JP3549555B2 - Novel pyrene derivative and method for producing the same - Google Patents

Novel pyrene derivative and method for producing the same Download PDF

Info

Publication number
JP3549555B2
JP3549555B2 JP27136093A JP27136093A JP3549555B2 JP 3549555 B2 JP3549555 B2 JP 3549555B2 JP 27136093 A JP27136093 A JP 27136093A JP 27136093 A JP27136093 A JP 27136093A JP 3549555 B2 JP3549555 B2 JP 3549555B2
Authority
JP
Japan
Prior art keywords
group
formula
general formula
compound represented
integer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27136093A
Other languages
Japanese (ja)
Other versions
JPH07101911A (en
Inventor
望 田元
一清 永井
千波矢 安達
洋太 左近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP27136093A priority Critical patent/JP3549555B2/en
Publication of JPH07101911A publication Critical patent/JPH07101911A/en
Application granted granted Critical
Publication of JP3549555B2 publication Critical patent/JP3549555B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、新規ピレン誘導体及びその製造中間体ならびにその製造方法に関し、詳しくは有機電界素子用材料あるいは電子写真用の有機光導電性材料として有用な新規なピレン誘導体及びその製造中間体ならびにその製造方法に関する。
【0002】
【従来の技術】
近年、情報機器の多様化に伴い、液晶やプラズマディスプレイ等に続く新たな平面表示素子として、低消費電力でかつ高い発光輝度を有し、自己発光型であるため鮮明な表示が可能な有機電界発光素子への期待が高まっている。有機電界発光素子における素子構成の検討や材料の探索等の多くの研究が行われてきた結果、最近では、10V程度の駆動電圧で1000cd/m以上の高い発光輝度を有する素子が得られている。しかし、連続駆動を行った場合、数時間で輝度の低下と駆動電圧の上昇を引き起こし、実用化する上で十分な耐久性は得られていない。耐久性が低い原因の一つに、素子を構成する有機化合物の結晶化が挙げられる。有機EL素子の実用化のためには耐久性の向上が必要不可欠であり、そのためにはアモルファス状態の安定性や製膜性等に優れた新規な材料の開発が望まれている。
【0003】
【発明が解決しようとする課題】
本発明は、有機電界発光素子用材料として、安定した製膜性と発光性能が長時間にわたって持続する耐久性に優れた電界発光素子用材料として有用な材料、その製造中間体及びその製造方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明者らは、上記課題を解決するため鋭意検討した結果、ある特定な構造を有するピレン誘導体が有効であることを見い出した。
すなわち、本発明によれば、下記一般式(I)(化1)で表わされるピレン誘導体が提供され、
【化1】

Figure 0003549555
(式中、R、R、Rは、それぞれハロゲン原子、シアノ基、ニトロ基、トリフルオロメチル基、アミノ基、アルキル基、アルコキシ基、あるいはアリール基を表わし、lは0〜9の整数、mは0〜4の整数、nは0〜5の整数を表わす。R、R、R、m、nの各々は同一でも異なっていてもよい。)
また、下記一般式(II)(化2)で表わされるジアミノ化合物が提供され、
【化2】
Figure 0003549555
(式中、R、Rは、それぞれハロゲン原子、シアノ基、ニトロ基、トリフルオロメチル基、アミノ基、アルキル基、アルコキシ基、あるいはアリール基を表わし、lは0〜9の整数、mは0〜4の整数を表わす。
但し、R、R、mの各々は同一でも異なっていてもよい。)
また、下記一般式(III)(化3)で表わされるジニトロ化合物が提供される。
【化3】
Figure 0003549555
(式中、R、Rは、それぞれハロゲン原子、シアノ基、ニトロ基、トリフルオロメチル基、アミノ基、置換もしくは無置換のアルキル基、アルコキシ基、あるいはアリール基を表わし、lは0〜9の整数、mは0〜4の整数を表わす。
但し、R、R、mの各々は同一でも異なっていてもよい。)
また、本発明によれば上記一般式(II)(化2)で表わされるジアミン化合物と、下記一般式(IV)(化4)
【化4】
Figure 0003549555
(式中、Xはハロゲン原子を表わし、Rはハロゲン原子、シアノ基、ニトロ基、トリフルオロメチル基、アミノ基、アルキル基、アルコキシ基、あるいはアリール基を表わし、nは0〜5の整数を表わす。)で表わされるハロベンゼン化合物とを反応させることを特徴とする、上記一般式(I)(化1)で表わされるピレン誘導体の製造方法が提供され、また、上記一般式(III)(化3)で表わされるジニトロ化合物を還元することを特徴とする、上記一般式(II)(化2)で表わされるジアミン化合物の製造方法が提供され、更には下記一般式(V)(化5)で表わされるアミノピレン化合物と、下記一般式(VI)(化6)で表わされる4’−ハロゲノ−4−ニトロ−1,1’−ビフェニルとを反応させることを特徴とする、上記一般式(III)(化3)で表わされるジニトロ化合物の製造方法が提供される。
【化5】
Figure 0003549555
(式中、Rはハロゲン原子、シアノ基、ニトロ基、トリフルオロメチル基、アミノ基、置換もしくは無置換のアルキル基、アルコキシ基、あるいはアリール基を表わし、lは0〜9の整数を表わす。)
【化6】
Figure 0003549555
(式中、Yはハロゲン原子を表わし、Rはハロゲン原子、シアノ基、ニトロ基、アミノ基、アルキル基、アルコキシ基、あるいはアリール基を表わし、mは0〜4の整数を表わす。)
【0005】
前記一般式(I)(化1)及び一般式(II)(化2)、一般式(III)(化3)、一般式(IV)(化4)、一般式(V)(化5)、一般式(VI)(化6)におけるR、R、Rとしては、具体的には以下のものが挙げられる。
(1)水素原子、ハロゲン原子、シアノ基、ニトロ基、トリフルオロメチル基
(2)アルキル基;好ましくはC〜CとりわけC〜Cの直鎖または分岐鎖のアルキル基である。
(3)アリール基;芳香族炭化水素基あるいは芳香族複素環基であり、フェニル、ビフェニル、ターフェニル、ナフチル、アントリル、アセナフテニル、フルオレニル、フェナントリル、インデニル、ピレニル、ピリジル、ピリミジル、フラニル、ピロニル、チオフェニル、キノリル、ベンゾフラニル、ベンゾチオフェニル、インドリル、カルバゾリル、ベンゾオキサゾリル、キノキサリル、ベンゾイミダゾリル、ピラゾリル、ジベンゾフラニル、ジベンゾチオフェニル等を表わす。
さらにこれらのアリール基は、ハロゲン原子、水酸基、シアノ基、トリフルオロメチル基、ニトロ基、アルキル基、アルコキシ基、アミノ基等で置換されていても良い。
(4)アルコキシ基(−OR);Rは(2)に定義したアルキル基を示す。
(5)−NR;式中R及びRは各々独立に水素原子、(2)で定義したアルキル基、アセチル基、べンゾイル基等のアシル基、または(3)で定義したアリール基を表わし、またピペリジル基、モルホリル基のように、RとRが窒素原子と共同で環を形成してもよい。またユロリジル基のようにアリール基上の炭素原子と共同で環を形成してもよい。
【0006】
本発明の前記一般式(化1)で表わされる有機化合物の具体例を次の表1に示す。
【表1−(1)】
Figure 0003549555
【表1−(2)】
Figure 0003549555
【0007】
本発明における前記一般式(I)(化1)で表わされるピレン誘導体及びその原料である前記一般式(II)(化2)で示されるジアミノ化合物並びに前記一般式(III)(化3)で示されるジニトロ化合物はいずれも新規物質であり、下記の方法によって製造することができる。
【0008】
すなわち、前記一般式(I)で表わされるピレン化合物は、前記一般式(II)(化2)で示されるジアミノ化合物と前記一般式(IV)(化4)で示されるハロベンゼン化合物とを、銅粉、酸化銅あるいはハロゲン化銅等の存在下に、縮合反応中に生じるハロゲン化水素を中和するのに十分な量のアルカリ塩を加え、溶媒の存在下あるいは無溶媒下で窒素雰囲気下において150〜250℃程度の温度で反応させることによって製造することができる。
この場合、アルカリ塩としては、苛性ソーダ、苛性カリウム、炭酸ナトリウム、炭酸カリウム等を挙げることができる。また、反応溶媒としては、ニトロベンゼン、ジクロルベンゼン、キノリン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、N−メチルピロリドン、1,3−ジメチル−2−イミダゾリジン等を挙げることができる。
【0009】
また、、前記一般式(II)で表わされるジアミノ化合物は、前記一般式(III)で表わされるジニトロ化合物を不均一系触媒を用いた水素添加法等で還元することによって製造することができる。不均一系触媒としては、白金化合物、ラネーニッケル、あるいは活性炭、アルミナもしくは硫酸バリウム等に担持された白金、パラジウム、ロジウム、もしくはルテニウム等が用いられる。この系では、反応系を密閉系とし、気相部を一気圧の水素ガスで置換して激しく撹拌することにより反応させる。吸収された量に応じて水素ガスが供給される減圧弁を介して水素ガスを供給する。理論量の水素ガスを吸収した時点で吸収が停止するので、これを反応終了とする。この場合、反応温度は室温で良いが、水素ガスの吸収が遅い場合は加温しても良い。また、反応溶媒には、メタノール、エタノール、プロパノール、テトラヒドロフラン、ジオキサン、酢酸エチル等を使用することができる。
また、他の還元反応としては、鉄−塩酸、塩化第一錫−塩酸等を還元剤として、有機溶媒中で加熱する方法を挙げることができる。この場合、反応温度としては70〜120℃が好ましく、反応は約0.5〜3時間で完成する。なお、鉄−塩酸還元剤を用いた場合は、N,N−ジメチルホルムアミド中で行なうことが好ましい。
【0010】
さらに、前記一般式(III)で示されるジニトロ化合物は前記一般式(V)で表わされるアミノピレン化合物と前記一般式(VI)で表わされる4’−ハロゲノ−4−ニトロ−1,1’−ビフェニルに銅粉あるいはハロゲン化銅等と縮合反応中に生じるハロゲン化水素を中和するのに充分な量のアルカリ塩とを加え、溶媒存在下または無溶媒下で窒素雰囲気中において加熱することによって製造することができる。
この場合、アルカリ塩としては、苛性ソーダ、苛性カリウム、炭酸ナトリウム、炭酸カリウム等を挙げることができる。また、反応溶媒としては、ニトロベンゼン、ジクロルベンゼン、キノリン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、N−メチルピロリドン、1,3−ジメチル−2−イミダゾリジノン等を挙げることができる。
【0011】
本発明で得られる前記一般式(I)で示される新規なピレン誘導体は、上記の通り、縮合反応及び還元反応によって得られるので、工業的に極めて有利である。また、このものは、真空蒸着法や溶液塗布法等によって薄膜化し、陽極及び陰極で直接または間接的に狭持することにより素子を得ることができ、有機電界発光素子の構成成分として極めて有用である。
【0012】
【実施例】
以下、実施例に基づいて、本発明をより具体的に説明する。
実施例1(前記表1の化合物No.4の合成)
N,N−ビス{4’−アミノ(1,1’−ビフェニル)−4−イル}−1−アミノピレン3.60g(6.53ミリモル)、p−ヨードトルエン45.00g(0.21モル)、銅粉0.42g及び炭酸カリウム7.22gを窒素気流下、エステル管で共沸脱水しながら、211〜212℃で59時間撹拌した。室温まで放冷後、セライトを用いて濾過し、瀘液にクロロホルムを加え、クロロホルム層を水洗し、次いで硫酸マグネシウムで乾燥し、更に減圧濃縮して、暗褐色の油状物を得た。これをトルエンとn−ヘキサンの混合溶媒から再結晶を行い、瀘液を数回にわたってシリカゲルカラム精製(トルエン/N−ヘキサン(1:1)混合溶媒及びトルエン/シクロヘキサン(1:2)混合溶媒)することによって、黄色結晶の下記構造式(VII)に示されるピレン化合物1.34g(収率22.3%)を得た。
【化7】
Figure 0003549555
またこの元素分析値はC6853として下記の通りであった。
Figure 0003549555
この化合物の赤外線吸収スペクトル(KBr錠剤法)を図1に示す。
【0013】
実施例2(N,N−ビス{4’−アミノ(1,1’−ビフェニル)−4−イル}−1−アミノピレンの合成)
N,N−ビス{4’−ニトロ(1,1’−ビフェニル)−4−イル}−1−アミノピレン4.15g(6.78ミリモル)をテトラヒドロフラン83mlに溶かし、これに5%パラジウム−炭素0.42gを加えて、室温16℃、水素圧一気圧で振とう式水素化装置にて水素化を行った。水素化終了後セライトを用いて濾過し、瀘液を減圧濃縮して粗収物を得た。これをシリカゲルカラム処理(トルエン/酢酸エチル(1:2)混合溶媒)し、メタノールで還流攪拌して、下記構造式(VIII)で示されるジアミノ化合物3.64g(収率98.4%)を得た。
【化8】
Figure 0003549555
得られた化合物の元素分析値はC4029として下記の通りであった。
Figure 0003549555
この化合物の赤外線吸収スペクトル(KBr錠剤法)を図2に示す。
【0014】
実施例3(N,N−ビス{4’−ニトロ(1,1’−ビフェニル)−4−イル}−1−アミノピレンの合成)
1−アミノピレン3.00g(13.81ミリモル)、4’−ヨード−4−ニトロ−1,1’−ビフェニル8.98g(27.62ミリモル)、銅粉0.88g及び炭酸カリウム15.27gにニトロベンゼン75mlを加え、窒素気流下、エステル管で共沸脱水しながら、205℃で6時間攪拌した。室温まで放冷後、セライトを用いて濾過し、瀘液から減圧下にてニトロベンゼンを留去した後、残渣物をクロロホルムで抽出、水洗し、硫酸マグネシウムによる乾燥後減圧濃縮して粗収物を得た。これをシリカゲルカラム処理(トルエン)し、エタノール/トルエン混合溶媒から再結晶して下式に示されるジニトロ化合物4.25g(収率50.3%)を得た。融点は263.0〜264.0℃であった。
【化9】
Figure 0003549555
またこの化合物の元素分析値はC4025として下記の通りであった。
Figure 0003549555
この化合物の赤外線吸収スペクトル(KBr錠剤法)を図3に示す。
【0015】
実施例4(前記表1の化合物No.2の合成)
N,N−ビス{4’−アミノ(1,1’−ビフェニル)−4−イル}−1−アミノピレン5.00g(9.06ミリモル)、オルトヨ−ドトルエン55.00g(0.25モル)、銅粉0.58g及び炭酸カリウム10.02gを窒素気流下、エステル管で共沸脱水しながら、203〜204℃で53時間撹拌した。室温まで放冷後、セライトを用いて濾過し、濾液を減圧濃縮した後クロロホルムにて溶解し、クロロホルム層を水洗した。次いで硫酸マグネシウムで乾燥し、減圧濃縮して、黄褐色の油状物を得た。これを数回にわたりシリカゲルカラム精製(トルエン/シクロヘキサン(1:2)混合溶媒)を用い、メタノール洗浄を行うことによって黄色粉末の下式に示されるアミノピレン化合物4.65g(収率56.3%)を得た。融点は187.0〜197.0℃であった。
【化10】
Figure 0003549555
また、この元素分析値はC6853として下記の通りであった。
Figure 0003549555
この化合物の赤外吸収スペクトル(KBr錠剤法)を図4に示す。
【0016】
実施例5(前記表1の化合物No.10の合成)
N,N−ビス{4’−アミノ(1,1’−ビフェニル)−4−イル}−1−アミノピレン4.70g(8.52ミリモル)、4−ヨ−ドアニソール50.00g(0.21モル)、銅粉0.54g及び炭酸カリウム9.42gを窒素気流下、エステル管で共沸脱水しながら、214〜215℃で44時間撹拌した。室温まで放冷後、セライトを用いて濾過し、濾液を減圧濃縮した後クロロホルムにて溶解し、クロロホルム層を水洗した。次いで硫酸マグネシウムで乾燥し、減圧濃縮して、赤褐色の油状物を得た。これをシリカゲルカラム精製(トルエン)し、酢酸エチルとエタノールの混合溶媒から再沈殿を行い、メタノール洗浄を行うことによって黄色粉末の下式に示されるアミノピレン化合物5.25g(収率63.3%)を得た。融点は168.0〜178.0であった。
【化11】
Figure 0003549555
また、この元素分析値はC6853として下記の通りであった。
Figure 0003549555
この化合物の赤外吸収スペクトル(KBr錠剤法)を図5に示す。
【0017】
応用例1
表面抵抗20Ω/□のITO陽極を有するガラス基板上に下記構造式(XII)(化12)で示されるトリフェニルアミン誘導体より成る厚さ40nmのホール輸送層、前記表1の化合物No.4より成る厚さ15nmの発光層、下記構造式(XIII)(化13)で示されるオキサジアゾール誘導体より成る厚さ20nmの電子輸送層、下記構造式(XIV)(化14)で示されるAlqより成る厚さ25nmの電子注入層、原子比10:1のMgAg合金より成る厚さ200nmの陰極を順次真空蒸着により積層して、電界発光素子を作製した。蒸着時の真空度は約0.7×10−6Torrであり、基板温度は室温である。
この様にして作製した素子の陽極及び陰極にリード線を介して直流電源を接続したところ、電流密度100mA/cmにおいて印加電圧が9.7Vであり、緑色の明瞭な発光が長時間にわたって確認された。この時の発光波長は、502nmにピークを有し、輝度は1150cd/mであった。なお、この素子は一か月室温保存後においても明瞭な発光が認められた。
【化12】
Figure 0003549555
【化13】
Figure 0003549555
【化14】
Figure 0003549555
【0018】
応用例2
表面抵抗20Ω/□のITO陽極を有するガラス基板上に前記構造式(XII)(化12)で示されるトリフェニルアミン誘導体より成る厚さ40nmのホール輸送層、前記表1の化合物No.2より成る厚さ15nmの発光層、前記構造式(XIII)(化13)で示されるオキサジアゾール誘導体より成る厚さ20nmの電子輸送層、前記構造式(XIV)(化14)で示されるAlqより成る厚さ25nmの電子注入層、原子比10:1のMgAg合金より成る厚さ200nmの陰極を順次真空蒸着により積層して、電界発光素子を作製した。蒸着時の真空度は約0.7×10−6Torrであり、基板温度は室温である。
この様にして作製した素子の陽極及び陰極にリード線を介して直流電源を接続したところ、電流密度100mA/cmにおいて印加電圧が9.0Vであり、緑色の明瞭な発光が長時間にわたって確認された。この時の発光波長は、500nmにピークを有し、輝度は1700cd/mであった。なお、この素子は一か月室温保存後においても明瞭な発光が認められた。
【0019】
応用例3
表面抵抗20Ω/□のITO陽極を有するガラス基板上に前記構造式(XII)(化12)で示されるトリフェニルアミン誘導体より成る厚さ40nmのホール輸送層、前記表1の化合物No.10より成る厚さ15nmの発光層、下記構造式(XV)(化15)で示されるオキサジアゾール誘導体より成る厚さ20nmの電子輸送層、前記構造式(XI)(化1)で示されるAlqより成る厚さ25nmの電子注入層、原子比10:1のMgAg合金より成る厚さ200nmの陰極を順次真空蒸着により積層して、電界発光素子を作製した。蒸着時の真空度は約0.7×10−6Torrであり、基板温度は室温である。
この様にして作製した素子の陽極及び陰極にリード線を介して直流電源を接続したところ、電流密度100mA/cmにおいて印加電圧が12.3Vであり、緑色の明瞭な発光が長時間にわたって確認された。この時の発光波長は、521nmにピークを有し、輝度は1000cd/mであった。なお、この素子は一か月室温保存後においても明瞭な発光が認められた。
【化15】
Figure 0003549555
【0020】
〔比較例〕
発光層に前記表1の化合物No.4の代わりに下記構造式(XVI)(化16)で示される化合物を用いた以外は、応用例と同様にして電界発光素子を作製した。この素子を同様にした発光させたところ、青緑色の発光が認められた。しかし、この素子は、一か月室温保存後においては発光は認められなかった。
【化16】
Figure 0003549555
【0021】
【発明の効果】
本発明に係る前記一般式(I)(化1)で示される新規なピレン誘導体は、有機電界発光素子を構成する発光材料あるいはホール輸送材料として良好な製膜性を有し、また低電圧駆動においても長時間にわたって高輝度の発光が可能であり、有機電界発光素子の構成成分として有用な物質である。
【図面の簡単な説明】
【図1】実施例1で得られたピレン化合物の赤外吸収スペクトル図(KBr錠剤法)。
【図2】実施例2で得られたジアミノ化合物の赤外吸収スペクトル図(KBr錠剤法)。
【図3】実施例3で得られたジニトロ化合物の赤外吸収スペクトル図(KBr錠剤法)。
【図4】実施例4で得られたピレン化合物の赤外吸収スペクトル図(KBr錠剤法)。
【図5】実施例5で得られたピレン化合物の赤外吸収スペクトル図(KBr錠剤法)。[0001]
[Industrial applications]
The present invention relates to novel pyrene derivatives and their preparation intermediates and then about the method of manufacturing the same, and more particularly useful novel pyrene derivatives and production intermediate thereof as an organic photoconductive material for the material or an electrophotographic organic electroluminescent element And its manufacturing method.
[0002]
[Prior art]
In recent years, along with the diversification of information equipment, as a new flat display element following liquid crystal and plasma displays, an organic electric field that has low power consumption, high luminous brightness, and is self-luminous, enabling clear display Expectations for light-emitting elements are increasing. As a result of much research such as examination of the element configuration and search for materials in organic electroluminescent elements, recently, an element having a high emission luminance of 1000 cd / m 2 or more at a driving voltage of about 10 V has been obtained. I have. However, when continuous driving is performed, the brightness is reduced and the driving voltage is increased within several hours, and sufficient durability for practical use has not been obtained. One of the causes of low durability is crystallization of the organic compound constituting the device. Improvement of durability is indispensable for practical use of organic EL elements, and for that purpose, development of a new material excellent in stability in an amorphous state, film forming property, and the like is desired.
[0003]
[Problems to be solved by the invention]
The present invention provides, as a material for an organic electroluminescent device, a material useful as a material for an electroluminescent device having excellent durability in which a stable film-forming property and luminous performance are maintained for a long time, a production intermediate thereof, and a production method thereof. To provide.
[0004]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a pyrene derivative having a specific structure is effective.
That is, according to the present invention, there is provided a pyrene derivative represented by the following general formula (I):
Embedded image
Figure 0003549555
(Wherein, R 1, R 2, R 3 represents respectively halogen atom, a cyano group, a nitro group, a trifluoromethyl group, an amino group, an alkyl group, an alkoxy group or an aryl group,, l is 0-9 And m represents an integer of 0 to 4 and n represents an integer of 0 to 5. Each of R 1 , R 2 , R 3 , m, and n may be the same or different.)
Also provided is a diamino compound represented by the following general formula (II):
Embedded image
Figure 0003549555
(Wherein, R 1, R 2 are each a halogen atom, a cyano group, a nitro group, a trifluoromethyl group, an amino group, an alkyl group, an alkoxy group or an aryl group,, l is an integer from 0 to 9, m represents an integer of 0 to 4.
However, each of R 1 , R 2 , and m may be the same or different. )
Also provided is a dinitro compound represented by the following general formula (III).
Embedded image
Figure 0003549555
(Wherein, R 1 and R 2 each represent a halogen atom, a cyano group, a nitro group, a trifluoromethyl group, an amino group, a substituted or unsubstituted alkyl group, an alkoxy group, or an aryl group; An integer of 9 and m represents an integer of 0 to 4.
However, each of R 1 , R 2 , and m may be the same or different. )
Further, according to the present invention, a diamine compound represented by the above general formula (II) (Chemical formula 2) and a diamine compound represented by the following general formula (IV) (Chemical formula 4)
Embedded image
Figure 0003549555
(Wherein, X represents a halogen atom, R 3 represents a halogen atom, a cyano group, a nitro group, a trifluoromethyl group, an amino group, an alkyl group, an alkoxy group, or an aryl group, n represents 0 to 5 A method for producing a pyrene derivative represented by the above general formula (I), which is characterized by reacting with a halobenzene compound represented by the following general formula (I). A process for producing a diamine compound represented by the above general formula (II) (Chemical formula 2) is provided, which comprises reducing a dinitro compound represented by the following chemical formula (3). Wherein the aminopyrene compound represented by 5) is reacted with 4′-halogeno-4-nitro-1,1′-biphenyl represented by the following general formula (VI) (formula 6). Method for producing a dinitro compound represented by general formula (III) (Formula 3) is provided.
Embedded image
Figure 0003549555
(In the formula, R 1 represents a halogen atom, a cyano group, a nitro group, a trifluoromethyl group, an amino group, a substituted or unsubstituted alkyl group, an alkoxy group, or an aryl group, and 1 represents an integer of 0 to 9. .)
Embedded image
Figure 0003549555
(Wherein, Y represents a halogen atom, R 2 represents a halogen atom, a cyano group, a nitro group, an amino group, an alkyl group, an alkoxy group or an aryl group,, m represents an integer of 0 to 4.)
[0005]
Formula (I) (Formula 1) and Formula (II) (Formula 2), Formula (III) (Formula 3), Formula (IV) (Formula 4), Formula (V) (Formula 5) Specific examples of R 1 , R 2 , and R 3 in the general formula (VI) (Formula 6) include the following.
(1) A hydrogen atom, a halogen atom, a cyano group, a nitro group , and a trifluoromethyl group .
(2) an alkyl group; preferably a C 1 -C 6, especially a C 1 -C 4 linear or branched alkyl group.
(3) aryl group; an aromatic hydrocarbon group or an aromatic heterocyclic group, which is phenyl, biphenyl, terphenyl, naphthyl, anthryl, acenaphthenyl, fluorenyl, phenanthryl, indenyl, pyrenyl, pyridyl, pyrimidyl, furanyl, pyronyl, thiophenyl Quinolyl, benzofuranyl, benzothiophenyl, indolyl, carbazolyl, benzoxazolyl, quinoxalyl, benzimidazolyl, pyrazolyl, dibenzofuranyl, dibenzothiophenyl and the like.
Further, these aryl groups may be substituted with a halogen atom, a hydroxyl group, a cyano group, a trifluoromethyl group, a nitro group, an alkyl group, an alkoxy group, an amino group, or the like.
(4) alkoxy group (—OR 4 ); R 4 represents the alkyl group defined in (2).
(5) —NR 5 R 6 ; wherein R 5 and R 6 are each independently a hydrogen atom, an acyl group such as an alkyl group, an acetyl group, or a benzoyl group defined in (2), or a group defined in (3). It represents an aryl group, and R 5 and R 6 may form a ring together with a nitrogen atom like a piperidyl group and a morpholyl group. Moreover, you may form a ring together with the carbon atom on an aryl group like a urolidyl group.
[0006]
Specific examples of the organic compound represented by the general formula (Formula 1) of the present invention are shown in Table 1 below.
[Table 1- (1)]
Figure 0003549555
[Table 1- (2)]
Figure 0003549555
[0007]
In the present invention, the pyrene derivative represented by the general formula (I) (Chemical formula 1) and the diamino compound represented by the general formula (II) (Chemical formula 2) which is a raw material thereof and the pyrene derivative represented by the general formula (III) (Chemical formula 3) The dinitro compounds shown are all novel substances and can be produced by the following method.
[0008]
That is, the pyrene compound represented by the general formula (I) is obtained by converting a diamino compound represented by the general formula (II) (formula 2) and a halobenzene compound represented by the general formula (IV) (formula 4) to copper In the presence of powder, copper oxide or copper halide, add an alkali salt in an amount sufficient to neutralize the hydrogen halide generated during the condensation reaction, and in a nitrogen atmosphere in the presence or absence of a solvent. It can be produced by reacting at a temperature of about 150 to 250 ° C.
In this case, examples of the alkali salt include caustic soda, caustic potassium, sodium carbonate, potassium carbonate and the like. Examples of the reaction solvent include nitrobenzene, dichlorobenzene, quinoline, N, N-dimethylformamide, dimethylsulfoxide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidine and the like.
[0009]
The diamino compound represented by the general formula (II) can be produced by reducing the dinitro compound represented by the general formula (III) by a hydrogenation method using a heterogeneous catalyst. As the heterogeneous catalyst, a platinum compound, Raney nickel, platinum, palladium, rhodium, ruthenium, or the like supported on activated carbon, alumina, barium sulfate, or the like is used. In this system, the reaction system is a closed system, and the gas phase is replaced with hydrogen gas at 1 atm and the reaction is carried out by vigorous stirring. Hydrogen gas is supplied through a pressure reducing valve to which hydrogen gas is supplied in accordance with the absorbed amount. Since the absorption stops when the theoretical amount of hydrogen gas has been absorbed, this is regarded as the end of the reaction. In this case, the reaction temperature may be room temperature, but if the absorption of hydrogen gas is slow, heating may be performed. Further, as a reaction solvent, methanol, ethanol, propanol, tetrahydrofuran, dioxane, ethyl acetate and the like can be used.
As another reduction reaction, a method of heating in an organic solvent using iron-hydrochloric acid, stannous chloride-hydrochloric acid or the like as a reducing agent can be exemplified. In this case, the reaction temperature is preferably from 70 to 120 ° C, and the reaction is completed in about 0.5 to 3 hours. When an iron-hydrochloric acid reducing agent is used, it is preferable to carry out the reaction in N, N-dimethylformamide.
[0010]
Further, the dinitro compound represented by the general formula (III) includes an aminopyrene compound represented by the general formula (V) and a 4′-halogeno-4-nitro-1,1′-biphenyl represented by the general formula (VI). By adding copper powder or copper halide to an alkali salt sufficient to neutralize the hydrogen halide generated during the condensation reaction, and heating in a nitrogen atmosphere in the presence or absence of a solvent. can do.
In this case, examples of the alkali salt include caustic soda, caustic potassium, sodium carbonate, potassium carbonate and the like. Examples of the reaction solvent include nitrobenzene, dichlorobenzene, quinoline, N, N-dimethylformamide, dimethylsulfoxide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, and the like.
[0011]
The novel pyrene derivative represented by the general formula (I) obtained in the present invention is industrially extremely advantageous because it is obtained by a condensation reaction and a reduction reaction as described above. In addition, this can be thinned by a vacuum deposition method or a solution coating method, and can be obtained by directly or indirectly sandwiching the anode and the cathode to obtain an element, which is extremely useful as a component of an organic electroluminescent element. is there.
[0012]
【Example】
Hereinafter, the present invention will be described more specifically based on examples.
Example 1 (Synthesis of Compound No. 4 in Table 1)
N, N-bis {4'-amino (1,1'-biphenyl) -4-yl} -1-aminopyrene 3.60 g (6.53 mmol), p-iodotoluene 45.00 g (0.21 mol) , 0.42 g of copper powder and 7.22 g of potassium carbonate were stirred at 211 to 212 ° C for 59 hours while azeotropically dehydrating with an ester tube under a nitrogen stream. After allowing to cool to room temperature, the mixture was filtered using celite, chloroform was added to the filtrate, the chloroform layer was washed with water, dried over magnesium sulfate, and further concentrated under reduced pressure to obtain a dark brown oil. This was recrystallized from a mixed solvent of toluene and n-hexane, and the filtrate was purified several times with a silica gel column (a mixed solvent of toluene / N-hexane (1: 1) and a mixed solvent of toluene / cyclohexane (1: 2)). As a result, 1.34 g (yield: 22.3%) of a pyrene compound represented by the following structural formula (VII) as yellow crystals was obtained.
Embedded image
Figure 0003549555
The elementary analysis value was as follows, as C 68 H 53 N 3 .
Figure 0003549555
FIG. 1 shows the infrared absorption spectrum (KBr tablet method) of this compound.
[0013]
Example 2 (Synthesis of N, N-bis {4′-amino (1,1′-biphenyl) -4-yl} -1-aminopyrene)
4.15 g (6.78 mmol) of N, N-bis {4′-nitro (1,1′-biphenyl) -4-yl} -1-aminopyrene was dissolved in 83 ml of tetrahydrofuran, and 5% palladium-carbon After adding .42 g, hydrogenation was carried out with a shaking hydrogenation apparatus at room temperature of 16 ° C. and a hydrogen pressure of 1 atm. After completion of the hydrogenation, the mixture was filtered using celite, and the filtrate was concentrated under reduced pressure to obtain a crude product. This was treated with a silica gel column (toluene / ethyl acetate (1: 2) mixed solvent) and stirred under reflux with methanol to give 3.64 g (yield 98.4%) of a diamino compound represented by the following structural formula (VIII). Obtained.
Embedded image
Figure 0003549555
The elemental analysis value of the obtained compound was as follows as C 40 H 29 N 3 .
Figure 0003549555
FIG. 2 shows the infrared absorption spectrum (KBr tablet method) of this compound.
[0014]
Example 3 (Synthesis of N, N-bis {4'-nitro (1,1'-biphenyl) -4-yl} -1-aminopyrene)
To 3.00 g (13.81 mmol) of 1-aminopyrene, 8.98 g (27.62 mmol) of 4'-iodo-4-nitro-1,1'-biphenyl, 0.88 g of copper powder and 15.27 g of potassium carbonate Nitrobenzene (75 ml) was added, and the mixture was stirred at 205 ° C. for 6 hours while azeotropically dehydrating with an ester tube under a nitrogen stream. After cooling to room temperature, the mixture was filtered using celite, nitrobenzene was distilled off from the filtrate under reduced pressure, the residue was extracted with chloroform, washed with water, dried over magnesium sulfate and concentrated under reduced pressure to obtain a crude product. Obtained. This was treated with a silica gel column (toluene) and recrystallized from an ethanol / toluene mixed solvent to obtain 4.25 g (yield 50.3%) of a dinitro compound represented by the following formula. Melting point was 263.0-264.0 ° C.
Embedded image
Figure 0003549555
The elemental analysis value of this compound was as follows, as C 40 H 25 N 3 O 4 .
Figure 0003549555
FIG. 3 shows the infrared absorption spectrum (KBr tablet method) of this compound.
[0015]
Example 4 (Synthesis of Compound No. 2 in Table 1)
5.00 g (9.06 mmol) of N, N-bis {4′-amino (1,1′-biphenyl) -4-yl} -1-aminopyrene, 55.00 g (0.25 mol) of orthoiodotoluene, 0.58 g of copper powder and 10.02 g of potassium carbonate were stirred at 203 to 204 ° C. for 53 hours while azeotropically dehydrating with an ester tube under a nitrogen stream. After cooling to room temperature, the mixture was filtered using Celite, the filtrate was concentrated under reduced pressure, dissolved in chloroform, and the chloroform layer was washed with water. It was then dried over magnesium sulfate and concentrated in vacuo to give a tan oil. This was washed several times using silica gel column purification (a mixed solvent of toluene / cyclohexane (1: 2)) several times and washed with methanol to obtain 4.65 g (yield: 56.3%) of an aminopyrene compound represented by the following formula in yellow powder. Got. Melting point was 187.0-197.0 ° C.
Embedded image
Figure 0003549555
The elemental analysis value was as follows, as C 68 H 53 N 3 .
Figure 0003549555
FIG. 4 shows the infrared absorption spectrum (KBr tablet method) of this compound.
[0016]
Example 5 (Synthesis of Compound No. 10 in Table 1)
4.70 g (8.52 mmol) of N, N-bis {4′-amino (1,1′-biphenyl) -4-yl} -1-aminopyrene, 50.00 g (0.21 mol) of 4-iodoanisole ), 0.54 g of copper powder and 9.42 g of potassium carbonate were stirred at 214 to 215 ° C for 44 hours while azeotropically dehydrating with an ester tube under a nitrogen stream. After cooling to room temperature, the mixture was filtered using Celite, the filtrate was concentrated under reduced pressure, dissolved in chloroform, and the chloroform layer was washed with water. It was then dried over magnesium sulfate and concentrated in vacuo to give a reddish brown oil. This was purified by a silica gel column (toluene), reprecipitated from a mixed solvent of ethyl acetate and ethanol, and washed with methanol to give 5.25 g (yield 63.3%) of an aminopyrene compound represented by the following formula in yellow powder. Got. Melting point was 168.0-178.0.
Embedded image
Figure 0003549555
The elemental analysis value was as follows, as C 68 H 53 N 3 O 4 .
Figure 0003549555
FIG. 5 shows the infrared absorption spectrum (KBr tablet method) of this compound.
[0017]
Application example 1
On a glass substrate having an ITO anode having a surface resistance of 20 Ω / □, a hole transport layer having a thickness of 40 nm made of a triphenylamine derivative represented by the following structural formula (XII) (Formula 12). 4, a 15 nm thick light emitting layer, an oxadiazole derivative represented by the following structural formula (XIII) (formula 13), a 20 nm thick electron transport layer, and a following structural formula (XIV) (formula 14) An electron injection layer having a thickness of 25 nm made of Alq 3 and a cathode having a thickness of 200 nm made of a MgAg alloy having an atomic ratio of 10: 1 were sequentially stacked by vacuum evaporation to manufacture an electroluminescent device. The degree of vacuum during the deposition is about 0.7 × 10 −6 Torr, and the substrate temperature is room temperature.
When a DC power supply was connected to the anode and the cathode of the device fabricated in this manner via a lead wire, the applied voltage was 9.7 V at a current density of 100 mA / cm 2 , and clear green light emission was observed for a long time. Was done. The emission wavelength at this time had a peak at 502 nm and the luminance was 1150 cd / m 2 . In addition, clear light emission was observed even after storage at room temperature for one month.
Embedded image
Figure 0003549555
Embedded image
Figure 0003549555
Embedded image
Figure 0003549555
[0018]
Application example 2
On a glass substrate having an ITO anode having a surface resistance of 20 Ω / □, a hole transport layer having a thickness of 40 nm made of the triphenylamine derivative represented by the structural formula (XII) (Formula 12). 2, a light emitting layer having a thickness of 15 nm, an electron transport layer having a thickness of 20 nm comprising an oxadiazole derivative represented by the structural formula (XIII) (Formula 13), and a chemical formula (XIV) represented by the formula (XIV) An electron injection layer having a thickness of 25 nm made of Alq 3 and a cathode having a thickness of 200 nm made of a MgAg alloy having an atomic ratio of 10: 1 were sequentially stacked by vacuum evaporation to manufacture an electroluminescent device. The degree of vacuum during the deposition is about 0.7 × 10 −6 Torr, and the substrate temperature is room temperature.
When a DC power supply was connected to the anode and the cathode of the device fabricated in this manner via a lead wire, the applied voltage was 9.0 V at a current density of 100 mA / cm 2 , and a clear green light emission was observed for a long time. Was done. The emission wavelength at this time had a peak at 500 nm, and the luminance was 1700 cd / m 2 . In addition, clear light emission was observed even after storage at room temperature for one month.
[0019]
Application example 3
On a glass substrate having an ITO anode having a surface resistance of 20 Ω / □, a hole transport layer having a thickness of 40 nm made of a triphenylamine derivative represented by the structural formula (XII) (Formula 12). Light-emitting layer having a thickness of 15nm made of 10, by the following structural formula (XV) electron transport layer having a thickness of 20nm made of an oxadiazole derivative represented by (Formula 15), the structural formula (XI V) (Formula 1 4) An electron injection layer of 25 nm in thickness made of Alq 3 and a cathode of 200 nm in thickness of MgAg alloy having an atomic ratio of 10: 1 were sequentially laminated by vacuum deposition to produce an electroluminescent device. The degree of vacuum during the deposition is about 0.7 × 10 −6 Torr, and the substrate temperature is room temperature.
When a DC power supply was connected to the anode and the cathode of the device manufactured in this manner via a lead wire, the applied voltage was 12.3 V at a current density of 100 mA / cm 2 , and clear green light emission was observed for a long time. Was done. At this time, the emission wavelength had a peak at 521 nm, and the luminance was 1000 cd / m 2 . In addition, clear light emission was observed even after storage at room temperature for one month.
Embedded image
Figure 0003549555
[0020]
(Comparative example)
The compound No. in Table 1 was added to the light emitting layer. An electroluminescent device was produced in the same manner as in the application example except that the compound represented by the following structural formula (XVI) (Formula 16) was used instead of 4. When the device was made to emit light in the same manner, blue-green light was emitted. However, this device did not emit light after storage at room temperature for one month.
Embedded image
Figure 0003549555
[0021]
【The invention's effect】
The novel pyrene derivative represented by the general formula (I) (formula 1) according to the present invention has a good film-forming property as a luminescent material or a hole transport material constituting an organic electroluminescent device, and has a low voltage drive. Are capable of emitting high-luminance light for a long time, and are useful as constituents of organic electroluminescent devices.
[Brief description of the drawings]
FIG. 1 is an infrared absorption spectrum of the pyrene compound obtained in Example 1 (KBr tablet method).
FIG. 2 is an infrared absorption spectrum of the diamino compound obtained in Example 2 (KBr tablet method).
FIG. 3 is an infrared absorption spectrum of the dinitro compound obtained in Example 3 (KBr tablet method).
FIG. 4 is an infrared absorption spectrum of the pyrene compound obtained in Example 4 (KBr tablet method).
FIG. 5 is an infrared absorption spectrum diagram of a pyrene compound obtained in Example 5 (KBr tablet method).

Claims (6)

下記一般式(I)(化1)で表わされるピレン誘導体。
Figure 0003549555
(式中、R、R、Rは、それぞれハロゲン原子、シアノ基、ニトロ基、トリフルオロメチル基、アミノ基、アルキル基、アルコキシ基、あるいはアリール基を表わし、lは0〜9の整数、mは0〜4の整数、nは0〜5の整数を表わす。R、R、R、m、nの各々は同一でも異なっていてもよい。)
A pyrene derivative represented by the following general formula (I) (formula 1).
Figure 0003549555
(Wherein, R 1, R 2, R 3 represents respectively halogen atom, a cyano group, a nitro group, a trifluoromethyl group, an amino group, an alkyl group, an alkoxy group or an aryl group,, l is 0-9 And m represents an integer of 0 to 4 and n represents an integer of 0 to 5. Each of R 1 , R 2 , R 3 , m, and n may be the same or different.)
下記一般式(II)(化2)で表わされるジアミノ化合物。
Figure 0003549555
(式中、R、Rは、それぞれハロゲン原子、シアノ基、ニトロ基、トリフルオロメチル基、アミノ基、アルキル基、アルコキシ基、あるいはアリール基を表わし、lは0〜9の整数、mは0〜4の整数を表わす。
但し、R、R、mの各々は同一でも異なっていてもよい。)
A diamino compound represented by the following general formula (II) (Formula 2).
Figure 0003549555
(Wherein, R 1, R 2 are each a halogen atom, a cyano group, a nitro group, a trifluoromethyl group, an amino group, an alkyl group, an alkoxy group or an aryl group,, l is an integer from 0 to 9, m represents an integer of 0 to 4.
However, each of R 1 , R 2 , and m may be the same or different. )
下記一般式(III)(化3)で表わされるジニトロ化合物。
Figure 0003549555
(式中、R、Rは、それぞれハロゲン原子、シアノ基、ニトロ基、トリフルオロメチル基、アミノ基、アルキル基、アルコキシ基、あるいはアリール基を表わし、lは0〜9の整数、mは0〜4の整数を表わす。
但し、R、R、mの各々は同一でも異なっていてもよい。)
A dinitro compound represented by the following general formula (III) (Formula 3).
Figure 0003549555
(Wherein, R 1, R 2 are each a halogen atom, a cyano group, a nitro group, a trifluoromethyl group, an amino group, an alkyl group, an alkoxy group or an aryl group,, l is an integer from 0 to 9, m represents an integer of 0 to 4.
However, each of R 1 , R 2 , and m may be the same or different. )
請求項2記載の一般式(II)(化2)で表わされるジアミン化合物と、下記一般式(IV)(化4)。
Figure 0003549555
(式中、Xはハロゲン原子を表わし、Rはハロゲン原子、シアノ基、ニトロ基、トリフルオロメチル基、アミノ基、アルキル基、アルコキシ基、あるいはアリール基を表わし、nは0〜5の整数を表わす。)
で表わされるハロベンゼン化合物とを反応させることを特徴とする、請求項1記載の一般式(I)(化1)で表わされるピレン誘導体の製造方法。
A diamine compound represented by the general formula (II) (Chemical formula 2) according to claim 2, and the following general formula (IV) (Chemical formula 4).
Figure 0003549555
(Wherein, X represents a halogen atom, R 3 represents a halogen atom, a cyano group, a nitro group, a trifluoromethyl group, an amino group, an alkyl group, an alkoxy group, or an aryl group, n represents 0 to 5 Represents an integer.)
2. The method for producing a pyrene derivative represented by the general formula (I) according to claim 1, wherein the reaction is carried out with a halobenzene compound represented by the following formula:
請求項3記載の一般式(III)(化3)で表わされるジニトロ化合物を還元することを特徴とする、請求項2記載の一般式(II)(化2)で表わされるジアミン化合物の製造方法。The method for producing a diamine compound represented by the general formula (II) (Chemical Formula 2) according to claim 2, wherein the dinitro compound represented by the general formula (III) (Chemical Formula 3) according to claim 3 is reduced. . 下記一般式(V)(化5)で表わされるアミノピレン化合物と、下記一般式(VI)(化6)で表わされる4’−ハロゲノ−4−ニトロ−1,1’−ビフェニルとを反応させることを特徴とする、請求項3記載の一般式(III)(化3)で表わされるジニトロ化合物の製造方法。
Figure 0003549555
(式中、Rはハロゲン原子、シアノ基、ニトロ基、トリフルオロメチル基、アミノ基、アルキル基、アルコキシ基、あるいはアリール基を表わし、lは0〜9の整数を表わす。)
Figure 0003549555
(式中、Yはハロゲン原子を表わし、Rはハロゲン原子、シアノ基、ニトロ基、アミノ基、トリフルオロメチル基アルキル基、アルコキシ基、あるいはアリール基を表わし、mは0〜4の整数を表わす。)
Reacting an aminopyrene compound represented by the following general formula (V) with a 4′-halogeno-4-nitro-1,1′-biphenyl represented by the following general formula (VI) The method for producing a dinitro compound represented by the general formula (III) (Chemical Formula 3) according to claim 3, characterized in that:
Figure 0003549555
(In the formula, R 1 represents a halogen atom, a cyano group, a nitro group, a trifluoromethyl group, an amino group, an alkyl group, an alkoxy group or an aryl group,, l is an integer of 0-9.)
Figure 0003549555
(Wherein, Y represents a halogen atom, R 2 represents a halogen atom, a cyano group, a nitro group, an amino group, a trifluoromethyl group , an alkyl group, an alkoxy group, or an aryl group, and m is an integer of 0-4. Represents.)
JP27136093A 1993-10-04 1993-10-04 Novel pyrene derivative and method for producing the same Expired - Fee Related JP3549555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27136093A JP3549555B2 (en) 1993-10-04 1993-10-04 Novel pyrene derivative and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27136093A JP3549555B2 (en) 1993-10-04 1993-10-04 Novel pyrene derivative and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07101911A JPH07101911A (en) 1995-04-18
JP3549555B2 true JP3549555B2 (en) 2004-08-04

Family

ID=17498991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27136093A Expired - Fee Related JP3549555B2 (en) 1993-10-04 1993-10-04 Novel pyrene derivative and method for producing the same

Country Status (1)

Country Link
JP (1) JP3549555B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6459199B1 (en) 1996-05-15 2002-10-01 Chemipro Kasei Kaisha, Limited Multicolor organic EL element having plurality of organic dyes, method of manufacturing the same, and display using the same
JPH10270171A (en) * 1997-01-27 1998-10-09 Junji Kido Organic electroluminescent element
JPH1174079A (en) * 1997-06-20 1999-03-16 Nec Corp Organic electroluminescent element
JP4514841B2 (en) 1998-02-17 2010-07-28 淳二 城戸 Organic electroluminescent device
JPH11251067A (en) 1998-03-02 1999-09-17 Junji Kido Organic electroluminescence element
JP4505067B2 (en) 1998-12-16 2010-07-14 淳二 城戸 Organic electroluminescent device
JP4480827B2 (en) * 1998-12-25 2010-06-16 保土谷化学工業株式会社 Method for producing triarylamine derivative
TW474114B (en) 1999-09-29 2002-01-21 Junji Kido Organic electroluminescent device, organic electroluminescent device assembly and method of controlling the emission spectrum in the device
JP3825344B2 (en) 2002-03-15 2006-09-27 富士写真フイルム株式会社 Organic EL element and organic EL display
JP4060669B2 (en) * 2002-08-28 2008-03-12 富士フイルム株式会社 1,3,6,8-tetrasubstituted pyrene compound, organic EL device and organic EL display
JP4476594B2 (en) 2003-10-17 2010-06-09 淳二 城戸 Organic electroluminescent device
JP4683829B2 (en) 2003-10-17 2011-05-18 淳二 城戸 Organic electroluminescent device and manufacturing method thereof
JP4175273B2 (en) 2004-03-03 2008-11-05 セイコーエプソン株式会社 Method for manufacturing stacked organic electroluminescence element and display device
EP1746085B1 (en) 2004-05-12 2013-11-20 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, organic electroluminescent element employing the same
JP4939284B2 (en) 2007-04-05 2012-05-23 財団法人山形県産業技術振興機構 Organic electroluminescent device

Also Published As

Publication number Publication date
JPH07101911A (en) 1995-04-18

Similar Documents

Publication Publication Date Title
JP5343089B2 (en) INDENOFLUORINE ON DERIVATIVE, ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL AND ORGANIC ELECTROLUMINESCENT ELEMENT
JP5566898B2 (en) New organic light emitting device compound and organic light emitting device using the same
EP2415752B1 (en) Aromatic amine derivative and organic electroluminescent element using same
JP3508984B2 (en) Organic compound and light emitting device using the organic compound
JP3874782B2 (en) Method for producing 4,4'-biphenylenediamine derivative
JP3549555B2 (en) Novel pyrene derivative and method for producing the same
JP5175099B2 (en) Compound having triazole ring structure substituted with pyridyl group and organic electroluminescence device
KR101356953B1 (en) Carbazole derivatives and organic light emitting device using the same
JP2013539205A (en) Novel organic electroluminescent compound and organic electroluminescent device using the same
KR20070093897A (en) Novel anthracene derivatives, process for preparation thereof, and organic electronic light emitting device using the same
US20090146558A1 (en) Stilbene Derivatives, Light-Emitting Element and Light-Emitting Device
JPWO2005091686A1 (en) Organic electroluminescence device
US20100044681A1 (en) Novel Anthracene Derivatives, Method for Preparation Thereof, and Organic Electronic Device Using the Same
JP2006151866A (en) Phenanthroline compound and light-emitting element
CN105441066B (en) A kind of electroluminescent organic material and its application
KR101334204B1 (en) A New Pyrene Compounds, Method of Producing the Same and Organic Electroluminescent Device Comprising the Same
WO2007105783A1 (en) Novel 1,3,5-tris(diarylamino)benzenes and use thereof
CN110776513B (en) Organic compound and application thereof
US20120112179A1 (en) Fluoranthene compound and organic electroluminescence device using same
US20110272683A1 (en) Novel bichrysene compound and organic light emitting device having the compound
US8642191B2 (en) Fused polycyclic compound and organic light-emitting element
CN113321649B (en) Compound, electron transport material and organic electroluminescent device
JP3518816B2 (en) Oxadiazole compound and method for producing the same
JP5376857B2 (en) Fused polycyclic compound and organic light emitting device using the same
CN112480092B (en) Compound with diphenylacridine as core and application thereof in organic electroluminescent device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees