JP3549753B2 - Girder structure of steel-concrete composite truss structure - Google Patents

Girder structure of steel-concrete composite truss structure Download PDF

Info

Publication number
JP3549753B2
JP3549753B2 JP34811798A JP34811798A JP3549753B2 JP 3549753 B2 JP3549753 B2 JP 3549753B2 JP 34811798 A JP34811798 A JP 34811798A JP 34811798 A JP34811798 A JP 34811798A JP 3549753 B2 JP3549753 B2 JP 3549753B2
Authority
JP
Japan
Prior art keywords
concrete
steel plate
steel
rod
shaped member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34811798A
Other languages
Japanese (ja)
Other versions
JP2000170263A (en
Inventor
弘 新保
和人 上迫田
正人 山村
剛啓 日紫喜
耕輔 古市
陽兵 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP34811798A priority Critical patent/JP3549753B2/en
Publication of JP2000170263A publication Critical patent/JP2000170263A/en
Application granted granted Critical
Publication of JP3549753B2 publication Critical patent/JP3549753B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Joining Of Building Structures In Genera (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼・コンクリート複合トラス橋梁などにおける鋼・コンクリート複合トラス構造物の格点構造に関するものである。
【0002】
【従来の技術】
橋梁における施工の合理化、工期の短縮、コストの削減を図るため、従来より主桁自重の軽減化、例えば、主桁を鋼とコンクリートの複合構造とすることや、ウエブに鋼材を用い、主桁自重の大幅な軽量化を行うことがなされている。
【0003】
ここでPC箱桁橋のウェブをトラス構造とした例をもとに具体的に説明すると、図3は外ケーブル3と内ケーブル4とによるPC橋梁1の主桁2の上側床版5と下側床版6を棒状部材7で結合したトラスウエブ構造による主桁を示している。
【0004】
このような鋼・コンクリート複合トラス橋梁での接合方法としては、従来行われているような、鋳鋼埋設やボルト接合等による鋼材主体の接合方法や高強度鉄筋等を利用した鉄筋コンクリート主体の接合方法がある。
【0005】
【発明が解決しようとする課題】
しかし、鋼材主体の接合方法では使用鋼材が多くなり、また、据え付け精度を確保するために施工手間が増えることからコストが高くなる。一方、コンクリート主体の接合方法では配筋が密になり、格点部の寸法も大きくなるため設計上の制約やコストの上昇が避けられない。
【0006】
本発明の目的は前記従来例の不都合を解消し、鋼材量が少なく、かつ、小型の格点構造とすることができ、施工性もよく、安価に施工できる鋼・コンクリート複合トラス構造物の格点構造を提供することにある。
【0007】
【課題を解決するための手段】
本発明は前記目的を達成するため、第1に、床版内に埋設した、棒状部材の挿入面が円形または楕円形に開口するリング鋼板の内部に、引張側および圧縮側の棒状部材を挿入して、これら棒状部材とリング鋼板とをコンクリートで一体化したこと、第2に、リング鋼板はコンクリートとのせん断力伝達性能を向上させるスタットジベル、穴あき鋼板ジベル等の異形加工を施すこと、第3に、棒状部材の端部を、リング鋼板に設ける底板に結合すること、第4に、リング鋼板に挿入される棒状部材の周面にジベルを形成することを要旨とするものである。
【0008】
リング鋼板が有するコンクリートの拘束効果について説明すると、コンクリートは鋼材等の部材により周面からの拘束を受けると、その強度・靱性・剛性が大きく向上することが知られている。その度合いは、コンクリートを拘束する部分の断面を円形もしくは楕円形とした場合に、コンクリート内部に応力分布が均質化されることにより、特に著しい。
【0009】
この拘束作用を格点構造に適用し、断面を円形もしくは楕円形に加工したリング鋼板を格点部に設置し、この内部に棒状部材を設置し、リング鋼板内部にコンクリートを充填すると、コンクリート部の支圧・定着性能の向上および棒状部材に生ずる軸力の効果的な伝達が可能となる。
【0010】
請求項1記載の本発明によれば、棒状部材をリング鋼板に挿入した状態で両者をコンクリートにより一体化するため、リング鋼板と棒状部材が相互に両者を囲むコンクリートを拘束する結果となる。これによりコンクリートの強度・靱性・剛性が強化され、棒状部材に生じる軸力が効果的にコンクリートに伝達できる。
【0011】
請求項2記載の本発明によれば、前記作用に加えて、構造系を構成するコンクリートとの付着力を増大する異形加工をリング鋼板に施すことにより、両者間の応力伝達、特にせん断力の伝達効率が向上できる。
【0012】
請求項3記載の本発明によれば、リング鋼板に設ける底板と棒状部材の端部を結合するため、棒状部材に生じる特に引張り応力を構造系全体に効率的に伝達できる。
【0013】
請求項4記載の本発明によれば、リング鋼板内に挿入する棒状部材端部にジベルを設けるため、鋼製ボックス内のコンクリートと棒状部材との付着力が向上し、棒状部材に生ずる軸力を効率的に構造系全体に伝達できる。
【0014】
【発明の実施の形態】
以下、図面について本発明の実施の形態を詳細に説明する。図1は本発明の鋼・コンクリート複合トラス構造物の格点構造の1実施形態を示す縦断側面図、図2は同上要部の平面図で、図3は鋼・コンクリート複合トラス橋梁に本発明構造を採用した場合を示している。
【0015】
図1はPC箱桁橋の主桁2のウェブにトラスを用いた構造としたもので、図中6はコンクリート部材である下側床版(図3参照)で、この下側床版6内に円形または楕円形の断面形状を有するリング鋼板8を埋設した。なお、リング鋼板8は底板8cを設けたものでもよい。
【0016】
コンクリートへのせん断力伝達性能を向上するためにリング鋼板8に異形加工を施すが、この異形加工には、スタットジベル、穴あき鋼板ジベル等種々の方法が考えられる。本実施形態ではリング鋼板8に多数の円形孔8aを孔あけにより形成した。
【0017】
なお、孔の形状としては円形以外にもスリット状等多数のものがあり、孔あけの結果、リング鋼板の表裏面に存在するコンクリートが連通すればよい。これによりトラス構造の下側床版6および上側床版5(図3参照)の断面内に生ずるせん断力を効率よく構造系全体に伝達することが可能となる。
【0018】
このリング鋼板8を下側床版6内に埋設することで、下側床版6を構成する主筋(下端筋、上端筋)9の配筋の邪魔になることがあるので、リング鋼板8には横方向のスリット8bを形成しておき、このスリット8b内に主筋9を挿通させることも可能である。
【0019】
前記主桁2のウエブを形成する棒状部材7はこれを円管の鋼管10で形成し、前記リング鋼板8にその上面の開口を介して挿入するが、この鋼管10はその挿入部分またはその近傍にジベルを設けている。鋼管10は円管以外の矩形断面のものや、H型、I型の各種型鋼を用いてもよい。さらに棒状部材7の材質については、コンクリート製、鉄筋コンクリート製、プレストレスコンクリート製等、設計に最適な材料を選択できる。
【0020】
鋼管10による棒状部材7はαが引張側、βが圧縮側となるが、前記のごとくリング鋼板8は底板8cを設けた場合は引張側αの棒状部材7は底板8cに溶接またはボルト止めで結合することで定着する。
【0021】
また、これら引張側αや圧縮側βの棒状部材7に設けるジベルの設置方法もスタッドジベル等種々あるが、ここでは鋼管10の軸方向とほぼ直交する方向に鉄筋11を溶接して形成した。
【0022】
さらに圧縮側βの棒状部材7の先端に鉄筋継手12を溶接して、その先端部は棒状部材7の先端よりも突出させた。これは圧縮材に引張力が生じた場合に急激な破壊を起こさないためである。
【0023】
一般に、小径の鋼管内周面に多数のジベルを設けるとジベル間隔が密となり場合により施工に不都合が生ずることがあるが、このように鋼管10の軸方向とほぼ直交する方向に鉄筋11を溶接すると、合理的な間隔を保ってせん断力を伝達する部材となる。
【0024】
圧縮側βの棒状部材7(鋼管10)に作用する軸圧縮力は、格点付近で鋼管内に鉄筋ジベル(鉄筋11)により拘束されたコンクリートに伝達され、鋼管10の端部ではコンクリートの支圧により格点に伝達される。
【0025】
引張側αの棒状部材7(鋼管10)に作用する軸引張力は、鋼管10の端部に設置された鉄筋ジベル(鉄筋11)でリング鋼板8内のコンクリートに伝達される。
【0026】
格点は断面形状が円形または楕円形であるリング鋼板8で拘束されたコンクリートになっているため、剛性が高く、コンクリート強度も高くなるため、圧縮側βの支圧、引張側に定着による荷重に対して効果的に抵抗する。また、棒状部材7−下側床版6間に作用するせん断力は、リング鋼板8に設けられた円形孔8aにより伝達される。
【0027】
前記実施形態はPC箱桁橋の主桁2のウェブにトラスを用いた構造とした場合の下側床版6について説明したが、上側床版5側についてもリング鋼板8を埋設することにより本発明構造の実施が可能である。
【0028】
さらに、PC箱桁橋以外でも本発明は適用でき、例えばスラブと柱部材などの格点構造で棒状部材7が柱部材に該当する場合など同様に実施できる。
【0029】
【発明の効果】
以上述べたように本発明の鋼・コンクリート複合トラス構造物の格点構造は、下記の効果を有するものである。
【0030】
棒状部材に生ずる軸力は圧縮・引張りともにリング鋼板が拘束することにより、その強度、靱性、剛性が増大されたコンクリートに伝達される。
【0031】
また、棒状部材端部をリング鋼板の底板に溶接、またはボルト止め等で結合すること、および棒状部材に端部にジベルを形成することにより、棒状部材とリング鋼板の間、および棒状部材とリング鋼板が拘束するコンクリート間の応力伝達が一層確実なものとなる。さらに、リング鋼板に設けた異形加工によりリング鋼板とコンクリート間のせん断力の伝達も良好となる。
【0032】
その結果、鋼材量が少なく、かつ、小型の格点構造とすることができ、施工性もよく、安価に施工できるものである。
【図面の簡単な説明】
【図1】本発明の鋼・コンクリート複合トラス構造物の格点構造の1実施形態を示す縦断側面図である。
【図2】本発明の鋼・コンクリート複合トラス構造物の格点構造の1実施形態を示す要部の平面図である。
【図3】PC箱桁橋に鋼・コンクリート複合構造物を用いた例を示す斜視図である。
【符号の説明】
1…PC橋梁 2…主桁
3…外ケーブル 4…内ケーブル
5…上側床版 6…下側床版
7…棒状部材 8…リング鋼板
8a…円形孔 8b…スリット
8c…底板
9…主筋 10…鋼管
11…鉄筋 12…鉄筋継手
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a point structure of a steel / concrete composite truss structure in a steel / concrete composite truss bridge or the like.
[0002]
[Prior art]
In order to streamline the construction of bridges, shorten the construction period, and reduce costs, the weight of the main girder has been reduced, for example, by using a composite structure of steel and concrete for the main girder, or by using steel materials for the web, Significant weight savings have been made.
[0003]
Here, a specific description will be given based on an example in which the web of the PC box girder bridge has a truss structure. FIG. 3 shows that the upper girder 5 and the lower girder 2 of the main girder 2 of the PC bridge 1 by the outer cable 3 and the inner cable 4. The main girder having the truss web structure in which the side slabs 6 are connected by the rod-shaped members 7 is shown.
[0004]
As such joining methods for steel / concrete composite truss bridges, there are conventional joining methods mainly using steel materials such as burying cast steel and bolting, and joining methods mainly using reinforced concrete using high-strength rebar. is there.
[0005]
[Problems to be solved by the invention]
However, in the joining method mainly using steel materials, the number of steel materials to be used increases, and more work is required to secure the installation accuracy, resulting in higher costs. On the other hand, in the concrete-based joining method, the reinforcing bars are densely arranged and the dimensions of the points are large, so that design restrictions and cost increases are inevitable.
[0006]
SUMMARY OF THE INVENTION An object of the present invention is to solve the disadvantages of the conventional example, reduce the amount of steel material, and provide a small-scale structure with a small size, good workability, and a low-cost steel-concrete composite truss structure. It is to provide a point structure.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention firstly inserts a tension-side and a compression-side rod-like member into a ring steel plate embedded in a floor slab and having a circular or elliptical insertion surface for the rod-like member. Then , these rod-shaped members and the ring steel plate are integrated with concrete, and secondly, the ring steel plate is subjected to deforming such as a stat dowel, a perforated steel plate dowel for improving the shear force transmission performance with the concrete, Third, the end of the rod-shaped member is connected to a bottom plate provided on the ring steel plate, and fourthly, a dovetail is formed on the peripheral surface of the rod-shaped member inserted into the ring steel plate.
[0008]
Explaining the restraining effect of the concrete that the ring steel plate has, it is known that the strength, toughness, and rigidity of the concrete are greatly improved when the concrete is restrained from the peripheral surface by a member such as a steel material. The degree is particularly remarkable when the cross section of the portion for restraining the concrete is circular or elliptical, because the stress distribution is homogenized inside the concrete.
[0009]
Applying this restraining action to the point structure, a ring steel plate with a circular or elliptical cross section is installed at the point, a bar-shaped member is installed inside this, and concrete is filled inside the ring steel plate, And the transmission of the axial force generated in the rod-shaped member can be effectively performed.
[0010]
According to the first aspect of the present invention, since the rod-shaped member is inserted into the ring steel plate and the two are integrated with concrete, the ring steel plate and the rod-shaped member restrain concrete surrounding both. Thereby, the strength, toughness, and rigidity of the concrete are enhanced, and the axial force generated in the rod-shaped member can be effectively transmitted to the concrete.
[0011]
According to the present invention as set forth in claim 2, in addition to the above-mentioned actions, by performing deforming processing on the ring steel plate to increase the adhesive force with the concrete constituting the structural system, stress transmission between the two, especially shear force. Transmission efficiency can be improved.
[0012]
According to the third aspect of the present invention, since the bottom plate provided on the ring steel plate is connected to the end of the rod-shaped member, particularly the tensile stress generated in the rod-shaped member can be efficiently transmitted to the entire structural system.
[0013]
According to the fourth aspect of the present invention, since the dowel is provided at the end of the rod-shaped member inserted into the ring steel plate, the adhesive force between the concrete in the steel box and the rod-shaped member is improved, and the axial force generated on the rod-shaped member is improved. Can be efficiently transmitted to the entire structural system.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal sectional side view showing an embodiment of a point structure of a steel / concrete composite truss structure of the present invention, FIG. 2 is a plan view of a main part of the same, and FIG. The case where the structure is adopted is shown.
[0015]
FIG. 1 shows a structure in which a truss is used for the web of the main girder 2 of the PC box girder bridge. In FIG. 1, reference numeral 6 denotes a lower slab (see FIG. 3) which is a concrete member. A ring steel plate 8 having a circular or elliptical cross-sectional shape was embedded therein. The ring steel plate 8 may be provided with a bottom plate 8c.
[0016]
The ring steel plate 8 is deformed in order to improve the performance of transmitting the shearing force to the concrete, and various methods such as a stat dowel, a perforated steel plate dowel, etc. can be used for this deforming. In this embodiment, a large number of circular holes 8a are formed in the ring steel plate 8 by drilling.
[0017]
In addition, there are many shapes such as slits as well as circular shapes as holes, and as a result of drilling, the concrete existing on the front and back surfaces of the ring steel plate may be connected. This makes it possible to efficiently transmit the shearing force generated in the cross sections of the lower slab 6 and the upper slab 5 (see FIG. 3) of the truss structure to the entire structural system.
[0018]
By embedding the ring steel plate 8 in the lower floor slab 6, the main steel bar (lower-end bar, upper-end bar) 9 constituting the lower floor slab 6 may hinder the arrangement of the bars. It is also possible to form a slit 8b in the horizontal direction, and insert the main bar 9 into this slit 8b.
[0019]
The bar-like member 7 forming the web of the main girder 2 is formed by a circular steel pipe 10 and is inserted into the ring steel plate 8 through an opening on the upper surface thereof. Has a dowel. The steel pipe 10 may have a rectangular cross section other than a circular pipe, or various types of H-shaped or I-shaped steel. Further, as for the material of the rod-shaped member 7, it is possible to select a material most suitable for the design, such as a product made of concrete, a product made of reinforced concrete, and a product made of prestressed concrete.
[0020]
Α is the tension side and β is the compression side of the rod-shaped member 7 made of the steel pipe 10. As described above, when the ring steel plate 8 is provided with the bottom plate 8c, the rod-shaped member 7 on the tension side α is welded or bolted to the bottom plate 8c. Establish by bonding.
[0021]
In addition, there are various methods of installing the dowels provided on the rod members 7 on the tensile side α and the compressive side β, such as stud dowels. Here, the reinforcing bar 11 is formed by welding the reinforcing bar 11 in a direction substantially orthogonal to the axial direction of the steel pipe 10.
[0022]
Further, a reinforcing bar joint 12 was welded to the distal end of the rod member 7 on the compression side β, and the distal end portion was made to protrude beyond the distal end of the rod member 7. This is to prevent sudden breakage when a tensile force is generated in the compressed material.
[0023]
In general, if a large number of dowels are provided on the inner peripheral surface of a small-diameter steel pipe, the dowel spacing becomes tight, which may cause inconvenience in construction. Then, it becomes a member that transmits the shearing force at a reasonable interval.
[0024]
The axial compressive force acting on the rod-shaped member 7 (steel pipe 10) on the compression side β is transmitted to the concrete confined by the reinforcing steel dowel (reinforcing bar 11) in the steel pipe in the vicinity of the point, and the concrete support at the end of the steel pipe 10. It is transmitted to the point by pressure.
[0025]
The axial tensile force acting on the rod-shaped member 7 (steel pipe 10) on the tension side α is transmitted to the concrete in the ring steel plate 8 by a reinforcing bar dowel (rebar 11) installed at the end of the steel pipe 10.
[0026]
The grade is concrete constrained by a ring steel plate 8 whose cross section is circular or elliptical, so that rigidity is high and concrete strength is high. Effectively resist. Further, the shearing force acting between the rod-shaped member 7 and the lower floor slab 6 is transmitted by the circular hole 8 a provided in the ring steel plate 8.
[0027]
In the above-described embodiment, the lower slab 6 in which the truss is used for the web of the main girder 2 of the PC box girder bridge is described. Implementation of the inventive structure is possible.
[0028]
Further, the present invention can be applied to other than the PC box girder bridge, and can be similarly implemented, for example, when the bar-shaped member 7 corresponds to a column member in a point structure such as a slab and a column member.
[0029]
【The invention's effect】
As described above, the graded structure of the steel / concrete composite truss structure of the present invention has the following effects.
[0030]
The axial force generated in the rod-shaped member is transmitted to concrete whose strength, toughness, and rigidity are increased by the ring steel plate constraining both compression and tension.
[0031]
In addition, by welding or bolting the end of the rod-shaped member to the bottom plate of the ring steel plate, and forming a dowel at the end of the rod-shaped member, between the rod-shaped member and the ring steel plate, and between the rod-shaped member and the ring. The stress transmission between the concrete constrained by the steel plate is further ensured. Further, the transmission of the shearing force between the ring steel plate and the concrete is improved by the deforming process provided on the ring steel plate.
[0032]
As a result, a small amount of steel material and a small point structure can be obtained, the workability is good, and the work can be performed at low cost.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional side view showing one embodiment of a point structure of a steel / concrete composite truss structure of the present invention.
FIG. 2 is a plan view of a main part showing one embodiment of the point structure of the composite steel / concrete truss structure of the present invention.
FIG. 3 is a perspective view showing an example in which a steel / concrete composite structure is used for a PC box girder bridge.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... PC bridge 2 ... Main girder 3 ... Outer cable 4 ... Inner cable 5 ... Upper floor slab 6 ... Lower floor slab 7 ... Bar-shaped member 8 ... Ring steel plate 8a ... Circular hole 8b ... Slit 8c ... Bottom plate 9 ... Main reinforcement 10 ... Steel pipe
11 ... Reinforcing bar 12 ... Reinforcing bar joint

Claims (4)

床版内に埋設した、棒状部材の挿入面が円形または楕円形に開口するリング鋼板の内部に、引張側および圧縮側の棒状部材を挿入して、これら棒状部材とリング鋼板とをコンクリートで一体化したことを特徴とする鋼・コンクリート複合トラス構造物の格点構造。Insert the tension-side and compression-side bar members inside the ring steel plate with the insertion surface of the bar member opening in a circular or elliptical shape embedded in the floor slab, and integrate these bar members and the ring steel plate with concrete. The point structure of a steel / concrete composite truss structure characterized by the fact that リング鋼板はコンクリートとのせん断力伝達性能を向上させるスタットジベル、穴あき鋼板ジベル等の異形加工を施す請求項1記載の鋼・コンクリート複合トラス構造物の格点構造。The point structure of a steel / concrete composite truss structure according to claim 1, wherein the ring steel plate is subjected to deforming such as a stat dowel or a perforated steel plate dowel for improving the shear force transmission performance with concrete. 棒状部材の端部を、リング鋼板に設ける底板に結合する請求項1または請求項2記載の鋼・コンクリート複合トラス構造物の格点構造。The point structure of the steel / concrete composite truss structure according to claim 1 or 2, wherein an end of the rod-shaped member is connected to a bottom plate provided on the ring steel plate. リング鋼板に挿入される棒状部材の周面にジベルを形成する請求項1ないし請求項3のいずれかに記載の鋼・コンクリート複合トラス構造物の格点構造。The point structure of the steel / concrete composite truss structure according to any one of claims 1 to 3, wherein a dovetail is formed on a peripheral surface of the rod-shaped member inserted into the ring steel plate.
JP34811798A 1998-12-08 1998-12-08 Girder structure of steel-concrete composite truss structure Expired - Lifetime JP3549753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34811798A JP3549753B2 (en) 1998-12-08 1998-12-08 Girder structure of steel-concrete composite truss structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34811798A JP3549753B2 (en) 1998-12-08 1998-12-08 Girder structure of steel-concrete composite truss structure

Publications (2)

Publication Number Publication Date
JP2000170263A JP2000170263A (en) 2000-06-20
JP3549753B2 true JP3549753B2 (en) 2004-08-04

Family

ID=18394867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34811798A Expired - Lifetime JP3549753B2 (en) 1998-12-08 1998-12-08 Girder structure of steel-concrete composite truss structure

Country Status (1)

Country Link
JP (1) JP3549753B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5050228B2 (en) * 2005-11-10 2012-10-17 株式会社横河ブリッジ Ramen bridge construction method with cane member
CN103643625B (en) * 2013-12-29 2015-08-05 长安大学 A kind of steel truss-concrete slab composite beam based on shear connections structure
KR101797988B1 (en) * 2017-02-22 2017-12-13 브릿지테크놀러지(주) Truss through bridge and the construction method thereof
CN110373988A (en) * 2019-07-22 2019-10-25 中铁大桥局集团有限公司 The big segment steel truss girder and manufacturing technology of a kind of band pair purlin
CN111691309B (en) * 2020-07-07 2021-11-05 中交(临沂)建筑科技有限公司 Method for connecting bridge pier and cross beam of bridge

Also Published As

Publication number Publication date
JP2000170263A (en) 2000-06-20

Similar Documents

Publication Publication Date Title
KR101136926B1 (en) Composite beam by prestressed concrete filled tube
JP2000144905A (en) Mixed structural beam
WO2010021428A1 (en) Opening steel composite girder and method for manufacturing the same
KR101396440B1 (en) Hybrid beam with reinforced end portions
JP3549753B2 (en) Girder structure of steel-concrete composite truss structure
JP2007092354A (en) Joint method of pre-cast concrete construction beam-column
US4831800A (en) Beam with an external reinforcement system
KR20150019274A (en) Wide PC beam for slim floor
JP5158947B2 (en) Composite structural beam and building structure having composite structural beam
JP2010084503A (en) Structure and method for joining concrete column and steel-frame beam
KR100767145B1 (en) Construction method of prestressed concrete temporary bridge that can be assembled and dismantled using lateral steel wire
JP4449788B2 (en) Hinge joint structure of RC structural member
JP3549754B2 (en) Girder structure of steel-concrete composite truss structure
KR20110004181A (en) Steel composite girder prestressed by tendon and method of constructing same
KR101752285B1 (en) Hybrid beam with wide PSC lower flange and enlarged section upper flange and structure frame using the same
CN109881777B (en) Assembled high-toughness cement-based composite material beam column joint
JP2007291636A (en) Mixed-structure beam
JP4096534B2 (en) Bridge using external cable
KR102033052B1 (en) Method for constructing truss bridge support with infilled tube using src girder
WO2002018725A1 (en) Crux-bar concrete structure
JP3418606B2 (en) Girder members for PC bridge
KR20080099938A (en) Section shape steel and concrete composition beam
JP4660810B2 (en) Boundary beam damper
JP2006169837A (en) Column-beam joint structure of reinforced concrete construction
KR20150004136A (en) A web member for improving the connection structure of the node connecting of composite truss girder

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160430

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term