。
【0032】
この場合、信号処理回路20は、例えば基板12へのイオン注入または半導体膜の積層等により形成した複数のトランジスタ、拡散抵抗(図示せず)等を含んで構成され、検出信号の増幅等を行うものである。また、各ピン端子23は、ケーシング1のベース2にハーメチックシール24を用いて固着されている。
【0033】
本実施の形態による圧力検出装置は上述の如き構成を有するもので、次にその作動について述べる。
【0034】
まず、図1に示すように、例えば空気圧、油圧等の被測定圧がケーシング1の受圧膜4に対して矢示Aの如く加わると、この圧力はケーシング1内の液体5によって基板12の表面側に伝わると共に、取付板14の通液路14Aを通じて受圧凹溝13内にも伝わる。
【0035】
この結果、薄肉部15の外縁部15Bには、図2に示すように、その両面側に対して矢示B,Cの如くほぼ等しい圧力が加わるので、外縁部15Bは撓むことなく、平坦に近い状態を保持する。
【0036】
また、このときダイヤフラム部15Aには、矢示Cの如く裏面側だけに被測定圧が加わるので、ダイヤフラム部15Aは、この被測定圧と圧力室18内の基準圧との間の差圧に応じて撓み変形する。これにより、撓み検出素子19は、ダイヤフラム部15Aの撓みに応じた検出信号を出力する。
【0037】
かくして、本実施の形態では、薄肉部15のうち外縁部15Bの表面側に受圧凹溝13内と等しい圧力を加える構成としたので、受圧凹溝13内に被測定圧が加わるときには、ダイヤフラム部15Aを受圧凹溝13内の被測定圧と圧力室18内の基準圧との間の差圧に応じて撓み変形させることができ、その撓みに応じた検出信号を撓み検出素子19から外部に出力することができる。
【0038】
また、このとき外縁部15Bの表面側には、ケーシング1内の液体5によって受圧凹溝13内の圧力とほぼ等しい圧力を加えることができ、外縁部15Bの両面側に加わる圧力を常に釣合わせることができる。この結果、外縁部15Bが受圧凹溝13側に加わる被測定圧によって撓んだり、損傷したりするのを確実に防止でき、外縁部15Bの保護を図ることができる。
【0039】
従って、本実施の形態によれば、従来技術のように枠状突部等の外形を薄肉部よりも大きく形成して外縁部を補強する必要がなくなり、枠状突部16の四辺の寸法を薄肉部15の外縁部15Bよりも小さく形成できると共に、基板12を含めてセンサ部11の小型化を図ることができる。
【0040】
また、例えば信号処理回路20等を薄肉部15の外縁部15B上に配設することも可能となり、この信号処理回路20がトランジスタ、拡散抵抗等のピエゾ効果を有する素子を含む場合でも、これらの素子が外縁部15Bの撓み変形によって作動不良となるのを防止でき、基板12上の実装面積をさらに小型化することができる。
【0041】
一方、受圧膜4を設けたケーシング1内にセンサ部11を収容し、このケーシング1内に液体5を封入するようにしたので、被測定圧が受圧膜4に加わるときには、この圧力を液体5を介して基板12の両面側へと安定的に伝達でき、簡単な構造で外縁部15Bの両面側を等圧に保持することができる。
【0042】
しかも、センサ部11をケーシング1内に収容することにより、例えば空気、油等の被測流体からセンサ部11を保護でき、被測流体に水分、ダスト等が含まれる場合でも、この被測流体を受圧凹溝13等に直接接触させる必要がなくなり、圧力検出装置としての耐久性、信頼性を向上させることができる。
【0043】
また、薄肉部15上には、ダイヤフラム部15Aを取囲む枠状突部16を突設したので、例えば受圧凹溝13(薄肉部15)が加工誤差等によって位置ずれした場合でも、枠状突部16によりダイヤフラム部15Aの位置を撓み検出素子19等に対応して正確に定めることができる。
【0044】
次に、図4および図5は本発明による第2の実施の形態を示し、本実施の形態では、前記第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。しかし、本実施の形態の特徴は、基板上に閉塞板を支持する閉塞板支持突部を設けたことにある。
【0045】
31は本実施の形態による圧力検出装置のセンサ部で、該センサ部31は、第1の実施の形態によるセンサ部11とほぼ同様に、基板12、薄肉部15、枠状突部16、閉塞板17、撓み検出素子19等によって構成されている。
【0046】
32,32,…は基板12上に突設された複数の閉塞板支持突部で、該各閉塞板支持突部32は、枠状突部16とほぼ同様に構成され、先端側が閉塞板17に接合されると共に、例えば4個の閉塞板支持突部32が図5に示す如く閉塞板17の角隅部にそれぞれ配置され、これらの位置で各閉塞板支持突部32は閉塞板17を支持している。
【0047】
かくして、このように構成される本実施の形態でも、前記第1の実施の形態とほぼ同様の作用効果を得ることができる。そして、特に本実施の形態では、基板12上に閉塞板17の角隅部を支持する4個の閉塞板支持突部32を設けたので、センサ部31の製造時には、閉塞板17を保護することができる。
【0048】
即ち、センサ部31の製造時には、基板12上に接合したガラス板33を図4に示す矢示Dの位置で切断して閉塞板17を形成するが、このとき閉塞板17の外縁側には矢示E方向に外力が加わるため、この外力によって閉塞板17または薄肉部15が損傷されることがある。しかし、本実施の形態では、この外力を閉塞板支持突部32によって受承でき、閉塞板17および薄肉部15の損傷を防ぐことができる。
【0049】
次に、図6は本発明による第3の実施の形態を示し、本実施の形態では、前記第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。しかし、本実施の形態の特徴は、被測定圧を閉塞板に設けた圧力導入孔から圧力室内に導入する構成としたことにある。
【0050】
41は本実施の形態による圧力検出装置のセンサ部で、該センサ部41は、第1の実施の形態によるセンサ部11とほぼ同様に、基板12、薄肉部15、枠状突部16、撓み検出素子19等によって構成されている。
【0051】
42は第1の実施の形態とほぼ同様に形成された略四角形状の閉塞板で、該閉塞板42の中央側には、ダイヤフラム部15Aとの間に画成した圧力室43に開口する圧力導入孔42Aが設けられている。
【0052】
そして、センサ部41は、被測定圧を閉塞板42の圧力導入孔42Aから矢示Fの如く圧力室43内に導入し、この被測定圧に対して基準となる一定の基準圧を外縁部15Bの表面側と受圧凹溝13内とに矢示G,Hの如く加える構成となっている。これにより、薄肉部15のダイヤフラム部15Aは、圧力室43内の被測定圧と受圧凹溝13内の基準圧との差圧に応じて撓み変形するものである。
【0053】
かくして、このように構成される本実施の形態でも、前記第1の実施の形態とほぼ同様の作用効果を得ることができる。そして、特に本実施の形態では、薄肉部15の外縁部15Bの表面側と受圧凹溝13内とを一定の基準圧に保持する構成としたので、例えば基板12を大気中に露出した状態で配置し、その両面側に基準圧として大気圧を加える構成とすることにより、圧力検出装置の構造を簡略化することができる。
【0054】
なお、前記各実施の形態では、例えば陽極接合等の手段を用いて枠状突部16の先端側に閉塞板17を接合する構成としたが、本発明はこれに限らず、例えば接着剤等、陽極接合以外の接合手段を用いて枠状突部16と閉塞板17とを接合する構成としてもよい。
【0055】
また、前記各実施の形態では、四角形状の枠状突部16を用いて薄肉部15のダイヤフラム部15Aを四角形状に形成する場合を例に挙げて述べたが、本発明はこれに限らず、例えば枠状突部の形状を四角形以外の多角形または円形、楕円形等として形成し、この形状に対応してダイヤフラム部の外形を定める構成としてもよい。
【0056】
さらに、前記各実施の形態では、例えばSOI基板により形成され母材部12A、表層部12Bおよび絶縁膜12Cが設けられた基板12を用いて、その母材部12Aに受圧凹溝13を設ける構成としたが、本発明はこれに限らず、SOI基板以外の各種シリコン基板等を用いてセンサ部を構成してもよい。
【0057】
【発明の効果】
以上詳述した通り、請求項1の発明によれば、薄肉部のうち枠状突部によって取囲まれた部位よりも外側を外縁部として、この外縁部の表面側に受圧凹溝内と等しい圧力を加える構成としたので、外縁部の両面側に加わる圧力を常に釣合わせることができ、外縁部が受圧凹溝側に加わる被測定圧によって撓んだり、損傷したりするのを確実に防止できると共に、その保護を図ることができる。これにより、従来技術のように枠状突部等の外形を薄肉部よりも大きく形成して外縁部を補強する必要がなくなり、枠状突部の寸法を外縁部よりも小さく形成できると共に、例えば撓み検出素子用の信号処理回路等を外縁部上に配設することも可能となり、基板の小型化を図ることができる。
【0058】
また、請求項2の発明によれば、基板をケーシング内に収容し、このケーシング内に液体を封入する構成としたので、ケーシングの受圧膜に圧力が加わるときには、この圧力をケーシング内の液体を介して基板の両面側へと安定的に伝達でき、簡単な構造で外縁部の両面側を等圧に保持することができる。しかも、基板をケーシング内に収容することにより、例えば空気、油等の被測流体から基板を保護でき、耐久性、信頼性を向上させることができる。
【0059】
一方、請求項3の発明によれば、被測定圧を圧力室内に導く圧力導入孔を閉塞板に設けた圧力検出装置において、薄肉部のうち外縁部の表面側に受圧凹溝内と等しい圧力を加える構成としたので、例えば外縁部の表面側と受圧凹溝内とを一定の基準圧に保持できると共に、ダイヤフラム部を圧力室側の被測定圧と受圧凹溝側の基準圧との間の差圧に応じて撓み変形させることができる。これにより、外縁部を保護できると共に、従来技術と比較して枠状突部の寸法を外縁部よりも小さく形成でき、基板の小型化を図ることができる。しかも、例えば基板を大気中に露出した状態で配置し、その両面側に基準圧として大気圧を加える構成とすることも可能となり、圧力検出装置の構造を簡略化することができる。
【0060】
また、請求項4の発明によれば、基板上には、枠状突部の外側に位置して閉塞板を支持する閉塞板支持突部を設ける構成としたので、例えば閉塞板が枠状突部よりも外側に大きく張出している場合でも、その外縁側部位等を閉塞板支持突部によって支持でき、閉塞板を加工時の外力等に対して保護することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態による圧力検出装置の縦断面図である。
【図2】薄肉部を拡大して示す図1中の要部拡大断面図である。
【図3】図1中の矢示III − III方向からみたセンサ部の横断面図である。
【図4】本発明の第2の実施の形態による圧力検出装置の要部拡大断面図である。
【図5】図3と同様位置からみたセンサ部の横断面図である。
【図6】本発明の第3の実施の形態による圧力検出装置の要部拡大断面図である。
【符号の説明】
1 ケーシング
4 受圧膜
5 液体
12 基板
13 受圧凹溝
15 薄肉部
15A ダイヤフラム部
15B 外縁部
16 枠状突部
17,42 閉塞板
18,43 圧力室
19 撓み検出素子
42A 圧力導入孔
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pressure detecting device which is formed on a silicon substrate by means of, for example, etching, and is preferably used for detecting pressure by utilizing the bending deformation of a diaphragm.
[0002]
[Prior art]
In general, as a pressure detecting device, a substrate made of a silicon material, a thin portion provided on the front surface side of the substrate by forming a pressure receiving groove on the back surface side of the substrate, and a part of the thin portion are framed. A frame-shaped projection provided on the front surface side of the substrate so as to have a diaphragm portion, and a diaphragm portion provided on the frame-shaped projection portion and closed on the frame-shaped projection portion to close the diaphragm portion to a reference pressure. Detecting a deflection when the diaphragm portion is deformed by a differential pressure between the pressure receiving groove and the pressure chamber provided in the thin portion and located in the diaphragm portion, the closing plate defining a pressure chamber for providing pressure There is known a device constituted by a bending detecting element which is deformed (for example, Japanese Patent Application Laid-Open No. H11-118642).
[0003]
In this type of pressure detecting device according to the related art, a closing plate made of, for example, a glass plate or the like is joined to the surface side of the thin portion with a pressure chamber interposed therebetween. For this reason, a frame-shaped projection made of, for example, polycrystalline silicon or the like is provided on the surface side of the thin-walled portion so as to surround a portion (inner portion) near the center of the thin-walled portion. Are joined on top.
[0004]
Here, the frame-shaped projection defines the position and the shape of the diaphragm by surrounding the inner part of the thin part. In this case, in the prior art, the external dimensions of the thin portion are formed to be somewhat large, and a predetermined portion of the thin portion is surrounded by a frame-shaped projection, so that a pressure-receiving groove (thin portion) formed from the back side of the substrate is formed. Even if the position is shifted due to a processing error or the like, the diaphragm portion is formed at a predetermined position, and the diaphragm portion and the deflection detecting element are aligned.
[0005]
Further, the frame-shaped protrusion is formed as a thick frame having an outer dimension larger than that of the thin portion. The frame-shaped projection is fixed so as to overlap with an outer edge portion of the thin portion disposed outside the diaphragm, thereby reinforcing the outer edge portion together with the closing plate.
[0006]
The pressure detecting device configured as described above is used in a state of being packaged by a casing or the like. In this case, the front side of the substrate is maintained at a normal pressure such as the atmospheric pressure in the casing, and a measured pressure such as an air pressure or a hydraulic pressure is applied to the back side (the pressure receiving groove) of the substrate. In the pressure detecting device, the diaphragm portion bends and deforms in accordance with the pressure difference between the measured pressure in the pressure receiving groove and the pressure (reference pressure) in the pressure chamber, and the bending portion is formed of, for example, a piezoresistor. By detecting with the deflection detecting element, a detection signal corresponding to the measured pressure is output from the deflection detecting element to the outside.
[0007]
[Problems to be solved by the invention]
By the way, in the above-described conventional technology, the outer dimensions of the frame-shaped protrusion are formed larger than the thin portion, and the frame-shaped protrusion and the closing plate are fixed so as to overlap with the outer edge side portion of the thin portion. Thus, the outer edge side portion is reinforced.
[0008]
In this case, if the outer dimensions of the frame-shaped protrusion are smaller than the thin portion, the outer edge portion of the thin portion may be damaged by the pressure applied from the pressure receiving groove side. For this reason, in the prior art, the frame-shaped protrusions and the like must be formed large so as to protrude outside the thin-walled portion, and a signal processing circuit, an electrode pad, and the like attached to the flexure detecting element are formed in the large frame-like shape. Since it is arranged on the substrate outside the protrusion, the mounting area on the substrate is large, and it is difficult to reduce the size of the entire device.
[0009]
In particular, in the prior art, since the outer dimensions of the thin portion are formed to some extent in advance by forming the diaphragm portion using a part of the thin portion, the frame-shaped protrusion may protrude outside the thin portion. As a result, the external dimensions of the substrate can be further increased.
[0010]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems of the related art, and an object of the present invention is to reduce the mounting area on a substrate while maintaining the strength of a thin portion, thereby enabling the entire device to be formed compact. It is to provide a pressure detecting device.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 includes a substrate made of a silicon material, a thin portion provided on the front surface side of the substrate by forming a pressure receiving groove on the back surface side of the substrate, A frame-like projection that surrounds a part of the thin portion in a frame shape and is provided on the front surface side of the substrate and has a diaphragm portion as the inside that is surrounded by the diaphragm; A closing plate that defines a pressure chamber that closes a portion to provide a reference pressure, and a pressure difference between the pressure receiving groove and the pressure chamber that is provided in the thin portion and is located in the diaphragm portion. In a pressure detecting device comprising a flexure detecting element for detecting flexure when deformed, the thin portion has an outer edge outside a region surrounded by the frame-shaped protrusion and has a surface near the outer edge. Apply the same pressure as in the pressure receiving groove It is characterized in that was formed.
[0012]
With this configuration, the position and shape of the diaphragm can be determined using the frame-shaped protrusion. When the measured pressure is applied to the pressure-receiving groove, the diaphragm is bent and deformed in accordance with the differential pressure between the measured pressure in the pressure-receiving groove and the reference pressure in the pressure chamber. Can be detected by Further, at this time, a pressure substantially equal to that in the pressure receiving groove can be applied to the surface side of the outer edge, and the pressure applied to both sides of the outer edge can always be balanced.
[0013]
According to the second aspect of the present invention, the substrate is accommodated in a casing provided with a flexible pressure-receiving film in the opening, and the pressure applied to the pressure-receiving film is transmitted to both sides of the substrate in the casing. Contains liquid.
[0014]
Thereby, the pressure applied to the pressure receiving film from the outside can be transmitted to both sides of the substrate via the liquid in the casing. As a result, both sides of the outer edge portion of the thin portion can be maintained at substantially equal pressure, and the diaphragm portion can be bent and deformed by the pressure applied to the pressure receiving groove.
[0015]
On the other hand, a third aspect of the present invention provides a substrate made of a silicon material, a thin portion provided on the front surface side of the substrate by forming a pressure receiving groove on the back surface side of the substrate, and a part of the thin portion. A frame-shaped projection that is provided on the front surface side of the substrate and surrounded by a frame and has the inside surrounded by the diaphragm, and a diaphragm that is provided on the frame-shaped projection and joined to close the diaphragm to close the pressure chamber. A closing plate having a pressure introduction hole formed therein for guiding a measured pressure from the outside into the pressure chamber, and a gap between the pressure receiving groove and the pressure chamber provided in the thin portion located at the diaphragm portion. In a pressure detecting device comprising a flexure detecting element for detecting flexure when the diaphragm portion is deformed by a differential pressure, the thin portion has an outer edge portion outside a portion surrounded by the frame-shaped protrusion. Pressure equal to the pressure in the pressure-receiving groove on the outer edge surface It is characterized in that it has a configuration to add.
[0016]
Thereby, the measured pressure can be introduced into the pressure chamber from the pressure introducing hole of the closing plate, and, for example, on the front surface side and the back surface side (in the pressure receiving groove) of the outer edge portion, a fixed reference value for the measured pressure is provided. Pressure (reference pressure) can be evenly applied. The diaphragm can bend and deform according to the pressure difference between the measured pressure in the pressure chamber and the reference pressure in the pressure receiving groove.
[0017]
According to the fourth aspect of the present invention, a closing plate supporting protrusion is provided on the substrate and located outside the frame-shaped protrusion to support the closing plate.
[0018]
Thus, for example, even when the closing plate projects farther outward than the frame-shaped protrusion, the outer edge side portion and the like of the closing plate can be supported by the closing plate supporting protrusion, and the closing plate and the thin-walled portion are subjected to external force during processing. Etc. can be protected.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a pressure detecting device according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
[0020]
FIGS. 1 to 3 show a first embodiment of the present invention. In the drawings, reference numeral 1 denotes a metal casing forming an outer shell of a pressure detecting device. A cover 3 is fixed on the base 2 by means of welding or the like, and a flexible pressure receiving film 4 made of, for example, a metal material, a resin material, or the like is provided in an opening 3A formed in the cover 3. Is provided. In addition, an insulating liquid 5 made of, for example, oil or the like is sealed in the casing 1 in a hermetically sealed state, and the liquid 5 reduces the pressure applied to the pressure receiving film 4 as indicated by an arrow A in FIG. 12 to both sides.
[0021]
Reference numeral 11 denotes a sensor unit housed in the casing 1. As shown in FIGS. 1 and 2, the sensor unit 11 includes a substrate 12, a thin portion 15, a frame-shaped protrusion 16, a closing plate 17, and a deflection detecting element, which will be described later. 19 and the like.
[0022]
Reference numeral 12 denotes a substrate formed using, for example, an SOI substrate or the like. The substrate 12 includes a base material portion 12A and a surface layer portion 12B each formed of a single crystal silicon material or the like, and the base material portion 12A and the surface layer portion 12A. It is formed integrally with an insulating film 12C made of silicon oxide or the like interposed between 12B.
[0023]
Here, on the back surface side of the base material portion 12A, for example, a substantially square pyramid-shaped pressure receiving groove 13 reaching the insulating film 12C is formed by performing a crystal anisotropic etching process along a specific silicon crystal plane. Have been. The substrate 12 is fixed to the base 2 of the casing 1 by using a mounting plate 14 having a rectangular frame shape. The mounting plate 14 allows the liquid 5 in the casing 1 to flow into the pressure receiving groove 13. A road 14A is provided.
[0024]
Reference numeral 15 denotes a thin portion provided near the center of the front surface side of the substrate 12 using the pressure receiving groove 13. The thin portion 15 has a surface layer located on the bottom side of the pressure receiving groove 13 as shown in FIGS. The portion 12B and a part of the insulating film 12C are formed in a square shape.
[0025]
Here, the thin portion 15 is located on the inside surrounded by the frame-shaped protrusion 16 and defines a diaphragm portion 15A defining a pressure chamber 18 with the closing plate 17; And an outer edge 15B disposed outside the pressure chamber 18. The diaphragm 15 </ b> A is formed in a square shape defined by four sides on the inner peripheral side of the frame-shaped protrusion 16. The measured pressure applied to the pressure-receiving groove 13 and the reference pressure held in the pressure chamber 18 correspond to the measured pressure. And bends and deforms in accordance with the pressure difference between them.
[0026]
Also, as shown by arrows B and C in FIG. 2, substantially equal pressures (measured pressures) are applied to the front side and the back side (in the pressure receiving groove 13) of the outer edge 15B via the liquid 5 in the casing 1. ) Is added.
[0027]
Reference numeral 16 denotes a frame-shaped projection which surrounds the diaphragm portion 15A in a frame-like shape and protrudes from the front surface of the substrate 12. The frame-shaped projection 16 is made of, for example, silicon oxide, nitride, or the like as shown in FIGS. A pedestal 16A made of an insulating film such as silicon and a bonding material 16B provided on the pedestal 16A using a polycrystalline silicon material or the like and fixed to the closing plate 17 are formed on the substrate 12. It is formed by subjecting an insulating film and a polycrystalline silicon film (not shown) to etching.
[0028]
Here, as shown in FIG. 2, the frame-shaped protrusion 16 is formed as a quadrangular frame whose outer shape is made up of four sides, and the length of each side is the same as that of the thin portion 15 (outer edge 15B). It is formed smaller than the side. The frame-shaped protrusion 16 determines the position and the shape of the diaphragm portion 15A of the thin portion 15.
[0029]
Reference numeral 17 denotes a closing plate formed in a substantially square shape using a glass plate or the like. The closing plate 17 is joined to the distal end side of the frame-shaped projection 16 by means such as anodic bonding to close the diaphragm 15A. A pressure chamber 18 is defined. The pressure chamber 18 is hermetically sealed at a normal pressure or a constant negative pressure that is a reference pressure with respect to the measured pressure.
[0030]
Reference numerals 19, 19, ... denote, for example, four flexure detecting elements embedded in the diaphragm 15A. Each of the flexure detection elements 19 converts impurity ions such as boron into the surface layer portion of the substrate 12 as shown in FIGS. By injecting the piezoresistors into the piezoresistors 12B, the piezoresistors having a narrow width are formed together with the wiring portions 19A having a large width.
[0031]
Each of the flexure detecting elements 19 detects a flexure when the diaphragm portion 15A is flexibly deformed, and outputs a detection signal via the wiring portion 19A, the signal processing circuit 20, the electrode pad 21 and the like in FIG. This detection signal is led out through the bonding wire 22, the pin terminal 23 and the like in FIG.
[0032]
In this case, the signal processing circuit 20 includes a plurality of transistors formed by, for example, ion implantation into the substrate 12 or lamination of semiconductor films, a diffusion resistor (not shown), and the like, and amplifies a detection signal. Things. Each pin terminal 23 is fixed to the base 2 of the casing 1 by using a hermetic seal 24.
[0033]
The pressure detecting device according to the present embodiment has the above-described configuration, and its operation will be described next.
[0034]
First, as shown in FIG. 1, when a measured pressure such as air pressure or oil pressure is applied to the pressure receiving film 4 of the casing 1 as shown by an arrow A, the pressure is applied by the liquid 5 in the casing 1 to the surface of the substrate 12. To the pressure receiving groove 13 through the liquid passage 14A of the mounting plate 14.
[0035]
As a result, as shown in FIG. 2, substantially equal pressures are applied to the outer edges 15B of the thin portions 15 on both sides thereof as shown by arrows B and C, so that the outer edges 15B are flat without being bent. Hold the state close to.
[0036]
At this time, the measured pressure is applied only to the back side of the diaphragm portion 15A as shown by arrow C, so that the diaphragm portion 15A applies a pressure difference between the measured pressure and the reference pressure in the pressure chamber 18. It bends and deforms accordingly. Thereby, the deflection detecting element 19 outputs a detection signal corresponding to the deflection of the diaphragm 15A.
[0037]
Thus, in the present embodiment, since the same pressure as that in the pressure receiving groove 13 is applied to the surface side of the outer edge portion 15B of the thin portion 15, when the measured pressure is applied in the pressure receiving groove 13, the diaphragm portion 15A can be bent and deformed in accordance with the pressure difference between the measured pressure in the pressure receiving groove 13 and the reference pressure in the pressure chamber 18, and a detection signal corresponding to the bending is output from the bending detection element 19 to the outside. Can be output.
[0038]
Further, at this time, a pressure substantially equal to the pressure in the pressure receiving groove 13 can be applied to the surface side of the outer edge 15B by the liquid 5 in the casing 1, and the pressure applied to both sides of the outer edge 15B is always balanced. be able to. As a result, it is possible to reliably prevent the outer edge 15B from being bent or damaged by the measured pressure applied to the pressure receiving groove 13, and to protect the outer edge 15B.
[0039]
Therefore, according to the present embodiment, it is not necessary to form the outer shape of the frame-shaped protrusion or the like larger than the thin-walled portion to reinforce the outer edge as in the prior art, and to reduce the dimensions of the four sides of the frame-shaped protrusion 16. The sensor portion 11 including the substrate 12 can be downsized while being formed smaller than the outer edge portion 15B of the thin portion 15.
[0040]
Further, for example, the signal processing circuit 20 and the like can be disposed on the outer edge 15B of the thin portion 15. Even when the signal processing circuit 20 includes an element having a piezo effect such as a transistor or a diffusion resistor, the signal processing circuit 20 or the like can be provided. The device can be prevented from malfunctioning due to the bending deformation of the outer edge 15B, and the mounting area on the substrate 12 can be further reduced.
[0041]
On the other hand, since the sensor unit 11 is accommodated in the casing 1 provided with the pressure receiving film 4 and the liquid 5 is sealed in the casing 1, when the measured pressure is applied to the pressure receiving film 4, this pressure is applied to the liquid 5. Can be stably transmitted to both sides of the substrate 12 via the substrate, and the both sides of the outer edge 15B can be maintained at a constant pressure with a simple structure.
[0042]
In addition, since the sensor unit 11 is housed in the casing 1, the sensor unit 11 can be protected from a fluid to be measured such as air, oil, or the like. Does not need to directly contact the pressure receiving groove 13 or the like, and the durability and reliability of the pressure detecting device can be improved.
[0043]
Further, since the frame-shaped protrusion 16 surrounding the diaphragm 15A is protruded on the thin portion 15, even if the pressure receiving groove 13 (thin portion 15) is displaced due to a processing error or the like, the frame-shaped protrusion 16 is formed. The position of the diaphragm 15A can be accurately determined by the portion 16 in correspondence with the deflection detecting element 19 and the like.
[0044]
Next, FIGS. 4 and 5 show a second embodiment according to the present invention. In the present embodiment, the same reference numerals are given to the same components as those in the first embodiment, and the description thereof will be omitted. It shall be omitted. However, a feature of this embodiment resides in that a closing plate supporting projection for supporting the closing plate is provided on the substrate.
[0045]
Reference numeral 31 denotes a sensor unit of the pressure detection device according to the present embodiment. The sensor unit 31 is substantially the same as the sensor unit 11 according to the first embodiment, and includes the substrate 12, the thin portion 15, the frame-shaped protrusion 16, It is composed of a plate 17, a deflection detecting element 19 and the like.
[0046]
, 32,... Are a plurality of closing plate supporting projections protruding from the substrate 12, and each closing plate supporting projection 32 is configured in substantially the same manner as the frame-shaped projection 16, and the distal end side is a closing plate 17. 5, for example, four closing plate supporting projections 32 are respectively arranged at the corners of the closing plate 17 as shown in FIG. 5, and at these positions, each closing plate supporting projection 32 I support it.
[0047]
Thus, in the present embodiment configured as described above, substantially the same operation and effect as those in the first embodiment can be obtained. In particular, in the present embodiment, since four closing plate supporting projections 32 are provided on the substrate 12 for supporting the corners of the closing plate 17, the closing plate 17 is protected when the sensor unit 31 is manufactured. be able to.
[0048]
That is, at the time of manufacturing the sensor unit 31, the glass plate 33 bonded to the substrate 12 is cut at a position indicated by an arrow D shown in FIG. 4 to form the closing plate 17. Since an external force is applied in the direction of arrow E, the external force may damage the closing plate 17 or the thin portion 15. However, in the present embodiment, the external force can be received by the closing plate supporting projection 32, and the closing plate 17 and the thin portion 15 can be prevented from being damaged.
[0049]
Next, FIG. 6 shows a third embodiment according to the present invention. In this embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. And However, a feature of the present embodiment is that the measured pressure is introduced into the pressure chamber through a pressure introduction hole provided in the closing plate.
[0050]
Reference numeral 41 denotes a sensor section of the pressure detecting device according to the present embodiment. The sensor section 41 is substantially the same as the sensor section 11 according to the first embodiment, and includes the substrate 12, the thin portion 15, the frame-shaped protrusion 16, It is constituted by the detection element 19 and the like.
[0051]
Reference numeral 42 denotes a substantially rectangular closing plate formed substantially in the same manner as in the first embodiment, and a pressure opening in a pressure chamber 43 defined between the closing plate 42 and the diaphragm 15A at the center side. An introduction hole 42A is provided.
[0052]
Then, the sensor section 41 introduces the measured pressure from the pressure introducing hole 42A of the closing plate 42 into the pressure chamber 43 as shown by the arrow F, and supplies a constant reference pressure which is a reference to the measured pressure to the outer edge. 15B and the inside of the pressure receiving groove 13 as indicated by arrows G and H. As a result, the diaphragm portion 15A of the thin portion 15 bends and deforms in accordance with the pressure difference between the measured pressure in the pressure chamber 43 and the reference pressure in the pressure receiving groove 13.
[0053]
Thus, in the present embodiment configured as described above, substantially the same operation and effect as those in the first embodiment can be obtained. In particular, in the present embodiment, the surface side of the outer edge portion 15B of the thin portion 15 and the inside of the pressure receiving groove 13 are configured to be maintained at a constant reference pressure, so that, for example, the substrate 12 is exposed to the atmosphere. By arranging and applying atmospheric pressure as a reference pressure to both sides thereof, the structure of the pressure detecting device can be simplified.
[0054]
In each of the above-described embodiments, the closing plate 17 is joined to the front end of the frame-shaped protrusion 16 using, for example, anodic bonding. However, the present invention is not limited to this. Alternatively, the frame-shaped protrusion 16 and the closing plate 17 may be joined using joining means other than anodic joining.
[0055]
Further, in each of the above embodiments, the case where the diaphragm portion 15A of the thin portion 15 is formed in a square shape using the square frame-shaped protrusion 16 has been described as an example, but the present invention is not limited to this. For example, the shape of the frame-shaped protrusion may be formed as a polygon other than a quadrangle, a circle, an ellipse, or the like, and the outer shape of the diaphragm may be determined in accordance with the shape.
[0056]
Further, in each of the above-described embodiments, a configuration in which the pressure receiving groove 13 is provided in the base material portion 12A using the base material portion 12A, the surface layer portion 12B, and the insulating film 12C provided on the SOI substrate, for example. However, the present invention is not limited to this, and the sensor unit may be configured using various silicon substrates other than the SOI substrate.
[0057]
【The invention's effect】
As described above in detail, according to the first aspect of the present invention, the outer side of the thin portion surrounded by the frame-shaped projection is set as the outer edge, and the surface side of the outer edge is equal to the inside of the pressure receiving groove. The pressure is applied so that the pressure applied to both sides of the outer edge can always be balanced, and the outer edge is reliably prevented from being bent or damaged by the measured pressure applied to the pressure-receiving groove. And at the same time protect it. This eliminates the need to reinforce the outer edge by forming the outer shape of the frame-shaped protrusion or the like larger than the thin-walled portion as in the related art, and reduce the size of the frame-shaped protrusion to be smaller than the outer edge. A signal processing circuit or the like for the deflection detecting element can be provided on the outer edge portion, and the size of the substrate can be reduced.
[0058]
According to the second aspect of the present invention, the substrate is accommodated in the casing, and the liquid is sealed in the casing. Therefore, when pressure is applied to the pressure receiving film of the casing, the pressure is applied to the liquid in the casing. Thus, it is possible to stably transmit to both sides of the substrate via the substrate, and to keep the both sides of the outer edge at a constant pressure with a simple structure. Moreover, by housing the substrate in the casing, the substrate can be protected from the fluid to be measured such as air and oil, and the durability and reliability can be improved.
[0059]
On the other hand, according to the third aspect of the present invention, in the pressure detecting device in which the pressure introducing hole for guiding the measured pressure into the pressure chamber is provided in the closing plate, the pressure equal to the pressure in the pressure receiving groove on the surface side of the outer edge of the thin portion. Therefore, for example, the surface side of the outer edge portion and the inside of the pressure receiving groove can be held at a constant reference pressure, and the diaphragm portion is moved between the measured pressure on the pressure chamber side and the reference pressure on the pressure receiving groove side. Can be flexed and deformed in accordance with the differential pressure of. Thus, the outer edge portion can be protected, and the size of the frame-shaped protrusion can be formed smaller than the outer edge portion as compared with the related art, so that the size of the substrate can be reduced. In addition, for example, it is possible to arrange the substrate in a state of being exposed to the atmosphere, and to apply the atmospheric pressure as a reference pressure to both sides of the substrate, thereby simplifying the structure of the pressure detecting device.
[0060]
According to the fourth aspect of the present invention, the closing plate supporting projection for supporting the closing plate located outside the frame-shaped projection is provided on the substrate. Even in the case where the projection is greatly extended outside the portion, the outer edge side portion or the like can be supported by the closing plate supporting projection, and the closing plate can be protected against external force or the like during processing.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a pressure detecting device according to a first embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view of a main part in FIG. 1 showing an enlarged thin portion.
FIG. 3 is a cross-sectional view of the sensor unit as viewed from a direction indicated by arrows III-III in FIG.
FIG. 4 is an enlarged sectional view of a main part of a pressure detecting device according to a second embodiment of the present invention.
FIG. 5 is a cross-sectional view of the sensor unit viewed from the same position as in FIG. 3;
FIG. 6 is an enlarged sectional view of a main part of a pressure detecting device according to a third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Casing 4 Pressure receiving film 5 Liquid 12 Substrate 13 Pressure receiving groove 15 Thin portion 15A Diaphragm portion 15B Outer edge 16 Frame-shaped projection 17, 42 Closing plate 18, 43 Pressure chamber 19 Flexure detecting element 42A Pressure introducing hole

Claims (4)

シリコン材料からなる基板と、該基板の裏面側に受圧凹溝を形成することにより該基板の表面側に設けられた薄肉部と、該薄肉部の一部を枠状に取囲んで前記基板の表面側に設けられ取囲まれた内側をダイヤフラム部とする枠状突部と、該枠状突部上に接合して設けられ前記ダイヤフラム部を閉塞して基準圧力を与える圧力室を画成する閉塞板と、前記ダイヤフラム部に位置して前記薄肉部に設けられ前記受圧凹溝と圧力室との間の差圧によって前記ダイヤフラム部が変形するときの撓みを検出する撓み検出素子とからなる圧力検出装置において、
前記薄肉部には、前記枠状突部によって取囲まれた部位よりも外側を外縁部として当該外縁部の表面側に前記受圧凹溝内と等しい圧力を加える構成としたことを特徴とする圧力検出装置。
A substrate made of a silicon material, a thin portion provided on the front surface side of the substrate by forming a pressure-receiving concave groove on the back surface side of the substrate, and a portion of the thin portion surrounding the substrate in a frame shape. A frame-shaped protrusion provided on the front surface side and having an enclosed inside as a diaphragm portion, and a pressure chamber which is provided on the frame-shaped protrusion and is provided on the frame-shaped protrusion to close the diaphragm portion and apply a reference pressure is defined. A pressure comprising a closing plate and a deflection detecting element which is provided in the thin portion and is located in the diaphragm portion and which detects a deflection when the diaphragm portion is deformed by a pressure difference between the pressure receiving groove and a pressure chamber. In the detection device,
The thin wall portion has a configuration in which a pressure outside the pressure receiving groove is applied to a surface side of the outer edge portion outside the portion surrounded by the frame-shaped protrusion as an outer edge portion. Detection device.
前記基板は開口部に可撓性の受圧膜が設けられたケーシング内に収容し、該ケーシング内には前記受圧膜に加わる圧力を前記基板の両面側に伝える液体を封入してなる請求項1に記載の圧力検出装置。2. The substrate according to claim 1, wherein the substrate is accommodated in a casing provided with a flexible pressure receiving film in an opening, and a liquid for transmitting pressure applied to the pressure receiving film to both sides of the substrate is sealed in the casing. 3. The pressure detecting device according to 1. シリコン材料からなる基板と、該基板の裏面側に受圧凹溝を形成することにより該基板の表面側に設けられた薄肉部と、該薄肉部の一部を枠状に取囲んで前記基板の表面側に設けられ取囲まれた内側をダイヤフラム部とする枠状突部と、該枠状突部上に接合して設けられ前記ダイヤフラム部を閉塞して圧力室を画成すると共に前記圧力室内に外部から被測定圧を導く圧力導入孔が形成された閉塞板と、前記ダイヤフラム部に位置して前記薄肉部に設けられ前記受圧凹溝と圧力室との間の差圧によって前記ダイヤフラム部が変形するときの撓みを検出する撓み検出素子とからなる圧力検出装置において、
前記薄肉部には、前記枠状突部によって取囲まれた部位よりも外側を外縁部として当該外縁部の表面側に前記受圧凹溝内と等しい圧力を加える構成としたことを特徴とする圧力検出装置。
A substrate made of a silicon material, a thin portion provided on the front surface side of the substrate by forming a pressure-receiving concave groove on the back surface side of the substrate, and a portion of the thin portion surrounding the substrate in a frame shape. A frame-shaped protrusion provided on the front surface side and having an enclosed inside as a diaphragm portion, and a pressure chamber formed by being joined on the frame-shaped protrusion and closing the diaphragm portion to define a pressure chamber; A closing plate in which a pressure introducing hole for guiding a measured pressure from the outside is formed, and the diaphragm portion is provided by the pressure difference groove between the pressure receiving groove and the pressure chamber provided in the thin portion located in the diaphragm portion. In a pressure detection device comprising a deflection detection element for detecting deflection when deformed,
The thin wall portion has a configuration in which a pressure outside the pressure receiving groove is applied to a surface side of the outer edge portion outside the portion surrounded by the frame-shaped protrusion as an outer edge portion. Detection device.
前記基板上には前記枠状突部の外側に位置して前記閉塞板を支持する閉塞板支持突部を設けてなる請求項1,2または3に記載の圧力検出装置。The pressure detecting device according to claim 1, 2 or 3, wherein a closing plate supporting protrusion that supports the closing plate and is located outside the frame-shaped protrusion is provided on the substrate.
JP25626499A 1999-09-09 1999-09-09 Pressure detector Expired - Fee Related JP3552961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25626499A JP3552961B2 (en) 1999-09-09 1999-09-09 Pressure detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25626499A JP3552961B2 (en) 1999-09-09 1999-09-09 Pressure detector

Publications (2)

Publication Number Publication Date
JP2001083029A JP2001083029A (en) 2001-03-30
JP3552961B2 true JP3552961B2 (en) 2004-08-11

Family

ID=17290240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25626499A Expired - Fee Related JP3552961B2 (en) 1999-09-09 1999-09-09 Pressure detector

Country Status (1)

Country Link
JP (1) JP3552961B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4882369B2 (en) * 2005-12-27 2012-02-22 横浜ゴム株式会社 Air pressure detection system

Also Published As

Publication number Publication date
JP2001083029A (en) 2001-03-30

Similar Documents

Publication Publication Date Title
US4656454A (en) Piezoresistive pressure transducer with elastomeric seals
US7183620B2 (en) Moisture resistant differential pressure sensors
US6351996B1 (en) Hermetic packaging for semiconductor pressure sensors
US7124639B1 (en) Ultra high temperature hermetically protected wirebonded piezoresistive transducer
JPH11118642A (en) Pressure sensor
US6612178B1 (en) Leadless metal media protected pressure sensor
JP2002071491A (en) Pressure sensor
JP6253825B1 (en) Semiconductor differential pressure sensor
US6591686B1 (en) Oil filled pressure transducer
JP3552961B2 (en) Pressure detector
JP3410257B2 (en) Pressure sensor
CN110779638A (en) Pressure sensor
JP2782572B2 (en) Pressure sensor and method of manufacturing the same
JP3552963B2 (en) Pressure sensor
JP3081179B2 (en) Pressure sensor and method of manufacturing the same
JP3158353B2 (en) Pressure detector
JPH11201845A (en) Semiconductor type pressure sensor
JPH08226861A (en) Pressure sensor and its mounting structure
JP4103227B2 (en) Pressure sensor
JP3127056B2 (en) Micro sensor
JP3149396B2 (en) Manufacturing method of pressure sensor
JP3349489B2 (en) Pressure sensor and method of manufacturing the same
JP3336236B2 (en) Pressure sensor
JP2002296136A (en) Case structure of transducer
JP2001272296A (en) Pressure sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees