JP3550991B2 - Photo-oxidation fluid processing apparatus and composite photocatalyst particles used therein - Google Patents

Photo-oxidation fluid processing apparatus and composite photocatalyst particles used therein Download PDF

Info

Publication number
JP3550991B2
JP3550991B2 JP34756497A JP34756497A JP3550991B2 JP 3550991 B2 JP3550991 B2 JP 3550991B2 JP 34756497 A JP34756497 A JP 34756497A JP 34756497 A JP34756497 A JP 34756497A JP 3550991 B2 JP3550991 B2 JP 3550991B2
Authority
JP
Japan
Prior art keywords
water
treated
photocatalyst particles
magnetic
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34756497A
Other languages
Japanese (ja)
Other versions
JPH11169845A (en
Inventor
哲也 田中
浩一 都築
文隆 半田
四郎 仲平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP34756497A priority Critical patent/JP3550991B2/en
Publication of JPH11169845A publication Critical patent/JPH11169845A/en
Application granted granted Critical
Publication of JP3550991B2 publication Critical patent/JP3550991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Catalysts (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水などの各種流体を光触媒を用いて浄化する光酸化流体処理装置及びこれに用いる複合化光触媒粒子に関するものである。
【0002】
【従来の技術】
光触媒を用いる流体の光酸化処理は、流体中に混入した有害有機物の分解や殺菌などに用いられる方法である。光触媒作用を示す物質では二酸化チタンがよく知られている。通常は、被処理流体中に二酸化チタン粒子を分散させて光を照射し、酸化反応を起こして被処理流体を処理する。酸化反応は光触媒の表面で起こるので、反応効率を上げるためには、被処理流体中に分散させる光触媒粒子をできるだけ微小なものとして比表面積を大きくし、光触媒粒子と被処理流体との接触効率を向上させることが必要である。
【0003】
なお、この種従来技術としては、特開平4−371233号公報に記載されたものなどがある。
【0004】
【発明が解決しようとする課題】
被処理流体が空気などの気体の場合には、光触媒粒子がかなり小さくてもその沈降速度が大きくなり、被処理気体と光触媒粒子が分離し易い。しかし、被処理流体が水などの液体の場合には微小粒子の沈降性が気体とのそれに比べて大幅に劣るために、反応効率を犠牲にして光触媒粒子を大きくするか、微小な粒子を用いる場合には膜分離法によって触媒粒子を処理後の流体液から分離する手法がとられている。しかしながら、粒子を大きくした場合、反応効率低下を保障するために装置が巨大化する。
【0005】
膜分離を用いる場合には、膜分離部で必要となる動力が大きくなるだけでなく、処理後の流体から光触媒粒子が分離できても処理装置内部にだんだんと溜まっていく汚濁物粒子と光触媒粒子を分離する手段がない。膜分離を利用した場合には分離した光触媒粒子を連続的に回収して処理部で再使用することも困難であった。
【0006】
これらの理由により、実用レベルでの光触媒応用光酸化流体処理装置を実現する状況に至っていないのが実状である。
【0007】
本発明の目的は、微小な光触媒粒子を利用でき、しかもその微小な光触媒粒子を被処理液体から容易に分離できるようにした光酸化流体処理装置を得ることにある。
【0008】
本発明の他の目的は、光酸化流体処理装置において、光触媒粒子の比表面積を大きくして、光触媒粒子と被処理流体との接触効率を向上させることのできる複合化光触媒粒子を得ることにある。
【0009】
【課題を解決するための手段】
上記目的は、流体を処理する処理部及びこの処理部内に光を導入する手段を備えた流体処理装置において、前記処理部内に分散される磁性を有する光触媒粒子と、前記処理部に接続され該処理部に対し給水と排水の切り替えが可能な給排水配管と、この給排水配管内または処理部と上記給排水配管との接続部に設けられ、処理後の流体中から前記磁性光触媒粒子を分離するための粒子分離手段と、この粒子分離手段で処理流体から分離された光触媒粒子を前記処理部内に返送するための粒子戻し手段とを備えたこにより達成される。
【0021】
【発明の実施の形態】
以下、図面を用いて本発明の実施例を説明する。
【0022】
図1は本発明の一実施例を示す概略構成図である。被処理水は流入口2から処理部1内に導入される。処理部1内には磁性体に担持された微小な光触媒粒子(磁性光触媒粒子)が被処理水中に分散されている。処理部1には空気導入管9から空気も導入され、この導入された空気が上昇するのに伴って、処理部1内では被処理水が分散している光触媒粒子と一緒に流動している。なお、空気は空気抜き10から処理部1外に放出される。処理部1内には光源部壁8内に光源7が挿入され、この光源部壁8を通して光が処理部1内に照射される。被処理水中に分散している光触媒粒子表面では照射光により強力な酸化作用が発生し、被処理水中に存在するバクテリアを死滅させたり、あるいは溶存している有機物を分解したりする。処理された水は流出部3から処理部1外に排出される。流出部3には、流出処理水中に分散している光触媒粒子を磁気分離するための磁気分離磁石4が設置されている。磁気分離磁石4で捕捉された光触媒粒子はかき取り板5で磁気分離磁石4から掻き取られて、粒子戻り6を経て戻り粒子放出口11から処理部1内に再び連続的に返送される。空気導入管9から処理部1内に供給される空気は酸化反応に必要な酸素を被処理水に溶解させて供給し、かつ処理部1内に光触媒粒子を分散させ攪拌する役割を持っている。なお、この供給される気体は、空気以外の気体、例えば酸素やオゾン等でもも良い。
【0023】
図2は図1に示された磁気分離磁石4の具体的実施例を説明するものである。複数(図2では3枚)の円盤状の磁気分離磁石4a,4b,4cが回転軸12で連結されて図中のΩ方向に回転している。この実施例では、磁気分離磁石4aと4bの向かい合う面、及び磁気分離磁石4bと4cの向かい合う面のそれぞれに磁石が貼ってある。回転している磁気分離磁石4a,4b,4cは処理水中の磁性光触媒粒子を磁気で捕捉し、捕捉された光触媒粒子は掻き取り板5(5a,5b)により磁気分離磁石4a,4b,4cの磁石表面上から掻き取られ、図1に示す粒子戻り6に送られる。
【0024】
図3〜図5により図1に示した実施例の変形例を説明する。この例は、図1に示す磁気分離磁石4の代わりに電磁石を用いたものである。
【0025】
図3において、処理水の流出部3としては流出部3aと流出部3bの二つが設けられている。処理部1で処理された処理水は磁気フィルタ13aを経て流出部3aから流出する。この時一方のバルブ16aは開いており、他方のバルブ16bは閉じている。また、磁気フィルター13aは通電により電磁石が働いた状態となり磁場が発生しているが、磁気フィルター13bの方は通電を停止することで電磁石が切れた状態となり磁場が発生していない。このようにすると、流出部3aから流出する処理水中の光触媒粒子は磁気フィルター13aで捕捉される。さらに、本実施例では、適当なタイミングでバルブ操作により流出部3aと流出部3bとを切り替えて使用する。すなわち、バルブ16aが閉じ、バルブ16bを開く。同時に磁気フィルター13aの電磁石は切られ、磁気フィルター13bの電磁石を作動させ、処理水は処理部3bから放流され、その際に処理水中の光触媒粒子は磁気フィルター13bで捕捉される。磁気フィルター13aで捕捉されていた光触媒粒子は、磁気フィルター13aで磁場が作用しなくなるので磁気フィルター13aから離脱し、ゆっくりと処理部1内に沈降しながら戻っていく。
【0026】
図4は図3に示す磁気フィルター部分の詳細構造を示す図で、磁気フィルター13(13a,13b)の周辺に電磁石14(14a,14b)を配置している。
【0027】
図5は図3に示した例の縦断面図で、流入口2から光触媒粒子が充満分散している処理部1に流入した被処理水は、空気導入管9から導入された空気と共に処理部1内を上昇しながら撹拌され、光源部壁8を介して光源7から照射された光により分散している光触媒粒子の光触媒作用により、酸化作用を受ける。処理された水と共流れている光触媒粒子は磁気フィルター13で磁気分離され、処理水のみが流出部3から流出する。この例では、複数の磁気フィルター13a,13bを切り替えて使用することにより、処理水中から分離した光触媒粒子を連続的に処理部1内に返送することができる。
【0028】
図6は本発明の他の例を示すもので、この実施例では光源として太陽光を用いる。流入口2から流入した被処理水はまず磁性光触媒粒子が充満して分散している混合部17に入る。混合部17からは光触媒粒子が分散している被処理水がポンプ18により処理部1に送られる。処理部1は太陽光を透過する材質で形成されている。また、太陽光を無駄なく集光できるように処理部1の背面には反射板41も設けられている。処理部1で光酸化処理を受けた処理水は、流出部3において図2と同様の回転型の磁気分離磁石4を用いた磁気分離方式により分散している光触媒粒子を分離した後、放流される。磁気分離磁石4上に捕捉された光触媒粒子は掻き取り板5で掻き取られ、粒子戻り6を経て混合部17に戻る。圧縮機19により光酸化処理で必要な酸素または酸素を含む空気が混合部17内に導入される。なお、この例では、連続処理も回分処理も可能である。連続処理の場合、流入口2より流入する被処理水量がポンプ18による送水量と等しい時はバルブ21は閉じられている。流入口2より流入する被処理水量がポンプ18による送水量より小さい時は、バルブ21が開いており、流入口2より流入した水量と同じ量の処理水が流出部3より流出し、残りの分は戻り流路22を通って混合部17に戻る。バッチ処理の場合、一旦流入口2から被処理水が流入した後、バルブ15,20が閉じられ、バルブ21が開いて、被処理水は処理部1、戻り流路22、混合部17を循環し、適当な処理時間の後、今度はバルブ21を閉じてバルブ20をあけて処理水を流出部3を経て(従って処理水中の光触媒粒子は磁気分離して)、放流する。
【0029】
図7は本発明の更に他の例を示すものであり、自然曝気方式とすることにより、図6に示すような圧縮機19を使用しないようにして動力を節約するようにしたものである。図6に示す戻り流路22の代わりに本例では戻り処理部23を設けている。戻り処理部23では被処理水が水面を形成する状態で混合部17に流下し、このとき被処理水内に空気が巻き込まれて自然曝気される。また、戻り処理部23は太陽光を透過する材質で作成されているので、このときにも光酸化作用が生じる。従って戻り処理部23の背面にも反射板24を設けている。
【0030】
図8は本発明の更に他の例を示すもので、この例のものは回分処理を行うものである。給水バルブ25を開くと流入口2から磁性光触媒粒子が充填されている処理部1に被処理水が導入され、適当な水位になると、一旦給水バルブ25を閉じて処理が開始される。このとき、流出部3に至る排水バルブ26は閉じている。処理部1の下方には磁気分離用の磁気フィルター13と電磁石14が設置されているが、処理部1で被処理水を処理している間、電磁石14の電源は切断(OFF)されている。また、被処理水の処理中は圧縮機などの気体供給手段19により磁気フィルター13の下方に設けた空気導入管9から処理部1内に空気が供給され、その気泡の上昇流に伴って被処理水は処理部1内で光触媒粒子とともに攪拌される。上記実施例と同様に、光源7から照射された光が光触媒粒子表面に照射されることによって酸化処理が行われる。適当な処理時間の後、処理水を排出される。このとき電磁石14に通電されてONとなり、磁気フィルター13に磁場が加えられる。その後、排水バルブ26が開かれ、処理部1からの処理水が流出部3から排出される。その際、処理水中の磁性光触媒粒子を磁気フィルター13により処理水中から分離することができる。処理された水が全て排出されると、次の処理を始めるために排水バルブ26を閉じ、電磁石14をOFFとし、給水バルブ25を開けて流入口2から新たな被処理水を処理部1内に導入する。磁気フィルター13に捕捉された磁性光触媒粒子は電磁石14への通電を切断することにより磁場による拘束から開放され、空気導入管9から導入される空気の上昇流と、それに伴う水流によって容易に処理部1内に再び分散させることができる。また、この例では、処理部1内に汚泥やゴミ等が蓄積した場合でも、通常の処理を行うだけで磁性光触媒粒子と汚泥とを磁気フィルター13で分離して汚泥等を処理部1内から排出することができる。
【0031】
図9は本発明の別の実施例を示すもので、基本構成は図8の例と類似しているが、この例では処理部1の下方に給排水配管27を接続し、給排水配管27に流入口2および流出部3が接続され、各々給水バルブ25または排水バルブ26が設けられている。被処理水は給水バルブ25を開き、排水バルブ26を閉じて流入口2から処理部1に導入される。処理された水の排水は、給水バルブ25を閉、排水バルブ26を開として処理部1から排出される。本例では、被処理水が磁気フィルター13を通って処理部1に供給されるので、磁気フィルター13で補足した磁性光触媒粒子を処理部1内に再度分散させる際、空気導入管9からの気泡による上昇流に加えて被処理水の上向きの流れを利用することができる。したがって、この例のものではより迅速かつ確実に磁性光触媒粒子を処理部1に返送することができる。
【0032】
図10および図11は本発明の更に他の例を示すもので、基本構成は図8,図9に示した例と類似している。これらの例では処理部1内に気泡と被処理水の流れを拘束する仕切り板28が設置され、光触媒粒子に光を照射する光源7は仕切り板28の外側に設置されている。酸化処理中には空気導入管9から処理部1内に供給された気泡は仕切り板28の内側を通って上昇し、空気抜き10から排出される。したがって、処理部1内の被処理水の流れは図中矢印で示す通り、仕切り板28の内側は上昇流、外側は下向流となり処理部1内に安定した循環流を起こすことができ、処理部1内に分散させた光触媒粒子を効率的に攪拌することができる。また、気泡は仕切り板28の内側を流れるから光源7から照射した光は気泡に光路を妨害されることなく光触媒粒子表面に直接到達するので、酸化反応を促進させることもできる。
【0033】
図12は本発明の更に他の例を示すもので、処理水を膜分離モジュール29で光触媒粒子と分離することで連続処理を行う例である。処理水はポンプ32により膜29を通して吸引され、流出部3から放流される。この例では、磁気フィルター13および電磁石14で構成される磁気分離手段は、処理部1内に溜まるゴミや汚泥の排出のために使用される。処理部1内部にゴミや汚泥が溜まった場合、被処理水の導入を止め、電磁石14をONにして磁気フィルター13を作用させ、次にドレインバルブ30を開いてゴミや汚泥をドレイン管31から排出する。この汚泥排出作業時、光触媒粒子は磁気フィルター13に捕捉される。
【0034】
図13は本発明の更に他の例を示すもので、磁気分離手段による処理水と光触媒粒子との分離を連続的に行えるようにしたものである。この例では、給排水配管27が処理部1に複数(この例では2ヶ所)接続され、かつ各々の給排水配管27には磁気フィルター13と電磁石14により構成される磁気分離手段が設置され、複数の給排水配管27の両方共、被処理水の供給、及び処理水中から磁性光触媒粒子を分離回収して処理水を排水できる構成となっている。すなわち、この例では通水方向を切り替えることにより被処理水を処理部1に供給、あるいは処理水を処理部1から排出することが可能となる。被処理水は一方の給排水配管27から処理部1に連続的に導入され、処理部1で酸化処理が行われた後、他方の給排水配管27から連続的に処理水として排出される。処理水の排出に使用される側の給排水配管27に設置の電磁石14には通電して磁場を発生させ、磁気フィルター13で処理水中に含まれる磁性光触媒粒子を捕捉する。適当な時間連続処理を行った後、各々の給排水配管27の通水方向を切り替え、同時に電磁石14のON−OFFも切り替えて連続的に使用する。すなわち、給水に使われている給排水配管側の電磁石は通電させず、排水に使われている側の給排水配管側の電磁石は通電させて、磁性光触媒粒子を処理水中から捕捉する。この動作を2つの給排水配管間で一定時間毎に交互に繰り返す。排水側であった磁気フィルター13には処理水中から捕捉した磁性光触媒粒子が堆積しているが、給水側となったときにその電磁石への通電を停止させるので、磁場から開放され、被処理水の流れにより処理部1へ容易に返送することができる。この例によれば、処理水中から分離した光触媒粒子を自動的に処理部1に返送することができ、連続的に処理を継続することができる。
【0035】
上述した本発明の各例において、磁気分離手段により処理水中から光触媒粒子を分離するためにはあらかじめ光触媒粒子に磁性を持たせなければならない。この具体例を図14,図15により説明する。
【0036】
図14は本発明に使われる磁性を有する光触媒粒子(磁性光触媒粒子)の一例で、皮膜36でコーティングされた磁性粒子34を母材とし、これに光触媒物質粒子35が母材表面に接合等の手段で担持され、磁性光触媒粒子33を構成している。磁性粒子34としては例えば三価の酸化鉄などの強磁性物質を用い、光触媒物質粒子35としては例えば二酸化チタン微粉末等を用いる。皮膜36としては例えば二酸化シリコン等の酸化作用に対して安定な皮膜を用いる。これは、例えば磁性粒子34として三価の酸化鉄を使用した場合、磁性粒子が光酸化作用で逆に還元されて二価の酸化鉄に変化し磁性が弱まるのを防止するためである。またこの例において、光触媒物質粒子34の磁性粒子34への接合は、粒子34を磁性粒子母材に機械的に食い込ませることによっている。また、磁性粒子34としては粒径が数mm〜数mm程度の粒子を用い、光触媒物質粒子35としては数nm〜数十nm程度の大きさの微細粒子を用いると良い。
【0037】
図15は本発明に使われる磁性光触媒粒子の他の例を示すもので、この例では、光触媒物質粒子35を母材とし、皮膜36で保護された磁性粒子34を前記光触媒物質粒子35に接合させたものである。
【0038】
本発明の光酸化流体処理装置は、例えば水道水原水のトリハロメタン前駆物質などの有害有機物や塩素消毒後のトリハロメタンの分解除去、あるいは排水中に含まれる有機塩素化合物の分解除去などをする水処理装置として用いることができる。また、本発明の光酸化流体処理装置は活性汚泥法などの生物処理装置と組み合わせることにより、従来生物処理のみでは除去しきれなかった物質も分解除去することができる。
【0039】
図16は、排水等を処理するシステムにおいて、前段で生物を利用した流体処理装置(生物処理装置)37を用いて処理を行い、後段で上記したような光酸化流体処理装置38を用いて酸化処理を行うようにしたものである。図16において、光酸化流体処理装置38では処理部1内に光触媒粒子を分散させ、この光触媒粒子に光源7により光を照射して酸化処理を行い、排水される処理水中の光触媒粒子は光触媒粒子分離部39により水と分離され、粒子戻り部6から処理部1に返送されて連続使用される。処理中はブロア40により空気導入管9を通して処理部1内を曝気することで酸化反応に必要な酸素を供給すると共に光触媒粒子を処理槽内に均一に分散させることができる。この例によれば、原水中の有機物が生物処理により分解副生成物としてフミン質などの生物難分解性物質を生成する場合でも、後段の光酸化流体処理装置38による強い酸化力により前記フミン質などの副生成物を分解除去することができる。
【0040】
図17に示す例では、前段に光酸化流体処理装置38を配置して酸化処理を行い、後段で生物処理装置37を用いて生物処理を行う例である。この例では、原水中に高分子の生物難分解性物質が含まれている場合でも、これを前段の光酸化流体処理装置38の強い酸化力により酸化分解し、生物分解しうる分解中間生成物にすることができ、後段の生物処理装置37でこの分解中間生成物を分解除去することができる。
【0041】
【発明の効果】
本発明によれば、光触媒粒子を磁気分離部で被処理水から分離し、磁気分離部で捕捉された光触媒粒子を光酸化処理装置の処理部に戻すように構成しているので、微小な光触媒粒子を被処理液体から容易に分離でき、実用レベルの光触媒応用光酸化流体処理装置を得ることができる効果がある。したがって、粒子径が数ミクロン程度以下の微小粒子を使用できるから、従来のものよりはるかに反応効率を向上できる効果がある。
【図面の簡単な説明】
【図1】本発明の一実施例を示す概略正面構成図。
【図2】図1に示す磁気分離部の詳細斜視図。
【図3】本発明の変形例を示す斜視図。
【図4】図3に示す磁気分離部の詳細斜視図。
【図5】図3に示す変形例の正面断面図。
【図6】本発明の他の例を示す概略正面構成図。
【図7】本発明の更に他の例を示す概略正面構成図。
【図8】本発明の更に他の例を示す概略正面構成図。
【図9】本発明の更に他の例を示す概略正面構成図。
【図10】本発明の更に他の例を示す概略正面構成図。
【図11】本発明の更に他の例を示す概略正面構成図。
【図12】本発明の更に他の例を示す概略正面構成図。
【図13】本発明の更に他の例を示す概略正面構成図。
【図14】本発明に使用される磁性を有する光触媒粒子の一例を示す縦断面図。
【図15】本発明に使用される磁性を有する光触媒粒子の他の例を示す縦断面図。
【図16】本発明による生物処理装置と光酸化流体処理装置とを組み合わせた排水等の処理システムの一例を説明する概略正面構成図。
【図17】本発明による生物処理装置と光酸化流体処理装置とを組み合わせた排水等の処理システムの一例を説明する概略正面構成図。
【記号の説明】
1…処理部、2…流入口、3(3a,3b)…流出部、4(4a,4b,4c)…磁気分離磁石、5(5a,5b)…かき取り板、6…粒子戻り、7…光源、8…光源部壁、9…空気導入管、10…空気抜き、11…戻り粒子放出口、12…回転軸、13(13a,3b)…磁気フィルタ、14…電磁石、15…バルブ、16(16a,16b)…バルブ、17…混合部、18…ポンプ、19…圧縮機、20,21…バルブ、22…戻り流路、23…戻り処理部、24…反射板、25…給水バルブ、26…排水バルブ、27…給排水配管、28…仕切り板、29…膜分離モジュール、30…ドレインバルブ、31…ドレイン、32…ポンプ、33…磁性光触媒粒子、34…磁性粒子、35…光触媒物質粒子、36…皮膜、37…生物処理装置、38…光酸化流体処理装置、39…光触媒粒子分離装置、40…ブロア、41…反射板。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a photo-oxidation fluid processing apparatus for purifying various fluids such as water using a photocatalyst, and a composite photocatalyst particle used for the same.
[0002]
[Prior art]
The photo-oxidation treatment of a fluid using a photocatalyst is a method used for decomposing and sterilizing harmful organic substances mixed in the fluid. As a photocatalytic substance, titanium dioxide is well known. Normally, titanium dioxide particles are dispersed in a fluid to be treated and irradiated with light to cause an oxidation reaction to treat the fluid to be treated. Since the oxidation reaction occurs on the surface of the photocatalyst, in order to increase the reaction efficiency, the photocatalyst particles dispersed in the fluid to be treated are made as small as possible to increase the specific surface area, and the contact efficiency between the photocatalyst particles and the fluid to be treated is increased. It needs to be improved.
[0003]
Incidentally, as this kind of conventional technology, there is one described in Japanese Patent Application Laid-Open No. 4-371233.
[0004]
[Problems to be solved by the invention]
When the fluid to be treated is a gas such as air, the sedimentation velocity increases even if the photocatalyst particles are considerably small, and the gas to be treated and the photocatalyst particles are easily separated. However, when the fluid to be treated is a liquid such as water, the sedimentation of fine particles is significantly inferior to that of gas, so the photocatalytic particles are enlarged at the expense of reaction efficiency or fine particles are used. In such a case, a method of separating catalyst particles from a treated fluid liquid by a membrane separation method is employed. However, when the size of the particles is increased, the size of the apparatus becomes large in order to guarantee a reduction in reaction efficiency.
[0005]
When using membrane separation, not only the power required in the membrane separation unit is increased, but also pollutant particles and photocatalyst particles that gradually accumulate inside the processing equipment even if the photocatalyst particles can be separated from the processed fluid. There is no means to separate When membrane separation is used, it is also difficult to continuously recover the separated photocatalyst particles and reuse them in the processing section.
[0006]
For these reasons, the actual situation is that a photocatalyst-applied photo-oxidation fluid processing apparatus at a practical level has not yet been realized.
[0007]
SUMMARY OF THE INVENTION An object of the present invention is to provide a photo-oxidation fluid processing apparatus which can use fine photocatalyst particles and can easily separate the fine photocatalyst particles from a liquid to be treated.
[0008]
Another object of the present invention is to obtain composite photocatalyst particles capable of increasing the specific surface area of photocatalyst particles and improving the contact efficiency between the photocatalyst particles and the fluid to be treated in a photo-oxidation fluid treatment apparatus. .
[0009]
[Means for Solving the Problems]
An object of the present invention is to provide a fluid processing apparatus having a processing unit for processing a fluid and a unit for introducing light into the processing unit, wherein photocatalytic particles having magnetism dispersed in the processing unit are connected to the processing unit. A water supply / drainage pipe capable of switching between water supply and drainage to the part, and particles provided in this water supply / drainage pipe or at a connection part between the processing part and the water supply / drainage pipe for separating the magnetic photocatalyst particles from a fluid after treatment This is achieved by providing a separation unit and a particle return unit for returning the photocatalyst particles separated from the processing fluid by the particle separation unit into the processing unit.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0022]
FIG. 1 is a schematic configuration diagram showing one embodiment of the present invention. The water to be treated is introduced from the inflow port 2 into the processing section 1. In the processing section 1, minute photocatalyst particles (magnetic photocatalyst particles) supported on a magnetic material are dispersed in the water to be treated. Air is also introduced into the processing unit 1 from the air introduction pipe 9, and as the introduced air rises, the water to be treated flows together with the dispersed photocatalyst particles in the processing unit 1. . The air is discharged from the air vent 10 to the outside of the processing unit 1. The light source 7 is inserted into the light source unit wall 8 in the processing unit 1, and light is irradiated into the processing unit 1 through the light source unit wall 8. On the surface of the photocatalyst particles dispersed in the water to be treated, a strong oxidizing action is generated by the irradiation light, and kills bacteria existing in the water to be treated or decomposes dissolved organic matter. The treated water is discharged from the outflow section 3 to the outside of the treatment section 1. The outflow part 3 is provided with a magnetic separation magnet 4 for magnetically separating photocatalyst particles dispersed in the outflow treatment water. The photocatalyst particles captured by the magnetic separation magnet 4 are scraped off from the magnetic separation magnet 4 by the scraping plate 5, passed through the particle return 6, and continuously returned to the processing section 1 again from the return particle discharge port 11. The air supplied from the air introduction pipe 9 into the processing section 1 has a role of dissolving oxygen necessary for the oxidation reaction in the water to be treated and supplying the same, and also has a role of dispersing and stirring the photocatalyst particles in the processing section 1. . Note that the supplied gas may be a gas other than air, for example, oxygen or ozone.
[0023]
FIG. 2 illustrates a specific embodiment of the magnetic separation magnet 4 shown in FIG. A plurality (three in FIG. 2) of disk-shaped magnetic separation magnets 4a, 4b, and 4c are connected by a rotating shaft 12 and rotate in the Ω direction in the figure. In this embodiment, magnets are attached to the opposing surfaces of the magnetic separation magnets 4a and 4b and the opposing surfaces of the magnetic separation magnets 4b and 4c. The rotating magnetic separation magnets 4a, 4b, 4c magnetically capture the magnetic photocatalyst particles in the treated water, and the captured photocatalyst particles are removed by the scraping plate 5 (5a, 5b). It is scraped off from the magnet surface and sent to the particle return 6 shown in FIG.
[0024]
A modification of the embodiment shown in FIG. 1 will be described with reference to FIGS. This example uses an electromagnet instead of the magnetic separation magnet 4 shown in FIG.
[0025]
In FIG. 3, two outflow portions 3a and 3b are provided as the outflow portions 3 of the treated water. The treated water treated by the treatment section 1 flows out of the outflow section 3a via the magnetic filter 13a. At this time, one valve 16a is open and the other valve 16b is closed. In addition, the magnetic filter 13a is in a state where the electromagnet is actuated by energization to generate a magnetic field, whereas the magnetic filter 13b is in a state where the electromagnet is cut off by stopping energization and no magnetic field is generated. In this way, the photocatalyst particles in the treated water flowing out of the outlet 3a are captured by the magnetic filter 13a. Further, in this embodiment, the outflow portion 3a and the outflow portion 3b are switched and used by operating the valve at an appropriate timing. That is, the valve 16a is closed and the valve 16b is opened. At the same time, the electromagnet of the magnetic filter 13a is turned off, the electromagnet of the magnetic filter 13b is operated, and the treated water is discharged from the processing unit 3b, and at this time, the photocatalyst particles in the treated water are captured by the magnetic filter 13b. The photocatalyst particles captured by the magnetic filter 13a are separated from the magnetic filter 13a because the magnetic field does not act on the magnetic filter 13a, and slowly return to the processing unit 1 while sinking.
[0026]
FIG. 4 is a view showing a detailed structure of the magnetic filter portion shown in FIG. 3, and an electromagnet 14 (14a, 14b) is arranged around the magnetic filter 13 (13a, 13b).
[0027]
FIG. 5 is a longitudinal sectional view of the example shown in FIG. 3, in which the water to be treated flowing into the processing section 1 in which the photocatalyst particles are filled and dispersed from the inflow port 2 is mixed with the air introduced from the air introduction pipe 9. 1 is agitated while being raised, and is oxidized by the photocatalytic action of the photocatalytic particles dispersed by the light emitted from the light source 7 via the light source wall 8. The photocatalyst particles co-flowing with the treated water are magnetically separated by the magnetic filter 13, and only the treated water flows out of the outlet 3. In this example, by switching and using the plurality of magnetic filters 13a and 13b, the photocatalyst particles separated from the treated water can be continuously returned into the processing unit 1.
[0028]
FIG. 6 shows another embodiment of the present invention. In this embodiment, sunlight is used as a light source. The water to be treated flowing from the inlet 2 first enters the mixing section 17 where the magnetic photocatalyst particles are filled and dispersed. From the mixing section 17, the water to be treated in which the photocatalyst particles are dispersed is sent to the processing section 1 by the pump 18. The processing section 1 is formed of a material that transmits sunlight. Further, a reflection plate 41 is provided on the back surface of the processing unit 1 so that the sunlight can be collected without waste. The treated water that has been subjected to the photo-oxidation treatment in the treatment section 1 is separated from the dispersed photocatalyst particles in the outflow section 3 by a magnetic separation method using a rotary magnetic separation magnet 4 similar to that in FIG. You. The photocatalyst particles captured on the magnetic separation magnet 4 are scraped off by the scraping plate 5 and return to the mixing section 17 via the particle return 6. Oxygen or air containing oxygen required for the photo-oxidation treatment is introduced into the mixing section 17 by the compressor 19. In this example, both continuous processing and batch processing are possible. In the case of continuous treatment, the valve 21 is closed when the amount of water to be treated flowing from the inflow port 2 is equal to the amount of water supplied by the pump 18. When the amount of water to be treated flowing from the inlet 2 is smaller than the amount of water supplied by the pump 18, the valve 21 is open, and the same amount of treated water as the amount of water flowing from the inlet 2 flows out of the outlet 3, and the remaining water flows out of the outlet 3. The portion returns to the mixing section 17 through the return channel 22. In the case of batch processing, once the water to be treated flows in through the inlet 2, the valves 15 and 20 are closed, the valve 21 is opened, and the water to be treated circulates through the processing section 1, the return channel 22, and the mixing section 17. After an appropriate treatment time, the valve 21 is closed, the valve 20 is opened, and the treated water is discharged through the outlet 3 (therefore, the photocatalyst particles in the treated water are magnetically separated).
[0029]
FIG. 7 shows still another example of the present invention, in which the compressor 19 as shown in FIG. 6 is not used to save power by using a natural aeration system. In this example, a return processing unit 23 is provided instead of the return channel 22 shown in FIG. In the return processing unit 23, the water to be treated flows down to the mixing unit 17 while forming a water surface. At this time, air is entrained in the water to be treated and is naturally aerated. In addition, since the return processing unit 23 is made of a material that transmits sunlight, a photo-oxidation effect also occurs at this time. Therefore, the reflection plate 24 is also provided on the back surface of the return processing unit 23.
[0030]
FIG. 8 shows still another example of the present invention, in which batch processing is performed. When the water supply valve 25 is opened, the water to be treated is introduced from the inflow port 2 into the processing section 1 filled with the magnetic photocatalyst particles. When the water level reaches an appropriate level, the water supply valve 25 is closed and the processing is started. At this time, the drain valve 26 reaching the outflow section 3 is closed. Although a magnetic filter 13 for magnetic separation and an electromagnet 14 are provided below the processing unit 1, the power of the electromagnet 14 is turned off (OFF) while the water to be treated is being processed by the processing unit 1. . Further, during the treatment of the water to be treated, air is supplied into the treatment section 1 from the air introduction pipe 9 provided below the magnetic filter 13 by gas supply means 19 such as a compressor, and the air is supplied along with the upward flow of the bubbles. The treated water is stirred with the photocatalyst particles in the treatment section 1. Similarly to the above embodiment, the oxidation treatment is performed by irradiating the light emitted from the light source 7 to the surface of the photocatalyst particles. After a suitable treatment time, the treated water is drained. At this time, the electromagnet 14 is energized and turned on, and a magnetic field is applied to the magnetic filter 13. Thereafter, the drain valve 26 is opened, and the treated water from the processing section 1 is discharged from the outflow section 3. At that time, the magnetic photocatalyst particles in the treated water can be separated from the treated water by the magnetic filter 13. When all of the treated water has been discharged, the drain valve 26 is closed, the electromagnet 14 is turned off, the water supply valve 25 is opened, and new water to be treated is introduced from the inflow port 2 into the treatment section 1 to start the next treatment. To be introduced. The magnetic photocatalyst particles captured by the magnetic filter 13 are released from the restraint by the magnetic field by cutting off the electric current to the electromagnet 14, and are easily processed by the upward flow of air introduced from the air introduction pipe 9 and the accompanying water flow. 1 can be dispersed again. Further, in this example, even when sludge, dust, and the like accumulate in the processing unit 1, the magnetic photocatalyst particles and the sludge are separated by the magnetic filter 13 by simply performing the normal processing, and the sludge and the like are separated from the processing unit 1. Can be discharged.
[0031]
FIG. 9 shows another embodiment of the present invention. The basic configuration is similar to that of FIG. 8, but in this example, a water supply / drainage pipe 27 is The inlet 2 and the outlet 3 are connected, and a water supply valve 25 or a drain valve 26 is provided, respectively. The water to be treated is introduced into the treatment section 1 from the inflow port 2 by opening the water supply valve 25 and closing the drain valve 26. The drainage of the treated water is discharged from the processing unit 1 with the water supply valve 25 closed and the drainage valve 26 opened. In this example, since the water to be treated is supplied to the processing unit 1 through the magnetic filter 13, when the magnetic photocatalyst particles captured by the magnetic filter 13 are dispersed again in the processing unit 1, bubbles from the air introduction pipe 9 are generated. In addition to the upward flow due to the above, the upward flow of the water to be treated can be used. Therefore, in this embodiment, the magnetic photocatalyst particles can be returned to the processing section 1 more quickly and reliably.
[0032]
FIGS. 10 and 11 show still another example of the present invention, and the basic configuration is similar to the examples shown in FIGS. In these examples, a partition plate 28 that restricts the flow of bubbles and water to be treated is installed in the processing unit 1, and the light source 7 that irradiates the photocatalyst particles with light is installed outside the partition plate 28. During the oxidizing process, bubbles supplied into the processing section 1 from the air introduction pipe 9 rise through the inside of the partition plate 28 and are discharged from the air vent 10. Accordingly, the flow of the water to be treated in the processing unit 1 is ascending flow inside the partition plate 28 and downward flow outside as shown by the arrow in the figure, and a stable circulating flow can be generated in the processing unit 1. The photocatalyst particles dispersed in the processing section 1 can be efficiently stirred. Further, since the bubbles flow inside the partition plate 28, the light emitted from the light source 7 directly reaches the surface of the photocatalyst particles without obstructing the light path by the bubbles, so that the oxidation reaction can be promoted.
[0033]
FIG. 12 shows still another example of the present invention, in which treated water is separated from photocatalyst particles by a membrane separation module 29 to perform continuous processing. The treated water is sucked through the membrane 29 by the pump 32 and discharged from the outlet 3. In this example, the magnetic separation means including the magnetic filter 13 and the electromagnet 14 is used for discharging dust and sludge accumulated in the processing unit 1. When dust or sludge accumulates inside the processing unit 1, the introduction of the water to be treated is stopped, the electromagnet 14 is turned on to activate the magnetic filter 13, and then the drain valve 30 is opened to remove dust and sludge from the drain pipe 31. Discharge. At the time of this sludge discharging operation, the photocatalyst particles are captured by the magnetic filter 13.
[0034]
FIG. 13 shows still another example of the present invention, in which the separation of treated water and photocatalyst particles by magnetic separation means can be continuously performed. In this example, a plurality of (two in this example) water supply / drainage pipes 27 are connected to the processing unit 1, and each of the water supply / drainage pipes 27 is provided with a magnetic separation unit constituted by a magnetic filter 13 and an electromagnet 14. Both of the water supply and drainage pipes 27 are configured to supply the water to be treated and separate and collect the magnetic photocatalyst particles from the treated water to drain the treated water. That is, in this example, the water to be treated can be supplied to the processing unit 1 or the treated water can be discharged from the processing unit 1 by switching the water flowing direction. The water to be treated is continuously introduced into the processing section 1 from one of the water supply and drainage pipes 27, and after being oxidized in the processing section 1, is continuously discharged as treated water from the other water supply and drainage pipe 27. The electromagnet 14 installed in the supply / drain pipe 27 on the side used for discharging the treated water is energized to generate a magnetic field, and the magnetic filter 13 captures the magnetic photocatalyst particles contained in the treated water. After performing the continuous treatment for an appropriate time, the water flow direction of each water supply / drainage pipe 27 is switched, and at the same time, the ON / OFF of the electromagnet 14 is also switched and used continuously. That is, the electromagnet on the water supply / drainage pipe side used for water supply is not energized, and the electromagnet on the water supply / drainage pipe side used for drainage is turned on to capture magnetic photocatalyst particles from the treated water. This operation is repeated alternately at regular intervals between the two plumbing pipes. Magnetic photocatalyst particles captured from the treated water are deposited on the magnetic filter 13 on the drainage side, but when the water supply side is stopped, the power supply to the electromagnet is stopped. Can be easily returned to the processing unit 1 by the flow of (1). According to this example, the photocatalyst particles separated from the processing water can be automatically returned to the processing unit 1, and the processing can be continuously performed.
[0035]
In each of the above-described embodiments of the present invention, in order to separate the photocatalyst particles from the treated water by the magnetic separation means, the photocatalyst particles must have magnetism in advance. This specific example will be described with reference to FIGS.
[0036]
FIG. 14 shows an example of magnetic photocatalyst particles (magnetic photocatalyst particles) used in the present invention, in which magnetic particles 34 coated with a film 36 are used as a base material, and photocatalyst material particles 35 are bonded to the surface of the base material. The magnetic photocatalyst particles 33 are supported by means. As the magnetic particles 34, for example, a ferromagnetic substance such as trivalent iron oxide is used, and as the photocatalytic substance particles 35, for example, titanium dioxide fine powder is used. As the film 36, for example, a film stable against an oxidizing action such as silicon dioxide is used. This is because, for example, in the case where trivalent iron oxide is used as the magnetic particles 34, the magnetic particles are prevented from being reduced by photo-oxidation and changed to divalent iron oxide to weaken the magnetism. Further, in this example, the bonding of the photocatalytic substance particles 34 to the magnetic particles 34 is performed by mechanically biting the particles 34 into the magnetic particle base material. Further, as the magnetic particles 34, particles having a particle size of about several mm to several mm are used, and as the photocatalyst substance particles 35, fine particles having a size of about several nm to several tens nm are preferably used.
[0037]
FIG. 15 shows another example of the magnetic photocatalyst particles used in the present invention. In this example, the photocatalyst material particles 35 are used as a base material, and the magnetic particles 34 protected by the coating 36 are joined to the photocatalyst material particles 35. It was made.
[0038]
The photooxidation fluid treatment apparatus of the present invention is a water treatment apparatus that decomposes and removes harmful organic substances such as trihalomethane precursors of raw tap water and trihalomethane after chlorination, or decomposes and removes organic chlorine compounds contained in wastewater. Can be used as Further, by combining the photo-oxidation fluid treatment apparatus of the present invention with a biological treatment apparatus such as an activated sludge method, it is possible to decompose and remove substances that could not be removed by conventional biological treatment alone.
[0039]
FIG. 16 shows a system for treating wastewater or the like, in which a fluid is treated using a biological treatment device (biological treatment device) 37 in the first stage, and is oxidized in the second stage using the photo-oxidized fluid treatment device 38 as described above. The processing is performed. In FIG. 16, in the photo-oxidation fluid processing device 38, photocatalyst particles are dispersed in the processing unit 1, and the photocatalyst particles are irradiated with light from the light source 7 to perform oxidation treatment. The water is separated from the water by the separation unit 39, returned to the processing unit 1 from the particle return unit 6, and used continuously. During processing, the inside of the processing section 1 is aerated through the air introduction pipe 9 by the blower 40, thereby supplying oxygen necessary for the oxidation reaction and dispersing the photocatalyst particles uniformly in the processing tank. According to this example, even when the organic matter in the raw water produces a biodegradable substance such as humic substance as a decomposition by-product by biological treatment, the humic substance is strongly oxidized by the photo-oxidation fluid treatment device 38 at the subsequent stage. And other by-products can be decomposed and removed.
[0040]
The example shown in FIG. 17 is an example in which a photo-oxidation fluid processing device 38 is arranged at the first stage to perform oxidation treatment, and a biological treatment is performed at the second stage using the biological treatment device 37. In this example, even when the raw water contains a high-molecular biodegradable substance, it is oxidatively decomposed by the strong oxidizing power of the photo-oxidation fluid treatment device 38 in the preceding stage, and the biodegradable intermediate product is decomposed. The decomposition intermediate product can be decomposed and removed by the biological treatment device 37 at the subsequent stage.
[0041]
【The invention's effect】
According to the present invention, the photocatalyst particles are separated from the water to be treated by the magnetic separation unit, and the photocatalyst particles captured by the magnetic separation unit are configured to be returned to the processing unit of the photo-oxidation treatment apparatus. Particles can be easily separated from the liquid to be treated, and there is an effect that a photocatalyst-applied photooxidation fluid treatment apparatus at a practical level can be obtained. Therefore, since fine particles having a particle diameter of several microns or less can be used, there is an effect that the reaction efficiency can be greatly improved as compared with the conventional one.
[Brief description of the drawings]
FIG. 1 is a schematic front view showing an embodiment of the present invention.
FIG. 2 is a detailed perspective view of a magnetic separation unit shown in FIG.
FIG. 3 is a perspective view showing a modification of the present invention.
FIG. 4 is a detailed perspective view of a magnetic separation unit shown in FIG. 3;
FIG. 5 is a front sectional view of the modification shown in FIG. 3;
FIG. 6 is a schematic front configuration diagram showing another example of the present invention.
FIG. 7 is a schematic front configuration diagram showing still another example of the present invention.
FIG. 8 is a schematic front configuration diagram showing still another example of the present invention.
FIG. 9 is a schematic front configuration diagram showing still another example of the present invention.
FIG. 10 is a schematic front configuration diagram showing still another example of the present invention.
FIG. 11 is a schematic front view showing still another example of the present invention.
FIG. 12 is a schematic front view showing still another example of the present invention.
FIG. 13 is a schematic front view showing still another example of the present invention.
FIG. 14 is a longitudinal sectional view showing an example of photocatalytic particles having magnetism used in the present invention.
FIG. 15 is a longitudinal sectional view showing another example of magnetic photocatalyst particles used in the present invention.
FIG. 16 is a schematic front configuration diagram illustrating an example of a treatment system for wastewater or the like obtained by combining a biological treatment device and a photo-oxidation fluid treatment device according to the present invention.
FIG. 17 is a schematic front configuration diagram illustrating an example of a treatment system for wastewater or the like obtained by combining the biological treatment device and the photo-oxidation fluid treatment device according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Processing part, 2 ... Inflow port, 3 (3a, 3b) ... Outflow part, 4 (4a, 4b, 4c) ... Magnetic separation magnet, 5 (5a, 5b) ... Scraping plate, 6 ... Particle return, 7 ... Light source, 8 ... Light source wall, 9 ... Air introduction pipe, 10 ... Air vent, 11 ... Return particle discharge port, 12 ... Rotary shaft, 13 (13a, 3b) ... Magnetic filter, 14 ... Electromagnet, 15 ... Bulb, 16 (16a, 16b) ... valve, 17 ... mixing section, 18 ... pump, 19 ... compressor, 20, 21 ... valve, 22 ... return flow path, 23 ... return processing section, 24 ... reflection plate, 25 ... water supply valve, 26 ... drain valve, 27 ... supply / drain pipe, 28 ... partition plate, 29 ... membrane separation module, 30 ... drain valve, 31 ... drain, 32 ... pump, 33 ... magnetic photocatalyst particles, 34 ... magnetic particles, 35 ... photocatalyst material particles , 36 ... Coating, 37 ... Biological treatment equipment 38 ... photooxidation fluid treatment apparatus, 39 ... photocatalyst particle separator, 40 ... blower, 41 ... reflective plate.

Claims (1)

流体を処理する処理部及びこの処理部内に光を導入する手段を備えた流体処理装置において、
前記処理部内に分散される磁性を有する光触媒粒子と、
前記処理部に接続され該処理部に対し給水と排水の切り替えが可能な給排水配管と、
この給排水配管内または処理部と上記給排水配管との接続部に設けられ、処理後の流体中から前記磁性光触媒粒子を分離するための粒子分離手段と、
この粒子分離手段で処理流体から分離された光触媒粒子を前記処理部内に返送するための粒子戻し手段とを備えたことを特徴とする光酸化流体処理装置。
In a fluid processing apparatus including a processing unit for processing a fluid and a unit for introducing light into the processing unit,
Photocatalytic particles having magnetism dispersed in the processing unit,
A water supply / drainage pipe connected to the processing unit and capable of switching between water supply and drainage for the processing unit,
Particle separation means provided in this supply / drainage pipe or at a connection between the treatment unit and the supply / drainage pipe, for separating the magnetic photocatalyst particles from the treated fluid,
A photo-oxidizing fluid processing apparatus, comprising: a particle returning means for returning the photocatalyst particles separated from the processing fluid by the particle separating means into the processing section.
JP34756497A 1997-12-17 1997-12-17 Photo-oxidation fluid processing apparatus and composite photocatalyst particles used therein Expired - Fee Related JP3550991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34756497A JP3550991B2 (en) 1997-12-17 1997-12-17 Photo-oxidation fluid processing apparatus and composite photocatalyst particles used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34756497A JP3550991B2 (en) 1997-12-17 1997-12-17 Photo-oxidation fluid processing apparatus and composite photocatalyst particles used therein

Publications (2)

Publication Number Publication Date
JPH11169845A JPH11169845A (en) 1999-06-29
JP3550991B2 true JP3550991B2 (en) 2004-08-04

Family

ID=18391082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34756497A Expired - Fee Related JP3550991B2 (en) 1997-12-17 1997-12-17 Photo-oxidation fluid processing apparatus and composite photocatalyst particles used therein

Country Status (1)

Country Link
JP (1) JP3550991B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPP972299A0 (en) * 1999-04-13 1999-05-06 Unisearch Limited A photocatalyst
KR100390652B1 (en) * 1999-07-16 2003-07-07 주식회사 에콜로넷 Method for treating a waste water using a photocatalytic reaction
US20020187082A1 (en) * 2001-06-06 2002-12-12 Chang-Yu Wu Photocatalyst coated magnetic composite particle
JP4551723B2 (en) * 2004-09-07 2010-09-29 ゴールド興産株式会社 Waste treatment method and photocatalytic material
CN102795736B (en) * 2011-05-25 2014-08-13 四川环能德美科技股份有限公司 Deep treatment method for anion exchange resin regeneration waste solution
CN103183443A (en) * 2013-04-07 2013-07-03 中国科学院生态环境研究中心 Pharmaceutical wastewater treatment process using magnetic nanoparticles and adsorption-oxidation-magnetic coagulation integrated device
CN103359868A (en) * 2013-04-12 2013-10-23 西北大学 Sewage treatment photocatalysis reactor
CN106698584A (en) * 2015-11-18 2017-05-24 香港中文大学 Photocatalytic disinfector
CN108928881A (en) * 2018-08-02 2018-12-04 四川大学 Magnetic agglomerates photo catalysis reactor and photocatalysis sewage treatment equipment and method

Also Published As

Publication number Publication date
JPH11169845A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
EP1234802B1 (en) Improved method and apparatus for water treatment
US5462674A (en) Method and system for photocatalytic decontamination
EP1676818A1 (en) Filtering and purifying system
JP2000288560A (en) Water purifying treatment apparatus and method
JP3550991B2 (en) Photo-oxidation fluid processing apparatus and composite photocatalyst particles used therein
JP2005007385A (en) Garbage disposal system
KR101858028B1 (en) Rapid complex water treatment system
JP3744454B2 (en) Water treatment equipment
JP3858734B2 (en) Water treatment equipment
JP3949811B2 (en) Wastewater treatment equipment
JP2002210488A (en) Purification apparatus
JPH10305287A (en) Ozone catalytic reactor
JPH10337579A (en) Method and apparatus for treatment of wastewater
JPH10249336A (en) Water treating method and water treating device using photocatalyst
KR20140057829A (en) Oil decomposing grease trap
JP2004351266A (en) Sewage treatment system
JP4019277B2 (en) Method and apparatus for treating organic wastewater generated from fishing ports and fish markets
JP3356928B2 (en) Operating method of water treatment equipment using immersion type membrane filtration device
JP2640420B2 (en) Photo-oxidation treatment method
JP3389056B2 (en) Wastewater treatment equipment
JP3941293B2 (en) Method and apparatus for treating harmful substances in sewage
JPH11267672A (en) Treatment of polluted water and system therefor
JPH0645030B2 (en) Ozone water treatment equipment
JP2003010653A (en) Water treater
JP2003181450A (en) Water treatment method and equipment using photocatalyst

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040412

LAPS Cancellation because of no payment of annual fees